CN109459311B - 一种模拟不同受力条件下隧道管环受力变形的实验装置 - Google Patents
一种模拟不同受力条件下隧道管环受力变形的实验装置 Download PDFInfo
- Publication number
- CN109459311B CN109459311B CN201811557730.6A CN201811557730A CN109459311B CN 109459311 B CN109459311 B CN 109459311B CN 201811557730 A CN201811557730 A CN 201811557730A CN 109459311 B CN109459311 B CN 109459311B
- Authority
- CN
- China
- Prior art keywords
- pipe
- ring
- loading
- pipe ring
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims description 4
- 238000006073 displacement reaction Methods 0.000 claims abstract description 57
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 210000001503 joint Anatomy 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000006378 damage Effects 0.000 abstract description 9
- 238000009412 basement excavation Methods 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000002689 soil Substances 0.000 description 13
- 238000011161 development Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0075—Strain-stress relations or elastic constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0274—Tubular or ring-shaped specimens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
- G01N2203/0635—Electrical or magnetic indicating, recording or sensing means using magnetic properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明提供一种模拟不同受力条件下隧道管环受力变形的实验装置,包括管环、能够对管环进行侧向加载和竖向加载的加载装置和与管环连接的数据测量系统,每一管环为主要由多个管片依次首尾连接组成的圆环形,同一管环中相邻的两管片之间的接缝为纵缝;数据测量系统包括等角度的固定于管环内、外侧的多组应变片对和均匀的设于管环的内侧分别用于测量管片径向位移和纵缝张开度的多个LVDT位移传感器,应变片对和LVDT位移传感器连接数据采集仪器,接数据采集仪器连接计算机以将其从应变片对和LVDT位移传感器中采集的数据传至计算机进行处理从而能够模拟管环在不同受力条件下的形变与破坏规律。
Description
技术领域
本发明涉及建筑领域,尤其涉及一种模拟不同受力条件下隧道管环受力变形的实验装置。
背景技术
当前,我国正处在城市轨道交通建设的高峰时期,全国新建轨道交通里程将达到3000公里。由于城市轨道线路周边极具商业价值,沿线的地下空间开发利用受到了越来越广泛的关注,随着大规模地铁线路的建成与运营,紧邻地铁线路的深开挖工程将变得不可避免,且会越来越多。
紧邻深开挖或基坑开挖施工往往伴随着强烈的环境效应,将对邻近隧道结构产生不利的影响,由此产生的工程事故案例也越来越多,比如2009年由于基坑开挖导致台北一盾构隧道管环最大水平位移达到50mm,开挖影响区内管环竖向和水平向收敛变形均超过30mm,过大的地层变形导致地铁停运。2011-12年紧靠宁波地铁1号线某区间盾构隧道一侧大面积基坑开挖导致左线盾构隧道发生超过30mm水平位移,管环局部破损严重,引发局部严重渗水。并且类似工程案例有逐年上升的趋势。根据上海地铁隧道经验,每11起盾构隧道结构人为破坏的案例中,就有3起是由于深开挖所导致。而地铁沿线的深开挖工程使隧道周围水土压力产生变化,导致管环的变形破坏是威胁地铁盾构隧道服役性能及结构安全的主要风险来源之一。
深开挖下水土接触压力是影响管环的承载性能的主要外部作用,而现有研究对在深开挖水土压力下管环的承载特性认识非常缺乏,管环的受力变形的薄弱环节认识不清楚,因而无法有针对性对管环进行加固处理。因此,有必要进一步揭示深开挖水土压力下管环的变形、受力与破坏规律,为类似工况下的管环加固设计提供理论支持。
在已知深开挖下管环外表面水土压力分布模型后,探索管环在此不同受力的基础上的变形发展演化规律尤为重要,有必要提供一种模拟不同受力条件下隧道管环受力变形的实验装置与实验方法。
发明内容
有鉴于此,本发明的实施例提供了一种模拟不同受力条件下隧道管环受力变形的实验装置,能够模拟管环在不同受力条件下的形变与破坏规律等,从而为类似工况下的管环加固设计提供理论支持。
本发明的实施例提供一种模拟不同受力条件下隧道管环受力变形的实验装置,包括管环、能够对所述管环进行侧向加载和竖向加载的加载装置和与所述管环连接的数据测量系统,每一所述管环包括多个依次首尾连接的管片,这些管片组成圆环形,同一所述管环中相邻的两所述管片之间的接缝为纵缝;所述数据测量系统包括等角度的固定于所述管环内、外侧的多组应变片对和均匀的设于所述管环的内侧分别用于测量所述管片径向位移和纵缝张开度的多个LVDT 位移传感器,所述应变片对和LVDT位移传感器连接数据采集仪器,所述接数据采集仪器连接计算机以将其从所述应变片对和LVDT位移传感器中采集的数据传至计算机进行处理。
进一步地,所述管环具有三个,三个所述管环沿纵向拼接形成一个圆管,且相邻的两所述管环中的纵缝相互错位,位于中间的所述管环为加载环,所述加载装置与所述加载环连接以对其施加荷载。
进一步地,构成每一所述管环的管片的数量为n个,n为大于0的整数,所述管环的内侧壁具有n个所述纵缝,每一所述管片为弧形结构,同一所述管环中相邻两所述管片通过弧形螺栓相互连接,且每一所述管片采用混凝土材料制作,每一所述弧形螺栓采用金属加工而成。
进一步地,所述加载环中的每一所述管片上均设有至少一组所述应变片对,每组所述应变片对中的两应变片的中心之间的连线的延长线穿过该管片的圆心,同组的两所述应变片中的一应变片固定于该管片的外侧,另一应变片固定于该管片的内侧;所述LVDT位移传感器中包括用于测量所述加载环中的每一所述管片径向位移的径向LVDT位移传感器和用于测量所述加载环中的每一所述纵缝张开度的开度LVDT位移传感器,每一所述径向LVDT位移传感器垂直于对应的所述管片的内侧,且任意相邻的两所述径向LVDT位移传感器之间的夹角相等。
进一步地,所述径向LVDT位移传感器和所述开度LVDT位移传感器的数量相等,且相邻的所述径向LVDT位移传感器和开度LVDT位移传感器之间具有一所述应变片。
进一步地,至少所述管环的外侧设有收容所述应变片的凹槽以使所述应变片与所述加载装置之间无接触或者接触时作用力为零;所述加载环中相邻两所述管片通过两弧形螺栓相互连接,该两弧形螺栓共对称轴,且其中一所述弧形螺栓横跨与之对应的纵缝且从外侧通过连接该两凹槽而来连接两所述管片,另一所述弧形螺栓横跨与之对应的纵缝且从内测连接两所述管片,所有所述应变片中,全部或者部分所述应变片与所述弧形螺栓一一对应且位于与之对应的所述弧形螺栓的弧形顶端。
进一步地,每一所述管环的一侧设有凸隼,另一侧设有凹槽,一所述管环的凸隼通过与另一所述管环的凹槽对接而实现这两管环之间的相互拼接,相邻两所述管环之间还通过若干螺栓来加强拼接。
进一步地,所述加载装置包括由钢梁组成的框形反力架,还包括若干千斤顶,每一所述千斤顶的一端连接与之对应的钢梁的内侧,另一端连接加载板,所述加载板具有用于与所述管片的外侧接触的弧形接触面,所述接触面的曲率与所述管片的外侧的曲率相同;所述千斤顶均为与计算机连接的伺服液压千斤顶,通过计算机可控制所述千斤顶实施分级加载。
进一步地,所述反力架固定于地面,具有相互垂直的竖向和侧向,位于竖向的两所述钢梁内侧各连接有三所述千斤顶,位于侧向的两所述钢梁内侧各连接有四所述千斤顶,同向的所述千斤顶对称分布。
进一步地,所有所述接触面接触同一所述管环的外侧时,所有所述接触面共同组成了一个完成的圆;所述管片与实际隧道管环的比例为1:5。
本发明的实施例提供的技术方案带来的有益效果是:本发明所述的模拟不同受力条件下隧道管环受力变形的实验装置,通过加载装置对有多个管片组成的管环提供侧向加载、竖向加载和竖向加载同时侧向卸载等受力条件,并通过数据测量系统测量和分析管片在上述各种受力条件下的形变与破坏规律等,从而来模拟隧道管环在不同受力条件下的变形数据,进而可通过实验数据得出管环在不同受力条件下的形变与破坏规律等,为类似工况下的管环加固设计提供理论支持。
附图说明
图1是本发明模拟不同受力条件下隧道管环受力变形的实验装置的主视图;
图2是本发明模拟不同受力条件下隧道管环受力变形的实验装置的立体示意图;
图3是本发明模拟不同受力条件下隧道管环受力变形的实验装置的管环的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参考图1和图2,本发明的实施例提供了一种模拟不同受力条件下隧道管环受力变形的实验装置,包括管环2、能够对所述管环进行侧向加载和竖向加载的加载装置1和与所述管环连接的数据测量系统,每一所述管环2为主要由多个管片21依次首尾连接组成的圆环形。
为了真实的模拟现场,所述管环2具有三个,三个所述管环2沿纵向拼接形成一个圆管,位于中间的所述管环2为加载环,所述加载装置1与所述加载环连接以对其施加荷载。
请参考图1至图3,每一所述管片21为弧形结构,为了便于批量生产,所有所述管片21具有相同的结构特征,构成每一所述管环2的管片21的数量为n 个,n为大于0的整数,本实施例中n=6,但不以此为限。同一所述管环2中相邻的两所述管片21之间的接缝为纵缝,优选所述纵缝平行纵向延伸。本实施例中,同一所述管环2中的所述纵缝数量为6。同一所述管环2中相邻两所述管片 21通过弧形螺栓相互连接,且每一所述管片21采用混凝土材料制作,每一所述弧形螺栓采用金属加工而成。所述管片21具有设定的刚度,所述弧形螺栓亦具有设定的强度。在所述圆管中,相邻的两所述管环2中的纵缝相互错位。
所述数据测量系统包括等角度的固定于所述加载环内、外侧的多组应变片对和均匀的设于所述管环2的内侧分别用于测量所述管片径向位移和纵缝张开度的多个LVDT位移传感器。
具体地,所述加载环中的每一所述管片21上均设有至少一组所述应变片对,每组所述应变片对中的两应变片31的中心之间的连线的延长线穿过该管片21 的圆心,同组的两所述应变片31中的一应变片31固定于该管片21的外侧,另一应变片31固定于该管片21的内侧。
所述LVDT位移传感器中包括用于测量所述加载环中的每一所述管片21径向位移的径向LVDT位移传感器32和用于测量所述加载环中的每一所述纵缝张开度的开度LVDT位移传感器33,所述径向LVDT位移传感器32和所述开度LVDT 位移传感器33的数量相等,优选数量都为6个,且相邻的所述径向LVDT位移传感器32和开度LVDT位移传感器33之间具有一所述应变片31。每一所述径向 LVDT位移传感器32垂直于对应的所述管片21的内侧,且任意相邻的两所述径向LVDT位移传感器32之间的夹角相等。
至少所述管环2的外侧设有收容所述应变片31的凹槽211以使所述应变片 31与所述加载装置1之间无接触或者接触时作用力为零。从而使在加载过程中,所述加载装置1干扰所述应变片31,亦不会使所述应变片31在所述加载装置1 对所述管环2施加荷载时毁坏。
所述加载环中相邻两所述管片21通过两弧形螺栓4相互连接,该两弧形螺栓4共对称轴,且其中一所述弧形螺栓4横跨与之对应的纵缝且从外侧通过连接该两凹槽211而来连接两所述管片21,另一所述弧形螺栓4横跨与之对应的纵缝且从内测连接两所述管片21。所有所述应变片中,全部或者部分所述应变片31与所述弧形螺栓4一一对应且位于与之对应的所述弧形螺栓4的弧形顶端: (1)在同一所述管环中,全部所述应变片31与所述弧形螺栓4一一对应,所述应变片的总数等于所述弧形螺栓4的总数;或者(2)在同一所述管环中,只有部分所述应变片31与所述弧形螺栓4一一对应,其余部分所述应变片31位于所述管环的其他位置。
所述应变片31对和LVDT位移传感器连接数据采集仪器,所述接数据采集仪器连接计算机以将其从所述应变片对和LVDT位移传感器中采集的数据传至计算机进行处理。所述应变片31为电阻应变片,用于监测加载过程中对应的管片 21的应力发展,所述数据采集仪器用于将所述应变片21采集的电信号转换成数字信号然后传至所述计算机,所述计算机基于应变检测数据,可反算对应的管环2弯矩分布情况,分析受力发展过程,然后显示出来。所述径向LVDT位移传感器32用于监测加载过程管环2径向位移发展规律,所述开度LVDT位移传感器33用于监测在实验过程中管环2的纵缝张开发展规律,所述数据采集仪器用于将所述径向LVDT位移传感器32和开度LVDT位移传感器33采集的电信号转换成数字信号然后传至所述计算机,所述计算机描绘管环2径向位移和管环2 纵缝张开图,得到水土压力下管环2变形与内力分布图,并通过与规范推荐的水土压力下管环2变形与内力分布进行对比分析。
所述圆管中,每一所述管环2的一侧设有凸隼,另一侧设有凹槽,一所述管环2的凸隼通过与另一所述管环2的凹槽对接而实现这两管环2之间的相互拼接,为了强化拼接,相邻两所述管环2之间还通过若干螺栓来相互连接。
所述加载装置1包括由钢梁11组成的框形反力架,还包括若干千斤顶12,每一所述千斤顶12的一端连接与之对应的钢梁11的内侧,另一端连接加载板 13,所述加载板13具有用于与所述管片21的外侧接触的弧形接触面131,所述接触面131的曲率与所述管片2的外侧的曲率相同;所述千斤顶12均为与计算机连接的伺服液压千斤顶,通过计算机可控制所述千斤顶12实施分级加载。
所述反力架固定于地面,具有相互垂直的竖向和侧向,位于竖向的两所述钢梁11内侧各连接有三所述千斤顶12,位于侧向的两所述钢梁11内侧各连接有四所述千斤顶12,同向的所述千斤顶12对称分布。
为了使加载时所述加载环受力均匀,所有所述接触面131接触所述加载环的外侧时,所有所述接触面131共同组成了一个完成的圆。
本实施例采用的管环与实际的隧道管环之间的比例为1:5,具体的如下表所示:
实施例一
使用本发明所述的模拟不同受力条件下隧道管环受力变形的实验装置进行受力变形实验时,首先通过所述加载装置1的侧向千斤顶12和竖向千斤顶12 同时对所述加载环进行上下左右的加载,来模拟所述管环2被埋在地下时其上下左右承受水土压力的承力情况。
通过所述计算机控制所述千斤顶12对所述加载环实施分级加载,逐级增加加载强度,所述接数据采集仪器实时将其接收的所述加载环上的所述应变片31 采集的数据传至所述计算机,所述计算机根据应变传采集的数据,反算管片21 弯矩分布情况;所述接数据采集仪器实时将其接收的所述加载环上的径向LVDT 位移传感器32和开度LVDT位移传感器33所采集的数据传至所述计算机,所述计算机根据其接收的数据描绘管环2径向位移和管环2纵缝张开图,得到水土压力下管环2变形与内力分布图,并通过与规范推荐的水土压力下管环变形与内力分布进行对比分析。
实施例二
通过所述计算机控制所述千斤顶12对所述加载环实施加载来模拟所述加载环被埋在地下承受水土压力的状况,然后在某一级别的加载下,在保持所述加载环竖向加载力不变的情况下,分级改变其侧向的加载力(包括分级卸载和进一步分级加载),通过计算机来观察所述加载环的受力变化。或者,在保持所述加载环侧向加载力不变的情况下,分级改变其竖向的加载力(包括分级卸载和进一步分级加载),通过计算机来观察所述加载环的受力变化。
实施例三
通过所述计算机控制所述千斤顶12对所述加载环实施加载来模拟所述加载环被埋在地下承受水土压力的状况,然后在某一级别的加载下,逐级卸载所述加载环的侧向荷载,同时逐级增加所述加载环的竖向荷载,通过计算机来观察所述加载环的受力变化,进行竖向加载同时侧向卸载条件下的管环受力变形实验。
实施例四
通过所述计算机控制所述千斤顶12对所述加载环进行仅侧向加载的受力变形实验。
实施例五
通过所述计算机控制所述千斤顶12对所述加载环进行仅竖向加载的受力变形实验。
实施例六
更换不同刚度的所述管环2和不同的强度的所述弧形螺栓,然后通过所述计算机控制所述千斤顶12对不同所述管环12和弧形螺栓的组合进行受力变形实验。
通过上述实施例,根据深开挖下管环外表面水土压力分布模型,设计及开展模型管环荷载试验,观测管环2的受力和变形发展演化规律,并和开挖作用前管环2内力分布进行对比分析;进一步开展在不同水土压力模式下(仅侧向卸载、竖向加载同时侧向卸载和不同管环加固措施)管环2荷载试验,深入探究影响管环承载性能的主要因素。在此基础上采用Abaqus有限元软件,反演上述管环2荷载模型试验,从应力应变角度,更进一步研究在不同水土分布压力模式下管环2承载特性,分析管环2受载变形及破坏的最薄弱位置,为管环2加固提供理论指导依据。
优点:本装置能够方便有效的模拟基坑深开挖下隧道管环的受力变化情况,开展在仅侧向卸载、竖向加载同时侧向卸载、以及加固措施不同时管环荷载试验,得到实验所得测量的管道内外的应力应变数值,并和开挖作用前管环内力分布进行对比分析,深入探究在基坑开挖条件下影响管环承载性能的主要因素。
本装置的零件比较常见,组装简单,方法操作简单,适应性强。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (2)
1.一种模拟不同受力条件下隧道管环受力变形的实验装置,其特征在于:包括管环、能够对所述管环进行侧向加载和竖向加载的加载装置和与所述管环连接的数据测量系统,每一所述管环包括多个依次首尾连接的管片,这些管片组成圆环形,同一所述管环中相邻的两所述管片之间的接缝为纵缝;所述数据测量系统包括等角度的固定于所述管环内、外侧的多组应变片对和均匀的设于所述管环的内侧分别用于测量所述管片径向位移和纵缝张开度的多个LVDT位移传感器,所述应变片对和LVDT位移传感器连接数据采集仪器,所述接数据采集仪器连接计算机以将其从所述应变片对和LVDT位移传感器中采集的数据传至计算机进行处理;
所述管环具有三个,三个所述管环沿纵向拼接形成一个圆管,且相邻的两所述管环中的纵缝相互错位,位于中间的所述管环为加载环,所述加载装置与所述加载环连接以对其施加荷载;
所述加载环中的每一所述管片上均设有至少一组所述应变片对,每组所述应变片对中的两应变片的中心之间的连线的延长线穿过该管片的圆心,同组的两所述应变片中的一应变片固定于该管片的外侧,另一应变片固定于该管片的内侧;所述LVDT位移传感器中包括用于测量所述加载环中的每一所述管片径向位移的径向LVDT位移传感器和用于测量所述加载环中的每一所述纵缝张开度的开度LVDT位移传感器,每一所述径向LVDT位移传感器垂直于对应的所述管片的内侧,且任意相邻的两所述径向LVDT位移传感器之间的夹角相等;
所述径向LVDT位移传感器和所述开度LVDT位移传感器的数量相等,且相邻的所述径向LVDT位移传感器和开度LVDT位移传感器之间具有一所述应变片;
至少所述管环的外侧设有收容所述应变片的凹槽以使所述应变片与所述加载装置之间无接触或者接触时作用力为零;所述加载环中相邻两所述管片通过两弧形螺栓相互连接,该两弧形螺栓共对称轴,且其中一所述弧形螺栓横跨与之对应的纵缝且从外侧通过连接该两凹槽而来连接两所述管片,另一所述弧形螺栓横跨与之对应的纵缝且从内测连接两所述管片,所有所述应变片中,全部或者部分所述应变片与所述弧形螺栓一一对应且位于与之对应的所述弧形螺栓的弧形顶端;
每一所述管环的一侧设有凸隼,另一侧设有凹槽,一所述管环的凸隼通过与另一所述管环的凹槽对接而实现这两管环之间的相互拼接,相邻两所述管环之间还通过若干螺栓来加强拼接;
所述加载装置包括由钢梁组成的框形反力架,还包括若干千斤顶,每一所述千斤顶的一端连接与之对应的钢梁的内侧,另一端连接加载板,所述加载板具有用于与所述管片的外侧接触的弧形接触面,所述接触面的曲率与所述管片的外侧的曲率相同;所述千斤顶均为与计算机连接的伺服液压千斤顶,通过计算机可控制所述千斤顶实施分级加载;
所述反力架固定于地面,具有相互垂直的竖向和侧向,位于竖向的两所述钢梁内侧各连接有三所述千斤顶,位于侧向的两所述钢梁内侧各连接有四所述千斤顶,同向的所述千斤顶对称分布;
所有所述接触面接触同一所述管环的外侧时,所有所述接触面共同组成了一个完成的圆;且所述管片与实际隧道管环的比例为1:5。
2.如权利要求1所述的模拟不同受力条件下隧道管环受力变形的实验装置,其特征在于:构成每一所述管环的管片的数量为n个,n为大于0的整数,所述管环的内侧壁具有n个所述纵缝,每一所述管片为弧形结构,同一所述管环中相邻两所述管片通过弧形螺栓相互连接,且每一所述管片采用混凝土材料制作,每一所述弧形螺栓采用金属加工而成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811557730.6A CN109459311B (zh) | 2018-12-19 | 2018-12-19 | 一种模拟不同受力条件下隧道管环受力变形的实验装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811557730.6A CN109459311B (zh) | 2018-12-19 | 2018-12-19 | 一种模拟不同受力条件下隧道管环受力变形的实验装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109459311A CN109459311A (zh) | 2019-03-12 |
CN109459311B true CN109459311B (zh) | 2024-02-27 |
Family
ID=65613858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811557730.6A Active CN109459311B (zh) | 2018-12-19 | 2018-12-19 | 一种模拟不同受力条件下隧道管环受力变形的实验装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109459311B (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108801764B (zh) * | 2018-05-04 | 2020-02-18 | 中国矿业大学 | 可传递水平及多点局部竖向荷载的多功能支架及实施方法 |
CN109975120B (zh) * | 2019-04-18 | 2021-07-20 | 中国建筑材料科学研究总院有限公司 | 混凝土约束应力和形变应力测量装置及测量方法 |
CN110031324B (zh) * | 2019-04-24 | 2020-05-05 | 天津大学 | 盾构隧道管片接缝防水性能试验装置 |
CN109946027B (zh) * | 2019-04-24 | 2020-04-07 | 天津大学 | 一种盾构隧道管片接缝防水性能试验方法 |
CN110186703A (zh) * | 2019-06-17 | 2019-08-30 | 福建博海工程技术有限公司 | 一种山岭隧道荷载试验加载装置 |
CN110552674A (zh) * | 2019-08-19 | 2019-12-10 | 河南工程学院 | 真三轴含微生物煤体压裂实验装置 |
CN110553916B (zh) * | 2019-09-03 | 2022-04-12 | 辽宁工程技术大学 | 一种点式加载万向传载的实验应力加载系统及方法 |
CN110823613B (zh) * | 2019-11-11 | 2021-05-18 | 山东大学 | 隧道围岩与衬砌耦合结构承载防水试验系统与方法 |
CN111076859A (zh) * | 2019-12-30 | 2020-04-28 | 天津大学 | 一种盾构隧道土体地震液化实时监测系统及监测方法 |
CN111102011A (zh) * | 2019-12-30 | 2020-05-05 | 天津大学 | 一种盾构隧道管片沉降监测报警系统及监测报警方法 |
CN111189712B (zh) * | 2020-01-21 | 2022-04-22 | 中铁十五局集团有限公司 | 一种盾构隧道接缝受力原型试验系统 |
CN111521422B (zh) * | 2020-03-20 | 2024-08-16 | 山东大学 | 隧道危石垮塌演化过程数控模拟系统及方法 |
CN111829894B (zh) * | 2020-06-24 | 2022-02-08 | 山东大学 | 一种岩土多场测量试验系统及方法 |
CN112147060B (zh) * | 2020-09-18 | 2023-03-10 | 徐州新通预制构件制造有限公司 | 一种模拟隧道的多灾种耦合实验系统及其实验方法 |
CN112664212B (zh) * | 2020-12-30 | 2024-09-06 | 建发合诚工程咨询股份有限公司 | 一种盾构机三维模型加载方法 |
CN112881200B (zh) * | 2021-01-19 | 2022-12-06 | 浙江工业大学 | 一种管片纵向接头剪切刚度试验加载装置及方法 |
CN113217016A (zh) * | 2021-05-26 | 2021-08-06 | 中安华力建设集团有限公司 | 隧道盾构施工及管片安装质量控制的模拟系统及模拟方法 |
CN114000918B (zh) * | 2021-10-25 | 2023-02-21 | 福州大学 | 模拟盾构隧道纵向抗剪性能的试验装置 |
CN115165282B (zh) * | 2022-07-05 | 2023-03-21 | 北京科技大学 | 模拟隧道纵向地震响应的拟静力往复推覆试验装置及方法 |
CN116337345B (zh) * | 2023-02-20 | 2023-10-24 | 山东大学 | 一种模拟隧道横向变形渗漏水的试验系统及方法 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001182493A (ja) * | 1999-12-28 | 2001-07-06 | Sumitomo Rubber Ind Ltd | 可撓性継手およびそれを用いたシールドトンネルの施工方法 |
KR20080052079A (ko) * | 2006-12-07 | 2008-06-11 | 동양기전 주식회사 | 튜브링 일체형 시험장치 |
CN203037530U (zh) * | 2012-12-12 | 2013-07-03 | 清华大学 | 一种圆截面钢管混凝土径向倾斜受压强度试验装置 |
CN104533470A (zh) * | 2014-11-03 | 2015-04-22 | 同济大学 | 一种站立式三环原型异形盾构管片力学加载装置 |
CN104807707A (zh) * | 2015-04-29 | 2015-07-29 | 江苏城市职业学院 | 测定frp—混凝土双面剪切性能的测试装置及测试方法 |
KR20160075901A (ko) * | 2014-12-19 | 2016-06-30 | 한국건설기술연구원 | 아일랜드형 전단키 및 종방향 강연선을 구비한 실드터널용 세그먼트 구조체 |
CN105865922A (zh) * | 2016-05-20 | 2016-08-17 | 天津大学 | 双线隧道开挖掌子面加卸荷模拟测试系统 |
CN205665109U (zh) * | 2016-05-18 | 2016-10-26 | 西安建筑科技大学 | 一种便携式相贯节点双向荷载共同作用性能测试装置 |
CN106290001A (zh) * | 2016-08-30 | 2017-01-04 | 天津大学 | 盾构隧道管片衬砌受高温组合荷载作用的加载试验装置 |
CN106679904A (zh) * | 2017-02-23 | 2017-05-17 | 天津大学 | 模拟水、土荷载作用的盾构隧道管环抗渗性能试验装置 |
CN106885661A (zh) * | 2017-02-23 | 2017-06-23 | 天津大学 | 模拟水、土荷载作用的盾构隧道管环抗渗性能试验方法 |
CN207194905U (zh) * | 2017-04-21 | 2018-04-06 | 天津大学 | 一种用于盾构模型试验的隧道模型 |
CN207620797U (zh) * | 2017-11-22 | 2018-07-17 | 中国铁路总公司 | 一种盾构隧道施工期荷载模拟与结构内力测试试验系统 |
CN108344637A (zh) * | 2018-01-08 | 2018-07-31 | 同济大学 | 盾构管片力学模拟试验装置 |
CN207882081U (zh) * | 2018-01-08 | 2018-09-18 | 同济大学 | 盾构管片力学模拟试验装置 |
CN109030034A (zh) * | 2018-06-21 | 2018-12-18 | 浙江大学城市学院 | 一种模拟双线地铁运营振动的试验装置 |
CN209400324U (zh) * | 2018-12-19 | 2019-09-17 | 中国地质大学(武汉) | 一种模拟不同受力条件下隧道管环受力变形的实验装置 |
-
2018
- 2018-12-19 CN CN201811557730.6A patent/CN109459311B/zh active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001182493A (ja) * | 1999-12-28 | 2001-07-06 | Sumitomo Rubber Ind Ltd | 可撓性継手およびそれを用いたシールドトンネルの施工方法 |
KR20080052079A (ko) * | 2006-12-07 | 2008-06-11 | 동양기전 주식회사 | 튜브링 일체형 시험장치 |
CN203037530U (zh) * | 2012-12-12 | 2013-07-03 | 清华大学 | 一种圆截面钢管混凝土径向倾斜受压强度试验装置 |
CN104533470A (zh) * | 2014-11-03 | 2015-04-22 | 同济大学 | 一种站立式三环原型异形盾构管片力学加载装置 |
KR20160075901A (ko) * | 2014-12-19 | 2016-06-30 | 한국건설기술연구원 | 아일랜드형 전단키 및 종방향 강연선을 구비한 실드터널용 세그먼트 구조체 |
CN104807707A (zh) * | 2015-04-29 | 2015-07-29 | 江苏城市职业学院 | 测定frp—混凝土双面剪切性能的测试装置及测试方法 |
CN205665109U (zh) * | 2016-05-18 | 2016-10-26 | 西安建筑科技大学 | 一种便携式相贯节点双向荷载共同作用性能测试装置 |
CN105865922A (zh) * | 2016-05-20 | 2016-08-17 | 天津大学 | 双线隧道开挖掌子面加卸荷模拟测试系统 |
CN106290001A (zh) * | 2016-08-30 | 2017-01-04 | 天津大学 | 盾构隧道管片衬砌受高温组合荷载作用的加载试验装置 |
CN106679904A (zh) * | 2017-02-23 | 2017-05-17 | 天津大学 | 模拟水、土荷载作用的盾构隧道管环抗渗性能试验装置 |
CN106885661A (zh) * | 2017-02-23 | 2017-06-23 | 天津大学 | 模拟水、土荷载作用的盾构隧道管环抗渗性能试验方法 |
CN207194905U (zh) * | 2017-04-21 | 2018-04-06 | 天津大学 | 一种用于盾构模型试验的隧道模型 |
CN207620797U (zh) * | 2017-11-22 | 2018-07-17 | 中国铁路总公司 | 一种盾构隧道施工期荷载模拟与结构内力测试试验系统 |
CN108344637A (zh) * | 2018-01-08 | 2018-07-31 | 同济大学 | 盾构管片力学模拟试验装置 |
CN207882081U (zh) * | 2018-01-08 | 2018-09-18 | 同济大学 | 盾构管片力学模拟试验装置 |
CN109030034A (zh) * | 2018-06-21 | 2018-12-18 | 浙江大学城市学院 | 一种模拟双线地铁运营振动的试验装置 |
CN209400324U (zh) * | 2018-12-19 | 2019-09-17 | 中国地质大学(武汉) | 一种模拟不同受力条件下隧道管环受力变形的实验装置 |
Non-Patent Citations (2)
Title |
---|
地铁盾构隧道纵向接缝承载能力试验研究与解析分析;柳献;张晨光;张宸;;土木工程学报(第10期);116-128 * |
盾构隧道管片衬砌拼装效应局部原型结构加载试验;邱月;何川;封坤;张力;孙齐;;中国公路学报(第08期);160-167+219 * |
Also Published As
Publication number | Publication date |
---|---|
CN109459311A (zh) | 2019-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109459311B (zh) | 一种模拟不同受力条件下隧道管环受力变形的实验装置 | |
Wang et al. | Mechanized construction of fabricated arches for large-diameter tunnels | |
CN101403645B (zh) | 一种水压、土压独立加载的盾构隧道结构原型试验装置 | |
CN109269900B (zh) | 一种用于多环盾构隧道结构的地层模拟及加载试验装置 | |
CN209400324U (zh) | 一种模拟不同受力条件下隧道管环受力变形的实验装置 | |
CN107301305B (zh) | 一种实现管片三维受载的结构力学性能的建模方法 | |
Molins et al. | Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test.: Part 1: Test configuration and execution | |
CN104165807B (zh) | 一种预应力混凝土板梁大挠度破坏试验装置及测试方法 | |
CN112649046B (zh) | 一种全过程模拟仿真系杆拱桥整体顶推监控方法 | |
CN204964308U (zh) | 高温岩石锚杆拉拔试验监测系统 | |
CN112857988A (zh) | 一种管片足尺试验非对称荷载加载试验系统及其试验方法 | |
CN105332739A (zh) | 一种隧道支护结构受力监测装置及方法 | |
CN105938067A (zh) | 外部加载式盾构管片力学性能试验机及试验方法 | |
CN105510381A (zh) | 一种盾构隧道管片衬砌接头过火试验方法 | |
CN102866070B (zh) | 一种隧道二次衬砌混凝土结构承载力试验的加载方法 | |
Feng et al. | Analysis on the stiffness iteration of segmental joints in segmental linings: Method and sensitivity analysis | |
CN110132714B (zh) | 一种测试不规则岩体试样变形参数的装置及测试方法 | |
Lin et al. | A Novel Back‐Analysis Approach for the External Loads on Shield Tunnel Lining in Service Based on Monitored Deformation | |
CN103698073A (zh) | 一种形状记忆合金管接头紧固压力测试装置及其测试方法 | |
CN207882085U (zh) | 深埋隧洞模型试验装置系统 | |
CN201289410Y (zh) | 土压、水压独立加载的原型盾构隧道结构试验设备 | |
CN115795788B (zh) | 杆塔-基础-改良地基体系地震响应计算模型及试验方法 | |
CN109538296B (zh) | 一种岩溶隧道突水预警计算模型及计算方法 | |
CN115507808B (zh) | 模拟临近隧道施工条件下既有隧道受力变形特性的试验装置及方法 | |
CN215296993U (zh) | 一种全应力路径追踪的多联岩土原位剪切测试装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |