CN109482880A - 一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法 - Google Patents

一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法 Download PDF

Info

Publication number
CN109482880A
CN109482880A CN201811616748.9A CN201811616748A CN109482880A CN 109482880 A CN109482880 A CN 109482880A CN 201811616748 A CN201811616748 A CN 201811616748A CN 109482880 A CN109482880 A CN 109482880A
Authority
CN
China
Prior art keywords
alloy
alloy powder
annealing
stress relief
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811616748.9A
Other languages
English (en)
Other versions
CN109482880B (zh
Inventor
杨波
邝亚飞
李宗宾
闫海乐
赵骧
左良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201811616748.9A priority Critical patent/CN109482880B/zh
Publication of CN109482880A publication Critical patent/CN109482880A/zh
Application granted granted Critical
Publication of CN109482880B publication Critical patent/CN109482880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

本发明提供了一种同时提升Ni‑Mn‑In合金力学性能和磁热性能的制备方法,该合金由以下设计工艺制成:按照原料配比称取Ni、Mn、In原料,利用真空电弧多次反复熔炼,制备多晶铸锭,通过机械研磨,制成粉末,然后用标准试验筛筛出15~200um左右的合金粉末,去应力退火温度在300℃~700℃之间。置于石墨模具中,然后在放电等离子烧结系统中进行烧结,真空度小于20Pa,升温速率为20~100℃/min,压力为20~80MPa,烧结温度为550~930℃,保温时间为1~30min,去应力退火温度在300℃~700℃之间。通过本发明设计的制备工艺,同时提升了Ni‑Mn‑In合金的力学性能和磁热性能。本工艺具有普遍性规律,同样适用于所有的Ni‑Mn‑x(In、Sn、Sb)合金。

Description

一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法
技术领域
本发明属于磁制冷材料技术领域,尤其涉及一种功能金属材料的设计方案和制备方法。
背景技术
近年来,Ni-Mn-x(x=In、Sn、Sb)合金作为一类新型磁制冷材料,一直被广泛关注。除了磁晶各向异性能,在磁场作用下,塞曼能发挥着至关重要的作用,能够显著影响相的稳定性并诱导逆马氏体相变发生,塞曼能可以随外加磁场增加而增加。但是,Ni-Mn-x(Ga、In、Sn、Sb)合金力学性能较脆的本质,导致机械加工成型性比较差,一直阻碍着工业化生产。
为了改善NiMn基合金的力学性能,相关学者作出了大量尝试,目前,主要有定向凝固工艺,合金化,复合材料,粉末冶金等途径。其中定向凝固(Huang Y J,Hu Q D,Liu J,etal.Banded-like morphology and martensitic transformation of dual-phase Ni–Mn–In magnetic shape memory alloy with enhanced ductility[J].Acta Materialia,2013,61(15):5702-5712.)和合金化,例如B(Yang Z,Cong D Y,Sun X M,et al.Enhancedcyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magneticshape memory alloys[J].Acta Materialia,2017,127:33-42.)、Ti(Sánchezalarcos V,Pérezlandazábal J I,Recarte V,et al.Effect of Ti addition on the mechanicalproperties and the magnetocaloric effect of Ni-Mn-In metamagnetic shapememory alloys[J].Journal of Physics D Applied Physics,2015,48(44):445006.)等,尽管改善了NiMn基合金的力学性能,但是,定向凝固以及合金化产生的第二相,钉扎位错,阻碍了马氏体相变,增加了滞后,同时提高了相变应力平台。而通过SPS烧结制备了Ni-Mn-Ga/Mg复合材料(Tian B,Tong Y X,Chen F,et al.Microstructure,phasetransformation and mechanical property of Ni-Mn-Ga particles/Mg composites[J].Materials Science&Engineering A,2014,615(615):273-277.),力学性能显著改善,但是,马氏体转变的磁化率非常弱,降低了磁性能。
粉末冶金是一种有效的改善合金强度和塑性的成型工艺,通过SPS烧结制备了Ni-Co-Mn-In合金(Tian B,Ren D C,Tong Y X,et al.Microstructure,PhaseTransformation and Mechanical Property of Ni-Co-Mn-In Alloy Prepared by SparkPlasma Sintering[J].Materials Science Forum,2015,815(4):222-226.),烧结合金的抗压强度和断裂应变分别达到了1900MPa和18%,这是目前通过熔炼和合金化无法达到的,但是DSC没有观测到吸放热峰,合金的马氏体相变彻底被抑制。尽管通过以上途径都改善了NiMn基合金的力学性能,但是,其相关磁性能都不同程度的下降甚至彻底丧失。至今为止,还没有文献报道能够同时提升NiMn基变磁性形状记忆合金的力学性能和磁热性能。
本发明通过适当的烧结工艺并结合相应的热处理工艺,消除机械研磨和烧结过程中粒子塑性变形所产生的内应力,使得烧结合金恢复马氏体转变,结果,同时提升了合金的力学性能和磁热性能,本工艺具有普遍性规律,同样适用于所有的Ni-Mn-x(In、Sn、Sb)合金。
发明内容
本发明提供了一种Ni-Mn-In变磁性形状记忆合金的烧结成型工艺,通过一系列工艺流程,同时提升NiMn基合金的力学性能和磁热性能。更有利于实际应用,而且该合金的的工艺制备简单、高效率、易于实现工业化生产。
为实现前述发明目的,本发明采用的技术方案包括如下步骤:
1、通过电弧熔炼制备出多晶Ni-Mn-In块体,机械研磨,制成粉体。然后用90目和1000目的标准试验筛,获取一定粒径的合金粉末,粒径在15um~160um之间。
2、上述材料由放电等离子烧结工艺合成,其包括以下步骤:
(1)去应力退火:将电弧熔炼的Ni-Mn-In合金粉末放入充有氩气的石英管当中,密封,然后退火温度在300℃~700℃之间,退火时间在0~24h之间,最佳退火参数为600℃,5h去应力退火。
(2)烧结:称取3~9g合金粉末,置于Ф15的石墨磨具中,在放电等离子烧结系统,真空环境中进行烧结,真空度为小于20Pa;以20~100℃/min的升温速率升至550~930℃,保温1-30分钟,压力为20~80MPa,最佳烧结参数为:升温速率为100℃/min,烧结温度为900℃,保温时间15min,加载压力为50MPa。
(3)去应力退火:将选取的合金粉末放入充有氩气的石英管当中,密封,然后退火温度在300℃~700℃之间,退火时间在0~24h之间,最佳退火参数为500℃,5h去应力退火。
本发明的一种三元Ni-Mn-In变磁性形状记忆合金,从实际应用角度出发,提升了Ni-Mn-In变磁性形状记忆合金的力学性能和磁热性能,解决了力学性能差的缺点,同时又保持了良好的磁热性能。更有利于实际应用。此外,该工艺通过放电等离子烧结成型,具有环保,节能,高效等优良特点,本工艺具有普遍性规律,同样适用于所有的Ni-Mn-x(In、Sn、Sb)合金。
附图说明
附图1烧结Ni50Mn34.7In15.3合金的工艺流程图。
附图2烧结Ni50Mn34.7In15.3合金的磁熵变随温度的变化曲线。
附图3烧结Ni50Mn34.7In15.3合金的工程应力应变曲线。
具体实施方式
实施例1
Ni-Mn-In合金中元素的原子比之和为100,原子比为n(Ni):n(Mn):n(In)=50:34.7:15.3。
Ni50Mn34.7In15.3合金靶材的制备方法,包括以下步骤:
步骤1,Ni-Mn-In合金粉末的制备:
(1)原料配比:按照化学式Ni50Mn34.7In15.3配料;
(2)制备多晶铸锭:将步骤(1)称取的原料盛放至真空电弧熔炼炉水冷铜坩埚中,电弧熔炼炉腔体抽真空至3×10-3后,通入惰性保护气体0.05MPa,反复熔炼4~5次,熔炼时间为2~2.5小时。电磁搅拌下进行电弧熔炼,得到成分均匀的合金铸锭;
(3)将熔炼的多晶块体合金放入充有氩气的石英管当中,密封,然后在900℃,48h均匀化退火,水淬;
(4)机械研磨:将退火后的Ni-Mn-In合金铸锭打磨干净后,通过机械研磨机研磨成粉,得到所述Ni50Mn34.7In15.3合金粉末,然后用100目和120目的标准试验筛,获取一定粒径的合金粉末,粒径在125um~150um之间。
步骤2,Ni-Mn-In合金粉末的烧结成型:
(1)去应力退火:将选取的合金粉末放入充有氩气的石英管当中,密封,然后在600℃,5h去应力退火。
(2)称取7g合金粉末,放入石墨磨具中,在放电等离子烧结系统中进行烧结,真空度为10Pa。在7分钟内升温至600℃,600℃以后,以100℃/min的升温速率,烧结温度900℃,保温15分钟,压力为50MPa。
(3)去应力退火:将选取的合金粉末放入充有氩气的石英管当中,密封,然后在500℃,5h去应力退火。
其性能指标:
磁热性能:在5T磁场下的磁熵变为19.3J·kg-1K-1
力学性能:合金的抗压强度和断裂应变分别为1050MPa和12.5%。

Claims (2)

1.一种Ni-Mn-In合金材料,其特征在于,包括以下步骤:
(1)通过电弧熔炼制备出多晶Ni-Mn-In块体,机械研磨,制成粉体;然后用90目和1000目的标准试验筛,获取粒径在15um~160um之间的合金粉末;
(2)对步骤(1)获取的材料采用放电等离子烧结工艺合成
1)去应力退火:将电弧熔炼的Ni-Mn-In合金粉末放入充有氩气的石英管当中,密封,然后退火温度在300℃~700℃之间,退火时间在0~24h之间;
2)烧结:称取3~9g合金粉末,置于Ф15的石墨磨具中,在放电等离子烧结系统,真空环境中进行烧结,真空度为小于20Pa;以20~100℃/min的升温速率升至550~930℃,保温1~30分钟,压力为20~80Mpa;
3)去应力退火:将选取的合金粉末放入充有氩气的石英管当中,密封,然后退火温度在300℃~700℃之间,退火时间在0~24h之间。
2.根据权利要求1所述的一种Ni-Mn-In合金材料,其特征在于以下步骤:
(1)通过电弧熔炼制备出多晶Ni-Mn-In块体,机械研磨,制成粉体;然后用90目和1000目的标准试验筛,获取粒径在15um~160um之间的合金粉末;
(2)对步骤(1)获取的材料采用放电等离子烧结工艺合成如下:
1)去应力退火:将电弧熔炼的Ni-Mn-In合金粉末放入充有氩气的石英管当中,密封,然后退火温度在600℃,退火时间在5h;
2)烧结:称取3~9g合金粉末,置于Ф15的石墨磨具中,在放电等离子烧结系统,真空环境中进行烧结,真空度为小于20Pa;以100℃/min的升温速率升至900℃,保温15min,压力为50MPa;
3)去应力退火:将选取的合金粉末放入充有氩气的石英管当中,密封,然后退火温度在500℃,退火时间在5h。
CN201811616748.9A 2018-12-28 2018-12-28 一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法 Active CN109482880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811616748.9A CN109482880B (zh) 2018-12-28 2018-12-28 一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811616748.9A CN109482880B (zh) 2018-12-28 2018-12-28 一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法

Publications (2)

Publication Number Publication Date
CN109482880A true CN109482880A (zh) 2019-03-19
CN109482880B CN109482880B (zh) 2019-11-08

Family

ID=65712759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811616748.9A Active CN109482880B (zh) 2018-12-28 2018-12-28 一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法

Country Status (1)

Country Link
CN (1) CN109482880B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059181A (zh) * 2020-08-28 2020-12-11 中国地质大学(武汉) 一种镍锰铟形状记忆合金零件及其4d成形方法
CN112375956A (zh) * 2020-11-13 2021-02-19 东北大学秦皇岛分校 一种高强度NiMnIn合金及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794752A (zh) * 2014-03-07 2014-05-14 哈尔滨工业大学 一种核壳结构的高电压镍锰酸锂正极材料及其制备方法
JP2014105373A (ja) * 2012-11-29 2014-06-09 Canon Inc 金属光造形用金属粉末、射出成形用金型の製造方法、射出成形用金型および成形品
CN104818442A (zh) * 2015-05-19 2015-08-05 重庆大学 一种提高Mg-Zn-Y合金的阻尼与力学性能的方法
CN105957672A (zh) * 2016-01-19 2016-09-21 包头稀土研究院 镧铁硅基氢化物磁工质及其制备方法、磁制冷机
CN108690943A (zh) * 2018-05-29 2018-10-23 西安理工大学 一种提高Cu-Ni-Mn-Fe合金力学性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105373A (ja) * 2012-11-29 2014-06-09 Canon Inc 金属光造形用金属粉末、射出成形用金型の製造方法、射出成形用金型および成形品
CN103794752A (zh) * 2014-03-07 2014-05-14 哈尔滨工业大学 一种核壳结构的高电压镍锰酸锂正极材料及其制备方法
CN104818442A (zh) * 2015-05-19 2015-08-05 重庆大学 一种提高Mg-Zn-Y合金的阻尼与力学性能的方法
CN105957672A (zh) * 2016-01-19 2016-09-21 包头稀土研究院 镧铁硅基氢化物磁工质及其制备方法、磁制冷机
CN108690943A (zh) * 2018-05-29 2018-10-23 西安理工大学 一种提高Cu-Ni-Mn-Fe合金力学性能的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059181A (zh) * 2020-08-28 2020-12-11 中国地质大学(武汉) 一种镍锰铟形状记忆合金零件及其4d成形方法
CN112059181B (zh) * 2020-08-28 2022-02-01 中国地质大学(武汉) 一种镍锰铟形状记忆合金零件及其4d成形方法
CN112375956A (zh) * 2020-11-13 2021-02-19 东北大学秦皇岛分校 一种高强度NiMnIn合金及其制备方法和应用

Also Published As

Publication number Publication date
CN109482880B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN106893923B (zh) 一种刀具用多主元合金及其制备方法
CN101492781B (zh) 一种高塑性钛基超细晶复合材料及其制备方法
CN104004942B (zh) 一种TiC颗粒增强镍基复合材料及其制备方法
EP3065148B1 (en) Magnetic phase-transformation material
EP3124641B1 (en) Method of manufacturing ni alloy part
CN104342583A (zh) 一种Ti-Ta合金及其制备方法和应用
CN108913928A (zh) 一种制备氧化物弥散强化铜复合材料的方法
CN109524190B (zh) 一种稀土—铁—硅基磁制冷复合材料及其制备方法
CN109898005B (zh) 一种高强度的WVTaZrHf难熔高熵合金及其制备方法
CN107858579A (zh) 利用恒磁场热处理提高高熵合金磁性能的方法
CN109482880B (zh) 一种同时提升Ni-Mn-In合金力学性能和磁热性能的制备方法
CN109023004B (zh) 一种面向等离子体含钨的单相难熔高熵合金及其制备方法
CN110079722A (zh) 一种含B的难熔高熵合金TiZrNbMoTa及其粉末冶金制备方法
CN110373595A (zh) 一种高性能高熵高温合金及其制备方法
CN102251162B (zh) 一种高性能纳米氧化镧掺杂钼-硅-硼合金的制备方法
CN115198162B (zh) 高强韧异质多相“核壳”组织结构中熵合金及其制备方法
CN100457933C (zh) 一种制备强化钽及钽合金材料的方法
CN106282786A (zh) 含Nb铁锰基阻尼合金及其制备方法
CN109518037A (zh) 一种SPS制备的Ti-18Mo-xSi合金材料及其制备方法
CN102286708A (zh) 一种钛基块状非晶复合材料及其制备方法
Svetlov et al. Temperature dependence of the ultimate strength of in situ multicomponent Nb–Si–X (X= Ti, Hf, W, Cr, Al, Mo) composites
CN106521245A (zh) 一种钴钒硅镓基高温形状记忆合金
CN113684389B (zh) 一种控制γ相分布提高Co-Ni-Al磁记忆合金超弹性的方法
CN102732747A (zh) 以TiH2粉为原料粉末冶金法制备Ti-24Nb-8Sn合金的方法
CN108620582A (zh) 一种磁性记忆合金与铜的复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant