CN109244133A - 碳化硅半导体装置及其制造方法以及电力变换装置 - Google Patents

碳化硅半导体装置及其制造方法以及电力变换装置 Download PDF

Info

Publication number
CN109244133A
CN109244133A CN201810722266.5A CN201810722266A CN109244133A CN 109244133 A CN109244133 A CN 109244133A CN 201810722266 A CN201810722266 A CN 201810722266A CN 109244133 A CN109244133 A CN 109244133A
Authority
CN
China
Prior art keywords
silicon carbide
carbide semiconductor
semiconductor device
protection
recess portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810722266.5A
Other languages
English (en)
Inventor
香川泰宏
楢崎敦司
福井裕
菅原胜俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN109244133A publication Critical patent/CN109244133A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

得到能够防止可靠性降低的碳化硅半导体装置及其制造方法以及电力变换装置。在第1导电型的碳化硅半导体层(2)的上表面设置有栅极沟槽(6)和保护沟槽(7)。第2导电型的保护扩散层(10)在碳化硅半导体层(2)设置于比栅极电极(9)深的位置。层间绝缘膜(11)将栅极电极(9)的表面覆盖,具有单元开口(12)。源极电极(15)经过单元开口(12)而与源极区域(5)电连接,经过保护沟槽(7)而与保护扩散层(10)电连接。镀敷膜(17)设置在源极电极(15)之上。在保护沟槽(7)的上方,在源极电极(15)的上表面形成有凹部(16)。凹部(16)的垂直方向的深度小于或等于凹部(16)的水平方向的宽度的一半。

Description

碳化硅半导体装置及其制造方法以及电力变换装置
技术领域
本发明涉及沟槽栅极型的碳化硅半导体装置及其制造方法以及电力变换装置。
背景技术
就沟槽栅极型的硅半导体装置而言,硅半导体层的雪崩电场强度低于栅极绝缘膜的绝缘破坏电场强度,因此由硅半导体层的雪崩电场强度决定出半导体装置的耐压。另一方面,碳化硅的雪崩电场强度成为硅的约10倍,因此,就碳化硅半导体装置而言,碳化硅半导体层的雪崩电场强度和栅极绝缘膜的绝缘破坏电场强度相等。并且,就沟槽栅极型的半导体装置而言,如果对装置施加电压,则在沟槽下部的角部发生电场集中,因此从沟槽角部的栅极绝缘膜开始先发生绝缘破坏。因此,就在沟槽栅极型的碳化硅半导体装置而言,由栅极绝缘膜的电场强度对耐压进行了限制。
因此,就现有的沟槽栅极型的碳化硅半导体装置而言,在N沟道型的情况下,提出了在沟槽下部的漂移层设置以高浓度注入有P型杂质的保护扩散层(例如,参照专利文献1)。另外,提出了将保护扩散层经过保护沟槽而与源极电极连接(例如,参照专利文献2)。由此,通过将保护扩散层接地,从而能够降低沟槽下部的电场的集中。并且,能够防止由位移电流引起的栅极绝缘膜的破坏,该位移电流是由在通断动作时施加的漏极电压的变化(dV/dt)产生的。
另外,使用的是例如在IGBT等的半导体衬底的元件形成面即衬底表面将散热器等焊接于铝电极的半导体装置。对上述半导体装置应用倒装芯片技术的凸块电极。即,在铝电极之上形成保护膜,在该保护膜上形成开口部。然后,在从该开口部漏出的铝电极的表面之上通过镀敷处理形成焊接用镀敷膜。
专利文献1:日本特开2001-267570号公报
专利文献2:日本专利第5710644号公报
表面电极大多是通过溅射装置使金属沉积而形成的。即使以将单元区域的开口填埋的方式形成金属,也不会完全将宽度大的保护沟槽填埋,在保护沟槽的上方,在表面电极的上表面残留凹部。并且,存在与沟槽底部相比,上部容易沉积金属颗粒的倾向,且在沟槽角部沉积变多,因此凹部的开口变窄。
单元区域处的层间绝缘膜的开口宽度成为与表面电极的接触部相同的大小,因此能够对开口的宽高比进行控制。并且,通过由钨等进行埋入形成,从而能够确保平坦性。但是,就保护沟槽而言,需要在沟槽底部形成接触部,因此难以将保护沟槽缩小至能够由钨等进行埋入形成的大小。
在镀敷处理中,相对于表面电极,成膜均匀地进行。因此,在对上述形状的表面电极进行了镀敷处理的情况下,在从凹部的底部生长的镀敷膜到达至上部之前,从凹部的上部两侧生长的镀敷膜闭塞。由此,留出空腔而产生镀敷液残留。例如,当在使用半导体装置的过程中芯片变成高温的情况下,如果被封闭在电极内的镀敷液膨胀而气化,则在电极内施加压力,使电极缺损。因此,存在装置的可靠性降低这样的问题。
发明内容
本发明就是为了解决上述课题而提出的,其目的是得到能够防止可靠性降低的碳化硅半导体装置及其制造方法以及电力变换装置。
本发明涉及的碳化硅半导体装置的特征在于,具有:第1导电型的碳化硅半导体层,其在上表面具有保护沟槽;第2导电型的基极区域,其设置在所述碳化硅半导体层的上部;第1导电型的源极区域,其设置在所述基极区域的上部;栅极电极,其隔着栅极绝缘膜而设置在将所述基极区域以及所述源极区域贯穿的栅极沟槽的内部;第2导电型的保护扩散层,其在所述碳化硅半导体层设置于比所述栅极电极深的位置;层间绝缘膜,其将所述栅极电极的表面覆盖,具有单元开口;源极电极,其经过所述单元开口而与所述源极区域电连接,经过所述保护沟槽而与所述保护扩散层电连接;以及镀敷膜,其设置在所述源极电极之上,在所述保护沟槽的上方,在所述源极电极的上表面形成有凹部,所述凹部的垂直方向的深度小于或等于所述凹部的水平方向的宽度的一半。
发明的效果
在本发明中,在源极电极的上表面形成的凹部的垂直方向的深度小于或等于凹部的水平方向的宽度的一半。由此,能够防止在镀敷膜形成空隙,因此能够防止由镀敷液残留引起的可靠性降低。
附图说明
图1是表示本发明的实施方式1涉及的碳化硅半导体装置的剖视图。
图2是表示本发明的实施方式1涉及的碳化硅半导体装置的剖视图。
图3是表示对比例涉及的碳化硅半导体装置的剖视图。
图4是表示对比例涉及的碳化硅半导体装置的剖视图。
图5是表示本发明的实施方式2涉及的碳化硅半导体装置的剖视图。
图6是表示本发明的实施方式2涉及的碳化硅半导体装置的俯视图。
图7是表示本发明的实施方式1涉及的碳化硅半导体装置的电流的流动的剖视图。
图8是表示本发明的实施方式1涉及的碳化硅半导体装置的电流的流动的俯视图。
图9是表示本发明的实施方式3涉及的碳化硅半导体装置的剖视图。
图10是表示电力变换系统的结构的框图,该电力变换系统应用了本发明的实施方式4涉及的电力变换装置。
标号的说明
2碳化硅半导体层,4基极区域,5源极区域,6栅极沟槽,7保护沟槽,8栅极绝缘膜,9栅极电极,10保护扩散层,11层间绝缘膜,12单元开口,15源极电极,16凹部,17镀敷膜,200电力变换装置,201主变换电路,202碳化硅半导体装置,203控制电路
具体实施方式
参照附图对本发明的实施方式涉及的碳化硅半导体装置及其制造方法以及电力变换装置进行说明。对相同或对应的结构要素标注相同的标号,有时省略重复的说明。
实施方式1.
图1以及图2是表示本发明的实施方式1涉及的碳化硅半导体装置的剖视图。该碳化硅半导体装置为沟槽栅极型SiC-MOSFET。图1示出了镀层形成前的状态,图2示出了镀层形成后的状态。
在N+型的碳化硅衬底1之上外延生长有N-型的碳化硅半导体层2。碳化硅半导体层2的下部为漂移层3,在碳化硅半导体层2的上部设置有P型的基极区域4。在基极区域4的上部设置有N型的源极区域5。
在碳化硅半导体层2的上表面以将基极区域4以及源极区域5贯穿的方式设置有栅极沟槽6,在碳化硅半导体层2的上表面还设置有保护沟槽7。保护沟槽7在俯视观察时为矩形或长方形状。栅极沟槽6的底部到达至漂移层3。在栅极沟槽6的底面以及内侧面设置有栅极绝缘膜8。在栅极沟槽6的内部隔着栅极绝缘膜8设置有栅极电极9。栅极电极9也形成于保护沟槽7的外周部。
栅极电极9在俯视观察时配置为格子状。被格子状的栅极电极9分隔出的MOSFET单元在碳化硅半导体层2形成有多个。各单元具有基极区域4、源极区域5以及栅极电极9,作为MOSFET起作用。设置有上述多个单元的区域为单元区域。另一方面,设置有保护沟槽7的区域为保护接触区域。
P型的保护扩散层10在碳化硅半导体层2设置于栅极沟槽6的底部和保护沟槽7的底部,在P型的区域彼此连接。保护扩散层10也与栅极电极9同样地在俯视观察时配置为格子状。因此,保护沟槽7的底部的保护扩散层10与周围的MOSFET单元的所有保护扩散层10连接。
由TEOS构成的层间绝缘膜11将栅极电极9的表面覆盖。在单元区域,在层间绝缘膜11设置有单元开口12。在单元开口12处,在基极区域4的上部设置有P+型的接触区域13。层间绝缘膜11也设置在保护沟槽7内,在保护沟槽7的底面开口。在该开口处,在保护扩散层10的上部设置有P+型的接触区域14。
源极电极15设置在层间绝缘膜11之上。源极电极15经过单元开口12与源极区域5电连接而构成接触部。另外,源极电极15经过保护沟槽7与保护扩散层10电连接而构成保护接触部。即,单元开口12是用于将源极电极15和源极区域5连接的接触孔,保护沟槽7是用于将源极电极15和保护扩散层10连接的接触孔。
保护沟槽7形成于被栅极电极9分隔出的区块的大致整个区域。在保护沟槽7内,栅极电极9与作为保护接触部的源极电极15之间通过层间绝缘膜11进行绝缘。由此,保护接触部的面积最大限度地扩大,因此能够减小保护接触部的电阻。
在保护沟槽7的上方,在源极电极15的上表面形成有凹部16。以源极电极15的凹部16的垂直方向的深度d1小于或等于凹部16的上部的水平方向的宽度w1的一半(w1≥2×d1)的方式对保护沟槽7的宽度进行调整。
镀敷膜17设置在源极电极15之上。镀敷膜17填充于源极电极15的凹部16。因此,在凹部16内不需要设置其他金属材料。漏极电极18设置在碳化硅衬底1的下表面。
接下来,对本实施方式涉及的碳化硅半导体装置的动作进行简单说明。如果对栅极电极9施加大于或等于阈值电压的正电压,则在栅极电极9的侧面的基极区域4形成反转沟道层。该反转沟道层成为作为载流子的电子从源极区域5流动至漂移层3的路径。经过反转沟道层而从源极区域5向漂移层3流入的电子按照由漏极电极18的正电压产生的电场,通过碳化硅衬底1到达至漏极电极18。其结果,MOSFET能够使电流从漏极电极18流向源极电极15。该状态为MOSFET的导通状态。另外,栅极沟槽6的底部的保护扩散层10在MOSFET的截止时促进漂移层3的耗尽化,并且缓和向栅极沟槽6的底部的电场集中而防止栅极绝缘膜8的破坏。
另一方面,在对栅极电极9施加比阈值电压低的电压时,在沟道区域未形成反转沟道,因此电流不会在漏极电极18与源极电极15间流动。该状态为MOSFET的截止状态。
如上所述,在MOSFET截止时,漏极电极18的电压急剧上升,因此经由保护扩散层10与漂移层3之间的寄生电容,位移电流流入至保护扩散层10。此时,在保护扩散层10与基极区域4之间的电阻成分产生压降,如果该压降变大,则发生栅极绝缘膜8的绝缘破坏。因此,使保护沟槽7的宽度大于单元开口12的宽度。优选保护沟槽7的宽度大于1个单元的宽度。具体而言,保护沟槽7的宽度大于或等于单元开口12的宽度的2倍,且为大于或等于7μm。因此,能够增大保护接触部的形成面积,能够减小保护接触部的电阻值。因此,能够减小保护扩散层10与基极区域4之间的电阻值,防止由位移电流引起的栅极绝缘膜8的破坏。
接下来,对本实施方式涉及的碳化硅半导体装置的制造方法进行说明。首先,在呈4H多晶型的n型且低电阻的碳化硅衬底1之上通过化学气相沉积(CVD:Chemical vapordeposition)法使碳化硅半导体层2外延生长。碳化硅半导体层2的杂质浓度为1×1015cm-3~1×1017cm-3,厚度为5~50μm。
然后,通过在碳化硅半导体层2的表面将铝(Al)进行离子注入而形成基极区域4。Al的离子注入的深度落在不超过碳化硅半导体层2的厚度的范围,为0.5~3μm左右。注入的Al的杂质浓度高于碳化硅半导体层2的n型杂质浓度。比该Al的注入深度深的碳化硅半导体层2的区域作为n型的漂移层3残留下来。此外,也可以通过外延生长而形成基极区域4。在该情况下,基极区域4的杂质浓度以及厚度也与通过离子注入形成的情况相等。
然后,通过在基极区域4的表面将氮(N)进行离子注入而形成源极区域5。源极区域5以与之后所形成的栅极电极9的布局相对应的格子状的图案形成。由此,在形成了栅极电极9时,源极区域5配置在栅极电极9的两侧。N的离子注入深度小于基极区域4的厚度。注入的N的杂质浓度高于基极区域4的p型杂质浓度,为1×1018cm-3~1×1021cm-3的范围。
然后,在碳化硅半导体层2之上将氧化硅膜层沉积1~2μm左右,在其上通过光刻技术形成抗蚀图案。通过将该抗蚀图案作为掩模的反应性离子蚀刻(RIE:Reactive IonEtching)对氧化硅膜进行图案化。通过将该进行了图案化的氧化硅膜层作为掩模的RIE,在碳化硅半导体层2形成将源极区域5以及基极区域4贯穿的栅极沟槽6。此时,在保护接触区域也同时形成保护沟槽7。栅极沟槽6以及保护沟槽7的深度大于或等于基极区域4的深度,为0.5~3μm左右。
然后,形成在栅极沟槽6以及保护沟槽7的部分开设了开口的注入掩模,将其作为掩模对Al进行离子注入,由此在栅极沟槽6以及保护沟槽7的底部形成p型的保护扩散层10。此外,也可以取代注入掩模,使用在形成沟槽时用作掩模的氧化硅膜。由此,能够实现制造工序的简化以及成本削减。在该情况下,需要对氧化硅膜层的厚度以及蚀刻条件进行调整,以在形成栅极沟槽6以及保护沟槽7之后残留一定程度的厚度。
在将注入掩模去除之后,使用热处理装置,通过上述的工序进行使离子注入的N以及Al激活的退火。该退火在氩(Ar)气等非活性气体气氛中,以1300~1900℃、30秒~1小时的条件进行。
然后,当在包含栅极沟槽6以及保护沟槽7内部在内的碳化硅半导体层2的整个面形成氧化硅膜之后,通过减压CVD法进行多晶硅的沉积,对它们进行图案化或凹蚀(etchback),由此在栅极沟槽6以及保护沟槽7内形成栅极绝缘膜8以及栅极电极9。在MOSFET单元区域,在栅极沟槽6的整体埋入栅极电极9。另一方面,在保护接触区域的保护沟槽7,将中央部的栅极电极9去除,以仅在外周部残留栅极电极9的方式进行图案化或凹蚀。此外,成为栅极绝缘膜8的氧化硅膜既可以是将碳化硅半导体层2的表面进行热氧化而形成的,也可以是沉积在碳化硅半导体层2之上。
然后,通过减压CVD法在整个面形成层间绝缘膜11而将栅极电极9覆盖。随后,通过对层间绝缘膜11进行图案化而形成单元开口12和保护沟槽5的底部的开口。然后,通过将Al合金等电极材料进行沉积,从而在层间绝缘膜11之上、单元开口12以及开口内通过溅射而形成源极电极15。
然后,在源极电极15之上通过镀敷处理形成镀敷膜17。图2的箭头示出了镀敷膜17的生长方向。首先,如果开始镀敷处理,则镀敷膜17a相对于源极电极15的上表面均匀地生长。从凹部16的底部生长的镀敷膜17b、17c以填埋凹部16的方式生长。生长进一步进行,镀敷膜17d到达至源极电极15的上部。然后,以填埋源极电极15的凹部16的方式进行镀敷膜17e的生长。这样,在从凹部16的上部两侧生长的镀敷膜17闭塞之前,从凹部16的底部生长的镀敷膜17到达至上部,因此在镀敷膜17不会形成空隙。
最后,在碳化硅衬底1的下表面沉积Al合金等电极材料而形成漏极电极18。通过以上的工序,制造出本实施方式涉及的碳化硅半导体装置。
接下来,与对比例比较而对本实施方式的效果进行说明。图3以及图4是表示对比例涉及的碳化硅半导体装置的剖视图。图3示出了镀层形成前的状态,图4示出了镀层形成后的状态。在对比例中,源极电极15的凹部16的深度大于宽度,因此由于在镀敷膜17留出空腔而发生镀敷液残留19。
与此相对,在本实施方式中,在保护沟槽7的上方,在源极电极15的上表面形成的凹部16的垂直方向的深度小于或等于凹部16的水平方向的宽度的一半。通过以上述方式对凹部16的尺寸进行调整,由此在从凹部16的上部两侧生长的镀敷膜17闭塞之前,从凹部16的底部生长的镀敷膜17到达至上部。因此,能够防止在镀敷膜17形成空隙,因此能够防止由镀敷液残留引起的可靠性降低。
此外,栅极沟槽6的底部的保护扩散层10并不是必须沿栅极沟槽6的底部而设置,只要设置在比栅极电极9深的位置即可。例如,在剖视观察时,也可以在相邻的栅极沟槽6之间设置保护扩散层10。另外,也可以将保护扩散层10仅设置在栅极沟槽6的底部的一部分,而不是设置在从栅极沟槽6的底部的一端直至另一端为止的整个区域。或者,也可以设为从栅极沟槽6的底部伸出的结构。即,保护扩散层10只要在碳化硅半导体层内设置在比栅极电极9深的位置,并且至少延伸至保护沟槽的底部即可。由此,能够实现栅极沟槽6的底部的电场缓和,且能够经过保护沟槽与源极电极7连接。
此外,在保护沟槽7的上方,在镀敷膜17的上表面也形成凹部。另外,在附图中,在单元开口12的上方,镀敷膜17的上表面是平坦的,但也可以与保护沟槽7的上方同样地是不平坦的。
实施方式2.
图5是表示本发明的实施方式2涉及的碳化硅半导体装置的剖视图。图6是表示本发明的实施方式2涉及的碳化硅半导体装置的俯视图。在本实施方式中,对保护沟槽7的宽度进行调整,以使在保护沟槽7和与保护沟槽7相邻的单元开口12之间不存在栅极电极9。
例如,如果将单元区域的栅极沟槽6的宽度设为t1,将相邻的栅极沟槽6的间距设为p1,将n设为大于或等于1的整数,则保护沟槽7的宽度c1为c1=p1×n+t1。因此,保护沟槽7的宽度c1为1个单元的宽度的整数倍。但是,容许制造工艺上的误差。在这里,t1为0.5~2.0μm,p1为3.0~10μm左右。
接下来,与实施方式1比较而对本实施方式的效果进行说明。图7是表示本发明的实施方式1涉及的碳化硅半导体装置的电流的流动的剖视图。图8是表示本发明的实施方式1涉及的碳化硅半导体装置的电流的流动的俯视图。在由方形的虚线包围的区域,保护沟槽7与栅极电极9相邻,但两者的间隔小,因此难以形成单元开口12。在晶体管导通时,在保护沟槽7的侧壁和与其相对的栅极电极9的侧壁形成沟道,在该沟道流动的电流以图中的箭头作为路径而流动。依赖于电流的路径的长度,保护接触区域周边的源极电阻上升,电流量受到限制。因此,在单元区域内电流变得不均匀,有可能产生温度分布变得不均匀的问题。
与此相对,在本实施方式中,在保护沟槽7和与保护沟槽7相邻的单元开口12之间不存在栅极电极9。因此,在形成沟道的区域的附近形成有单元开口12。因此,能够使电流路径变得均匀,能够消除单元区域处的电流的不均匀。其他结构以及效果与实施方式1相同。
实施方式3.
图9是表示本发明的实施方式3涉及的碳化硅半导体装置的剖视图。在本实施方式中,在保护沟槽7的侧壁设置的层间绝缘膜11为锥形形状。通过使用BPSG等作为层间绝缘膜11的材料,由此能够通过热处理使形状变化而成为锥形形状。由此,在形成了源极电极15时,能够消除保护沟槽7的侧壁的凹陷,因此能够扩大源极电极15的凹部16的上部的开口宽度w1。因此,能够缩小保护沟槽7的宽度,因此能够缩小未作为沟道起作用的保护接触区域。其结果,能够增大电流路径而降低导通电阻。其他结构以及效果与实施方式1、2相同。
实施方式4.
本实施方式是将上述实施方式1~3涉及的碳化硅半导体装置应用于电力变换装置。电力变换装置例如是逆变器装置、转换器装置、伺服放大器、电源单元等。本发明并不限定于特定的电力变换装置,但是下面对将本发明应用于三相逆变器的情况进行说明。
图10是表示电力变换系统的结构的框图,在该电力变换系统中,应用了本发明的实施方式4涉及的电力变换装置。该电力变换系统具有电源100、电力变换装置200、负载300。电源100为直流电源,对电力变换装置200供给直流电力。电源100能够以各种形式构成,例如能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路或AC/DC转换器构成。另外,也可以由将从直流系统输出的直流电力变换为规定的电力的DC/DC转换器构成电源100。
电力变换装置200为在电源100和负载300之间连接的三相逆变器,将从电源100供给的直流电力变换为交流电力,将交流电力供给至负载300。电力变换装置200具有主变换电路201和控制电路203,该主变换电路201将直流电力变换为交流电力而进行输出,该控制电路203将对主变换电路201进行控制的控制信号输出至主变换电路201。
负载300是由从电力变换装置200供给的交流电力驱动的三相电动机。此外,负载300并不限定于特定的用途,其是在各种电气设备搭载的电动机,被用作面向例如混合动力汽车、电动汽车、铁路车辆、电梯或空调设备的电动机。
下面,对电力变换装置200进行详细说明。主变换电路201具有开关元件和续流二极管(未图示),通过开关元件进行通断,从而将从电源100供给的直流电力变换为交流电力而供给至负载300。主变换电路201的具体的电路结构是多种多样的,但本实施方式涉及的主变换电路201为2电平的三相全桥电路,其能够由6个开关元件和分别与开关元件反并联连接的6个续流二极管构成。主变换电路201的各开关元件和各续流二极管由与上述实施方式1~3中的任意者相当的碳化硅半导体装置202构成。6个开关元件两个两个地串联连接,构成上下桥臂,各上下桥臂构成全桥电路的各相(U相、V相、W相)。而且,各上下桥臂的输出端子即主变换电路201的3个输出端子与负载300连接。
另外,主变换电路201具有对各开关元件进行驱动的驱动电路(未图示),驱动电路既可以内置在碳化硅半导体装置202,也可以是与碳化硅半导体装置202独立地具有驱动电路的结构。驱动电路生成对主变换电路201的开关元件进行驱动的驱动信号,供给至主变换电路201的开关元件的控制电极。具体而言,按照来自后述的控制电路203的控制信号,将使开关元件成为接通状态的驱动信号、和使开关元件成为断开状态的驱动信号输出至各开关元件的控制电极。在将开关元件维持为接通状态的情况下,驱动信号为大于或等于开关元件的阈值电压的电压信号(接通信号),在将开关元件维持为断开状态的情况下,驱动信号为小于或等于开关元件的阈值电压的电压信号(断开信号)。
控制电路203对主变换电路201的开关元件进行控制,以对负载300供给所期望的电力。具体而言,基于应该对负载300供给的电力,计算出主变换电路201的各开关元件应该变为接通状态的时间(接通时间)。例如,能够通过根据应该输出的电压对开关元件的接通时间进行调制的PWM控制而对主变换电路201进行控制。而且,以在各时刻向应该变为接通状态的开关元件输出接通信号,向应该变为断开状态的开关元件输出断开信号的方式,向主变换电路201所具有的驱动电路输出控制指令(控制信号)。驱动电路按照该控制信号,将接通信号或断开信号作为驱动信号输出至各开关元件的控制电极。
在本实施方式涉及的电力变换装置中,应用实施方式1~3涉及的碳化硅半导体装置作为碳化硅半导体装置202,因此能够得到可靠性高的电力变换装置。
在本实施方式中,对将本发明应用于2电平的三相逆变器的例子进行了说明,但本发明并不限定于此,能够应用于各种电力变换装置。在本实施方式中设为2电平电力变换装置,但既可以是3电平或多电平的电力变换装置,也可以在对单相负载供给电力的情况下,将本发明应用于单相逆变器。另外,在对直流负载等供给电力的情况下,还能够将本发明应用于DC/DC转换器或AC/DC转换器。
另外,应用了本发明的电力变换装置并不限定于上述负载为电动机的情况,也能够用作例如放电加工机、激光加工机、或感应加热烹调器、或者非接触器供电系统的电源装置,并且,还能够用作太阳能发电系统或蓄电系统等的功率调节器。

Claims (9)

1.一种碳化硅半导体装置,其特征在于,具有:
第1导电型的碳化硅半导体层,其在上表面具有保护沟槽;
第2导电型的基极区域,其设置在所述碳化硅半导体层的上部;
第1导电型的源极区域,其设置在所述基极区域的上部;
栅极电极,其隔着栅极绝缘膜而设置在将所述基极区域以及所述源极区域贯穿的栅极沟槽的内部;
第2导电型的保护扩散层,其在所述碳化硅半导体层设置于比所述栅极电极深的位置;
层间绝缘膜,其将所述栅极电极的表面覆盖,具有单元开口;
源极电极,其经过所述单元开口而与所述源极区域电连接,经过所述保护沟槽而与所述保护扩散层电连接;以及
镀敷膜,其设置在所述源极电极之上,
在所述保护沟槽的上方,在所述源极电极的上表面形成有凹部,
所述凹部的垂直方向的深度小于或等于所述凹部的水平方向的宽度的一半。
2.根据权利要求1所述的碳化硅半导体装置,其特征在于,
所述保护沟槽的宽度大于所述单元开口的宽度。
3.根据权利要求2所述的碳化硅半导体装置,其特征在于,
具有所述基极区域、所述源极区域以及所述栅极电极的单元在所述碳化硅半导体层形成有多个,
所述保护沟槽的宽度大于1个所述单元的宽度。
4.根据权利要求1至3中任一项所述的碳化硅半导体装置,其特征在于,
所述镀敷膜填充于所述源极电极的所述凹部。
5.根据权利要求1至4中任一项所述的碳化硅半导体装置,其特征在于,
在与所述保护沟槽相邻的所述单元开口和所述保护沟槽之间不存在所述栅极电极。
6.根据权利要求5所述的碳化硅半导体装置,其特征在于,
具有所述基极区域、所述源极区域以及所述栅极电极的单元在所述碳化硅半导体层形成有多个,
所述保护沟槽的宽度为所述单元的宽度的整数倍。
7.根据权利要求1至6中任一项所述的碳化硅半导体装置,其特征在于,
在所述保护沟槽的侧壁设置的所述层间绝缘膜为锥形形状。
8.一种碳化硅半导体装置的制造方法,其特征在于,具有下述工序:
在第1导电型的碳化硅半导体层的上部形成第2导电型的基极区域的工序;
在所述基极区域的上部形成第1导电型的源极区域的工序;
在所述碳化硅半导体层的上表面形成保护沟槽和将所述基极区域以及所述源极区域贯穿的栅极沟槽的工序;
在所述栅极沟槽的内部隔着栅极绝缘膜而形成栅极电极的工序;
在所述碳化硅半导体层,在比所述栅极电极深的位置形成第2导电型的保护扩散层的工序;
形成将所述栅极电极的表面覆盖的层间绝缘膜,在所述层间绝缘膜形成单元开口的工序;
形成源极电极的工序,该源极电极经过所述单元开口而与所述源极区域电连接,经过所述保护沟槽而与所述保护扩散层电连接;以及
在所述源极电极之上通过镀敷处理形成镀敷膜的工序,
在所述保护沟槽的上方,在所述源极电极的上表面形成有凹部,
所述凹部的垂直方向的深度小于或等于所述凹部的水平方向的宽度的一半。
9.一种电力变换装置,其特征在于,具有:
主变换电路,其具有权利要求1至7中任一项所述的碳化硅半导体装置,该主变换电路对被输入来的电力进行变换而输出;以及
控制电路,其将对所述主变换电路进行控制的控制信号输出至所述主变换电路。
CN201810722266.5A 2017-07-05 2018-06-29 碳化硅半导体装置及其制造方法以及电力变换装置 Pending CN109244133A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-132019 2017-07-05
JP2017132019A JP2019016668A (ja) 2017-07-05 2017-07-05 炭化珪素半導体装置並びにその製造方法及び電力変換装置

Publications (1)

Publication Number Publication Date
CN109244133A true CN109244133A (zh) 2019-01-18

Family

ID=64666462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810722266.5A Pending CN109244133A (zh) 2017-07-05 2018-06-29 碳化硅半导体装置及其制造方法以及电力变换装置

Country Status (4)

Country Link
US (1) US10431658B2 (zh)
JP (1) JP2019016668A (zh)
CN (1) CN109244133A (zh)
DE (1) DE102018206965A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207128A (zh) * 2022-09-09 2022-10-18 深圳芯能半导体技术有限公司 一种沟槽侧壁栅抗负压碳化硅mosfet及其制备方法
CN115207130A (zh) * 2022-09-09 2022-10-18 深圳芯能半导体技术有限公司 一种侧壁栅双沟槽碳化硅mosfet及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471199B2 (ja) * 2020-11-12 2024-04-19 三菱電機株式会社 炭化珪素半導体装置、電力変換装置、および炭化珪素半導体装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355104A (zh) * 2007-07-27 2009-01-28 精工电子有限公司 半导体装置及其制造方法
CN103262248A (zh) * 2010-12-10 2013-08-21 三菱电机株式会社 半导体装置及其制造方法
US20160211364A1 (en) * 2011-06-20 2016-07-21 Maxpower Semiconductor, Inc. Trench Gated Power Device With Multiple Trench Width and its Fabrication Process
US20170084617A1 (en) * 2014-05-08 2017-03-23 Samsung Electronics Co., Ltd. Semiconductor devices including a dummy gate structure on a fin
CN106549045A (zh) * 2015-09-17 2017-03-29 富士电机株式会社 半导体装置及半导体装置的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541107A (en) 1978-09-13 1980-03-22 Nippon Telegraph & Telephone Method of connecting sheath to communication cable
JP4738562B2 (ja) 2000-03-15 2011-08-03 三菱電機株式会社 半導体装置の製造方法
US9520798B2 (en) * 2014-08-26 2016-12-13 General Electric Company Multi-level DC-DC converter with galvanic isolation and adaptive conversion ratio
JP2017132019A (ja) 2016-01-29 2017-08-03 株式会社豊田自動織機 電極製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355104A (zh) * 2007-07-27 2009-01-28 精工电子有限公司 半导体装置及其制造方法
CN103262248A (zh) * 2010-12-10 2013-08-21 三菱电机株式会社 半导体装置及其制造方法
US20160211364A1 (en) * 2011-06-20 2016-07-21 Maxpower Semiconductor, Inc. Trench Gated Power Device With Multiple Trench Width and its Fabrication Process
US20170084617A1 (en) * 2014-05-08 2017-03-23 Samsung Electronics Co., Ltd. Semiconductor devices including a dummy gate structure on a fin
CN106549045A (zh) * 2015-09-17 2017-03-29 富士电机株式会社 半导体装置及半导体装置的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207128A (zh) * 2022-09-09 2022-10-18 深圳芯能半导体技术有限公司 一种沟槽侧壁栅抗负压碳化硅mosfet及其制备方法
CN115207130A (zh) * 2022-09-09 2022-10-18 深圳芯能半导体技术有限公司 一种侧壁栅双沟槽碳化硅mosfet及其制备方法

Also Published As

Publication number Publication date
US20190013385A1 (en) 2019-01-10
US10431658B2 (en) 2019-10-01
DE102018206965A1 (de) 2019-01-10
JP2019016668A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
US11984492B2 (en) Silicon carbide semiconductor device, power converter, and method of manufacturing silicon carbide semiconductor device
CN110709997B (zh) 半导体装置以及电力变换装置
US11158704B2 (en) Semiconductor device and power conversion device
JP6678810B2 (ja) 炭化珪素半導体装置および電力変換装置
JP7170781B2 (ja) 炭化珪素半導体装置および電力変換装置
US11355629B2 (en) Semiconductor device and power converter
WO2021014570A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN113646895B (zh) 半导体装置以及电力变换装置
CN109244133A (zh) 碳化硅半导体装置及其制造方法以及电力变换装置
CN110098253A (zh) 半导体装置、电力变换装置以及半导体装置的制造方法
JP6991370B2 (ja) 半導体装置及び電力変換装置
CN108878508A (zh) 半导体装置、半导体装置的制造方法及电力变换装置
JP6873273B2 (ja) 炭化珪素半導体装置および電力変換装置
JP7047981B1 (ja) 炭化珪素半導体装置および電力変換装置
JP6947338B1 (ja) 炭化珪素半導体装置および電力変換装置の製造方法
JP7062143B1 (ja) 半導体装置及び電力変換装置
JP7529139B2 (ja) 炭化珪素半導体装置とその製造方法、および、電力変換装置
WO2023286235A1 (ja) 炭化珪素半導体装置および電力変換装置
US20240274655A1 (en) Semiconductor device, electric power conversion device, and method for manufacturing semiconductor device
WO2024038504A1 (ja) 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
US20240250165A1 (en) Silicon carbide semiconductor device and power converter using silicon carbide semiconductor device
WO2022034636A1 (ja) 炭化珪素半導体装置および電力変換装置
CN110176487A (zh) 半导体装置及其制造方法、电力变换装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190118