CN109510616B - 基于rc振荡电路的传感器接口控制电路 - Google Patents

基于rc振荡电路的传感器接口控制电路 Download PDF

Info

Publication number
CN109510616B
CN109510616B CN201811521548.5A CN201811521548A CN109510616B CN 109510616 B CN109510616 B CN 109510616B CN 201811521548 A CN201811521548 A CN 201811521548A CN 109510616 B CN109510616 B CN 109510616B
Authority
CN
China
Prior art keywords
circuit
sensor
operational amplifier
module
square wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811521548.5A
Other languages
English (en)
Other versions
CN109510616A (zh
Inventor
许磊
陈闽强
李春领
汪进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Nano Perception Hefei Technology Co ltd
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201811521548.5A priority Critical patent/CN109510616B/zh
Publication of CN109510616A publication Critical patent/CN109510616A/zh
Application granted granted Critical
Publication of CN109510616B publication Critical patent/CN109510616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种基于RC振荡电路的传感器接口控制电路,该电路主要包括:振荡电路,将传感器电阻阻值的变化转化为方波频率的变化,进一步包括:传感器电阻,产生电流;并联连接的电容和第一运算放大器,同时与传感器电阻串联连接,实现传感器电阻阻值的波形输出;第二运算放大器,与并联连接的电容和第一运算放大器进行串联连接,将输出的波形转化为方波;以及频率监测模块,将振荡电路的方波频率变化转换成数字信号。本发明提供了一种基于RC振荡电路的传感器接口电路,与传统的采用模数转换器测量的接口电路相比,极大地简化了电路结构,并提高了测量精度和速度,大大提高了系统性能,增加了系统的实用性。

Description

基于RC振荡电路的传感器接口控制电路
技术领域
本发明涉及集成电路设计行业,尤其涉及一种基于RC振荡电路的传感器接口控制电路的设计。
背景技术
以前对于气体传感器的测量,都是基于模数转换器来实现的。即将传感器的电阻变化先转换成电压变化,而后利用模数转换器进行转换输出。然而模数转换器面积大,功耗高,且电路复杂,这就大大增加了设计和生产的成本,使得其在微型设备(如可穿戴设备)领域的应用难以推广。另外,由于模数转换的设计影响和工艺影响,模数转换器的测量范围和精度都很有限,很难做到高精度大范围的测量,这就进一步限制了气体传感器的性能。
发明内容
针对传统的使用模数转换器测量方法的不足,本发明提出了测量频率的方法。能够大大降低设计复杂度和生产成本,同时也降低了芯片的功耗。
本发明提供了一种基于RC振荡电路的传感器接口控制电路,包括:
振荡电路,将传感器电阻阻值的变化转化为方波频率的变化;
频率监测模块,将振荡电路的方波频率变化转换成数字信号。
进一步的,振荡电路为RC振荡电路,包括:
传感器电阻,产生电流;
并联连接的电容和第一运算放大器,同时与传感器电阻串联连接,实现传感器电阻阻值的波形输出;
第二运算放大器,与并联连接的电容和第一运算放大器进行串联连接,将输出的波形转化为方波。
进一步的,第一运算放大器为积分运算放大器,传感器电阻产生的电流持续地对电容充电和放电并结合该积分运算放大器构成一个积分器,在积分器的输出端产生连续的三角波;
第二运算放大器为滞后比较器中运算放大器,提供第一阈值电压和第二阈值电压,三角波与该第一阈值电压和第二阈值电压相比较,产生方波。
进一步的,振荡电路中串联连接一反相器,实现波形整形以及持续的电容充电与放电转换;
振荡电路产生的方波首先进入一缓冲器,实现方波信号的准确输出。
进一步的,频率监测模块包括数字计数器。
进一步的,频率监测模块通过数字计数器统计振荡电路输出方波频率一周期内的上升沿个数确定传感器阻值的变化情况。
进一步的,该基于RC振荡电路的传感器接口控制电路还包括:
电源模块,包括不同的电源,为传感器及接口电路内的各个模块提供不同的工作电压;
控制模块,控制整个接口电路的工作状态;
输出模块,传感器信号经振荡电路和频率监测模块,并在控制模块的控制下经该输出模块送到外部接收端。
进一步的,电源模块包括带隙电路和低压差线性稳压器电路,为传感器和其他电路模块提供不随温度变化的基准电源。
进一步的,控制模块对频率监测模块得到的数据进行记录和存储;
控制模块控制电源模块中的不同电源为接口电路中的其他模块和传感器提供不同的工作电压,保证各个模块独立工作。
进一步的,输出模块接收频率监测模块的数字信号并在控制模块的控制下以IIC协议的形式送到外部接收端。
综上所述,本发明提供一种气体传感器阻值监测的新方法。利用电源模块、振荡电路、频率监测电路和控制电路,可以高精度、大范围地对气体传感器阻值的变化进行实时监控,而且电路结构简单,功耗低,大大降低了设计和生产成本,为气体传感器向微型设备领域的应用又迈出了重要的一步。
附图说明
为了更清楚地说明本发明的技术方案,下面对振荡电路模块附图并作简要介绍。
图1是本发明实施例气体传感器及其接口电路结构框图;
图2是本发明实施例振荡电路模块总框图,由电阻、电容、反相器、积分器和滞后比较器构成;
图3是本发明实施例振荡电路模块中积分运算放大器的原理图;
图4是本发明实施例振荡电路模块中滞后比较器中运算放大器的原理图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
请参照图1,本发明一实施例提供了一种基于RC振荡电路的气体传感器接口控制电路,包括:
振荡电路,将传感器电阻阻值的变化转化为方波频率的变化;
本实施例中,所使用的传感器为气体传感器,振荡电路直接将气体传感器的电阻变化转化成了方波信号的频率变化,直接测量了气体传感器阻值的变化。
频率监测模块,将振荡电路的方波频率变化转换成数字信号;
一些实施例中,频率监测模块包括数字计数器。
本实施例中,振荡电路可以输出频率随气体传感器变化的方波信号,其输出接频率监测电路,而频率监测电路由数字计数器构成,用于监测振荡电路输出端方波信号的频率值,进而转化为数字信号。
一些实施例中,振荡电路为RC振荡电路,包括:
传感器电阻,产生电流;
并联连接的电容和第一运算放大器,同时与传感器电阻串联连接,实现传感器电阻阻值的波形输出;
第二运算放大器,与并联连接的电容和第一运算放大器进行串联连接,将输出的波形转化为方波。
本实施例中,请参照图2,振荡电路由气体传感器电阻、固定电容和两个二级运算放大器构成,结构简单,测试范围广,精度高,而且功耗低。
一些实施例中,第一运算放大器为积分运算放大器,传感器电阻产生的电流持续地对电容充电和放电并结合该积分运算放大器构成一个积分器,在积分器的输出端产生连续的三角波;
本实施例中,请参照图3,为带有密勒补偿的两级运算放大器原理图,利用两级运放增大增益,密勒补偿稳定运放工作相位,其中采用PMOS对管输入减小信号输入噪声。
第二运算放大器为滞后比较器中运算放大器,提供第一阈值电压和第二阈值电压,三角波与该第一阈值电压和第二阈值电压相比较,产生方波。
本实施例中,请参照图4,为电流镜负载的两级差分运算放大器的原理图,其中采用电流镜负载增大运放的输出摆幅,方便运放进行整形。
一些实施例中,振荡电路中串联连接一反相器,实现波形整形以及持续的电容充电与放电转换;
振荡电路产生的方波首先进入一缓冲器,实现方波信号的准确输出。
本实施例中,请参照图2,振荡电路中,气体传感器的电阻(RS)产生特定的电流,该电流在反相器的作用下连续地对电容器(C)充电和放电,这一过程会在积分器的输出端产生连续的三角波,三角波与滞后比较器提供的两个阈值电压相比较,产生带有特定振荡频率(F)的方波,该经振荡电路转化的方波进入缓冲器然后输出。
一些实施例中,频率监测模块通过数字计数器统计振荡电路模块输出方波频率一周期内的上升沿个数确定传感器阻值的变化情况。
本实施例中,振荡电路直接测量气体传感器阻值的变化,当传感器电阻阻值发生变化时,振荡电路的输出频率会随之变化,表现为振荡电路输出随传感器电阻阻值变化而变化的方波频率信号,由此每秒内的方波个数就会发生变化,因此用计数器统计每秒内的方波个数即可得出振荡器此时的频率,进而可以转化为与传感器阻值变化相对应的数字信号。
一些实施例中,该基于RC振荡电路的传感器接口控制电路还包括:
电源模块,包括不同的电源,为传感器及接口电路内的各个模块提供不同的工作电压;
一些实施例中,电源模块包括带隙电路(Bandgap电路)和低压差线性稳压器电路(LDO电路),为传感器和其他电路模块提供不随温度变化的电源。
本实施例中,电源模块由Bandgap电路和LDO电路构成,为气体传感器和其他电路提供不随温度变化的稳定电源。
控制模块,控制整个接口电路的工作状态;
一些实施例中,控制模块对频率监测模块得到的数据进行记录和存储;
控制模块控制电源模块中的不同电源为接口电路中的其他模块和传感器提供不同的工作电压,保证各个模块独立工作。
输出模块,传感器信号经振荡电路和频率监测模块,并在控制模块的控制下经该输出模块送到外部接收端;
一些实施例中,输出模块接收频率监测模块的数字信号并在控制模块的控制下以IIC协议的形式送到外部接收端。
本实施例中,电源模块受控制模块的控制为整个接口电路和气体传感器提供不同的工作电压,以保证各个模块独立工作,互不干扰;控制模块记录和存储频率频率监测模块得到的数据;输出模块将频率监测模块得到的信号以IIC协议的方式发送给外部控制端口,完成传感器信息的测量、存储和输出。
本实施例中,整个接口电路由上述电源模块、振荡电路模块、频率监控模块、控制模块和输出模块共同实现。
本发明根据气体传感器的自身特性提出的新的测量方法,采用测频率的振荡电路来取代模数转换器。该方法利用气体传感器的电阻、定值电容和运算放大器共同构成振荡电路,该振荡电路能够输出频率随气体传感器阻值变化而变化的方波。随后再接一个数字计数器,读出一秒内的方波脉冲数,即可计算出传感器电阻的阻值。该方法由于电路结构简单,转换速度快,测量精度高,功耗低,因此大大降低了设计和生产成本。
本发明使用振荡电路代替传统的模数转化电路,同时降低了电路复杂性,简化电路排布方式,得以在微型设备上实现进一步推广。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于RC振荡电路的传感器接口控制电路,其特征在于,包括:
振荡电路,将传感器电阻阻值的变化转化为方波频率的变化,其中,所述振荡电路中无需电流镜;
频率监测模块,将振荡电路的方波频率变化转换成数字信号;
电源模块,所述电源模块包括带隙电路和低压差线性稳压器电路,为传感器和其他模块提供不随温度变化的电源;
其中,所述振荡电路中串联连接一反相器,实现波形整形以及持续的电容充电与放电转换;且所述振荡电路产生的方波首先进入一缓冲器,实现方波信号的输出;
其中,所述振荡电路为RC振荡电路,所述RC振荡电路包括:传感器电阻,产生电流;并联连接的电容和第一运算放大器,同时与所述传感器电阻串联连接,实现传感器电阻阻值的波形输出;第一运算放大器为积分运算放大器,所述传感器电阻产生的电流持续地对电容充电和放电并结合该积分运算放大器构成一个积分器,在积分器的输出端产生连续的三角波;第二运算放大器,与所述并联连接的电容和第一运算放大器进行串联连接,将第一运算放大器输出的波形转化为方波;所述第二运算放大器为滞后比较器中运算放大器,提供第一阈值电压和第二阈值电压,所述三角波与所述第一阈值电压和第二阈值电压相比较,产生方波;
其中,所述传感器电阻为气体传感器电阻,在所述气体传感器电阻前还包括一电阻R。
2.根据权利要求1所述的基于RC振荡电路的传感器接口控制电路,其特征在于,所述频率监测模块包括数字计数器。
3.根据权利要求1或2所述的基于RC振荡电路的传感器接口控制电路,其特征在于,所述频率监测模块通过数字计数器统计振荡电路输出方波频率一周期内的上升沿个数确定传感器阻值的变化情况。
4.根据权利要求1所述的基于RC振荡电路的传感器接口控制电路,其特征在于,所述控制电路还包括:
电源模块,包括不同的电源,为传感器及接口电路内的各个模块提供不同的工作电压;
控制模块,控制整个接口电路的工作状态;
输出模块,传感器信号经振荡电路和频率监测模块,并在控制模块的控制下经所述输出模块送到外部接收端。
5.根据权利要求4所述的基于RC振荡电路的传感器接口控制电路,其特征在于,所述控制模块控制整个接口电路的工作状态包括:
控制模块对频率监测模块得到的数据进行记录和存储;
控制模块控制电源模块中的不同电源为接口电路中的其他模块和传感器提供不同的工作电压,保证各个模块独立工作。
6.根据权利要求4所述的基于RC振荡电路的传感器接口控制电路,其特征在于,所述输出模块接收所述频率监测模块的数字信号并在控制模块的控制下以IIC协议的形式送到外部接收端。
CN201811521548.5A 2018-12-12 2018-12-12 基于rc振荡电路的传感器接口控制电路 Active CN109510616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811521548.5A CN109510616B (zh) 2018-12-12 2018-12-12 基于rc振荡电路的传感器接口控制电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811521548.5A CN109510616B (zh) 2018-12-12 2018-12-12 基于rc振荡电路的传感器接口控制电路

Publications (2)

Publication Number Publication Date
CN109510616A CN109510616A (zh) 2019-03-22
CN109510616B true CN109510616B (zh) 2021-03-09

Family

ID=65753249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811521548.5A Active CN109510616B (zh) 2018-12-12 2018-12-12 基于rc振荡电路的传感器接口控制电路

Country Status (1)

Country Link
CN (1) CN109510616B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345981B (zh) * 2019-07-29 2020-12-25 中国科学技术大学 电阻式传感器的检测系统
CN110988397B (zh) * 2019-12-19 2022-02-11 西安建筑科技大学 一种用于石英谐振加速度计的激振电路
CN112730527B (zh) * 2020-12-18 2022-05-13 中国科学技术大学 基于mems气体传感器阵列的气体检测系统
CN112945349A (zh) * 2021-02-03 2021-06-11 浙江厚德气动元件有限公司 一种实时监测水位自动排水的气动三联件
CN113253143B (zh) * 2021-05-20 2024-08-09 中国兵器装备集团自动化研究所有限公司 Dc/ac测试系统优化方法、装置、设备和存储介质
CN113532489A (zh) * 2021-06-25 2021-10-22 西安交通大学 一种基于莫特绝缘体忆阻器的电容型传感架构
CN113390464B (zh) * 2021-06-25 2022-10-25 西安交通大学 一种编码脉冲输出的阻变型传感构架
CN115507307B (zh) * 2022-09-12 2024-05-14 西南石油大学 一种混氢系统氢气泄漏监测及响应系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744973A (en) * 1995-07-21 1998-04-28 Honeywell Inc. Resistance to frequency circuit for measuring ambient temperature on a thermostat
JP2003232821A (ja) * 2002-02-06 2003-08-22 Multi Keisokuki Kk 電路の絶縁抵抗値の測定方法及び装置
JP2007078440A (ja) * 2005-09-13 2007-03-29 Seiko Epson Corp R/f変換回路及びそれを具備する半導体集積回路
DE102017126901A1 (de) * 2016-12-28 2018-06-28 Silicon Laboratories Inc. Ladungsmessung in einem System unter Verwendung eines impulsfrequenzmodulierten DC-DC-Wandlers

Also Published As

Publication number Publication date
CN109510616A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN109510616B (zh) 基于rc振荡电路的传感器接口控制电路
CN110572157B (zh) 一种i/f变换电路板的温度补偿方法
US12044583B2 (en) Digital temperature sensor circuit
CN101975893A (zh) 一种基于仪器放大器的差动电容检测电路及检测方法
CN102539831A (zh) 一种捷联惯导系统中加速度计信号转换装置
CN108562373A (zh) 一种高精度的温度传感器电路
CN114487615B (zh) 电容测量电路及电容测量方法
CN202906836U (zh) 用于石英晶体振荡器的全数字温度补偿集成电路
CN101271142A (zh) 互补金属氧化物半导体单片集成的峰值检测电路
CN106707009B (zh) 一种宽量程高精度电流统计电路
CN210469231U (zh) 微弱信号放大器
CN114895231A (zh) 一种高端电压差分采样校准系统及方法
CN109375092B (zh) 基于iic协议的双检测方式传感器控制接口电路
CN103245366A (zh) 一种振动信号微分电路
CN113381695B (zh) 一种时钟振荡器电路
CN112255464B (zh) 一种基于电荷补偿模拟前端的电容测量电路及测量方法
CN112881775B (zh) 一种低功耗高分辨率电容测量电路
CN111342785B (zh) 一种信号调理电路
CN110470861A (zh) 一种mems电容式加速度计接口电路
CN114584145A (zh) 一种高分辨率大量程石英挠性加速度计采集电路设计方法
CN211293690U (zh) 一种基于差动桥电路的数据采集系统
CN114111550A (zh) 基于电压积分翻转电容法的微位移测量装置及方法
CN111751685A (zh) 一种断路器局放故障与弧光短路故障监测装置
CN117856737A (zh) 一种具有高灵敏检测输入端电压变化的电压-频率振荡器
CN104238608A (zh) 一种全频域直流电压信号降压放大电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210915

Address after: 230088 building D6, phase I, Zhongan chuanggu Science Park, No. 900, Wangjiang West Road, high tech Zone, Hefei, Anhui

Patentee after: Micro nano perception (Hefei) Technology Co.,Ltd.

Address before: 230026 Jinzhai Road, Baohe District, Hefei, Anhui Province, No. 96

Patentee before: University of Science and Technology of China

TR01 Transfer of patent right