CN109215085B - 一种利用计算机视觉与图像识别的物品统计方法 - Google Patents

一种利用计算机视觉与图像识别的物品统计方法 Download PDF

Info

Publication number
CN109215085B
CN109215085B CN201810964446.4A CN201810964446A CN109215085B CN 109215085 B CN109215085 B CN 109215085B CN 201810964446 A CN201810964446 A CN 201810964446A CN 109215085 B CN109215085 B CN 109215085B
Authority
CN
China
Prior art keywords
camera
image
dimensional
commodity
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810964446.4A
Other languages
English (en)
Other versions
CN109215085A (zh
Inventor
李昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Weimeng Enterprise Development Co.,Ltd.
Original Assignee
Shanghai Xiaomeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Xiaomeng Technology Co ltd filed Critical Shanghai Xiaomeng Technology Co ltd
Priority to CN201810964446.4A priority Critical patent/CN109215085B/zh
Publication of CN109215085A publication Critical patent/CN109215085A/zh
Application granted granted Critical
Publication of CN109215085B publication Critical patent/CN109215085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Abstract

本发明公开了一种利用计算机视觉与图像识别的物品统计算法,包含以下步骤:A、首先要对六个摄像头进行相机标定,相机标定的目标是计算相机的内部参数,比如焦距和图像中心坐标,以及每对相机之间的相对位置以及角度;B、获得商品的三维模型;估算商品在三维空间中的姿态,C、商品位置估计;估算商品在三维空间中的位置,D、单摄像头以及双摄像头交叉验证。本发明利用深度学习、三维重建以及多视角交叉验证技术,能够快速统计货架中商品种类和数量。

Description

一种利用计算机视觉与图像识别的物品统计方法
技术领域
本发明涉及触摸屏技术领域,具体是一种利用计算机视觉与图像识别的物品统计方法。
背景技术
本发明是为了解决商品在三维空间中种类和数量的统计问题及精确位置坐标的定位问题,提出的一套利用深度学习、三维重建以及多视角交叉验证,以统计货架中商品种类和数量的方法。
发明内容
本发明的目的在于提供一种利用计算机视觉与图像识别的物品统计方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种利用计算机视觉与图像识别的物品统计方法,包含以下步骤:
A、首先要对六个摄像头进行相机标定,相机标定的目标是计算相机的内部参数,比如焦距和图像中心坐标,以及每对相机之间的相对位置以及角度;
B、获得商品的三维模型;估算商品在三维空间中的姿态,
C、商品位置估计;估算商品在三维空间中的位置;
D、单摄像头以及双摄像头交叉验证。
作为本发明的进一步技术方案:所述相机标定包括以下两种方式;a)单摄像头标定。如图1,用每一个摄像头拍摄至少10张不同姿态的平面棋盘格图案,然后计算摄像头的内部矩阵和鱼眼畸变系数,b)双摄像头标定。我们需要对每一层的两个相机同时拍摄标定图像,并加以反畸变操作。然后,使用上一步估算的内部矩阵以及标定图案中特征点的三维以及二维位置,解PnP来得到每个相机到标定板平面的姿态,进而获得它们之间的相对位置和角度。
作为本发明的进一步技术方案:所述步骤B是通过特征图与三维模型的匹配计算得到,具体步骤如下:第一步是获得物体不同视角的已标定图片,即对于每一个视角拍摄的图片,我们都需要计算出相机是从哪个角度拍摄到的这张图片,第二步是对目标进行背景移除,生成前景图像,为了获得精确的前景掩膜像,采用基于深度学习的Mask R-CNN神经网络,以及谷歌开源的DeepLabv3+工程;第三步是模型雕刻和内部挖空处理,即在一个封闭的三维空间中创造一些三维坐标点云,并且根据相机的标定参数和剪影图像,从每个角度去掉非物体的点云,由于只需要知道图像的表面信息,为了简化模型,我们去掉了物体的内部点云,首先把点云转换为三维像素,然后分别在两个坐标轴上进行形态学操作,第四步是对这个模型进行水平集转换,进而实施形状优化,水平集转换是把整个模型分为若干个层,即切面,由于挖空处理,每一个切面是一个轮廓,可以用极值坐标来表示轮廓上的点云坐标,我们把每一层都按照固定数量的角度进行量化,得到了一个二维的流形,其中横轴为角度,纵轴为物体的z轴,每个像素值表示半径,然后对这个流形进行双边滤波,以及强化平滑的非线性优化,得到一个保留细节的平滑模型,第五步是点云染色,即顶点染色,使用第一步获得的彩色图像和第二步获得的前景图像,以及相机参数,即可找到点云到彩色图像上像素点的对应关系,并对其赋予颜色值,第六步是生成模型文件,选择了通用性较高的ply格式,该格式的文件包括顶点信息以及平面信息,每个顶点信息包括该顶点的xyz坐标以及颜色rgb,为了使用GPU进行模型渲染,需要给定面信息,即顶点的连接方式,由于在第四步以及进行了水平集转换,只需要连接相邻4个顶点即可。
作为本发明的进一步技术方案:所述步骤C具体包括:第一步,对于一张输入图像,首先使用商品检测部分获得的物品中心点的图像坐标,以及拍摄该图像的相机的姿态和参数,计算出一个物体射线,这个射线的原点是相机中心点,射线本身与图像坐标点重合,第二步,计算物体在射线上的位置,进而获得它的三维坐标;由于并不是所有商品都有一台以上相机同时观测到,我们选择通过物体在图像上的投影大小和它的实际投影面积来得到它的深度,然而物体的投影面积和它的姿态有关,比如瓶盖对着摄像头时的投影面积,就比瓶身对着摄像头时的面积要小,为了解决这个问题,我们使用了先前生成的三维模型,进一步说,就是寻找一个三维模型的姿态和位置,能和相机所看到的实际物体尽可能相似,即r,
Figure GDA0003166736250000031
其中L=||B(P(M,r,t)-B(I)||,其中M表示三维模型,r和t表示物体的姿态,I表示实际图像,P表示平面投影映射,B表示从图像到特征图的映射,为了获得三维模型的平面投影,我们使用了OpenGL渲染先前生成的三维模型,并生成某个投影面的图像,与物体图像进行匹配,由于单纯的模板匹配受到光照、亮度以及颜色的影响较大,我们在特征图空间中,通过ROIAlign的方法执行这个操作,在获得物体姿态之后,我们就可以使用相机参数和透视变换求得商品在物体摄像上的位置。
作为本发明的进一步技术方案:所述步骤D具体包括:首先对每个摄像头获得的检测结果做一个置信度估算。这个数值由两方面的数据获得。第一,最小化后的损失函数L=||B(P(M,r,t)-B(I)||,例如,某物体的检测位置和种类不相符,那么它的最小化损失函数会高出给定阈值,第二,若估算出的物体坐标超出有效区域,那么可以直接判断该检测结果无效。
与现有技术相比,本发明的有益效果是:本发明利用深度学习、三维重建以及多视角交叉验证技术,能够快速统计货架中商品种类和数量。
附图说明
图1为本发明的原理示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,实施例1,一种利用计算机视觉与图像识别的物品统计方法,包含以下步骤:
A、为了计算商品在三维空间中的精确位置坐标,我们首先要对六个摄像头进行相机标定。相机标定的目标是计算相机的内部参数,比如焦距和图像中心坐标,以及每对相机之间的相对位置以及角度;
a)单摄像头标定。用每一个摄像头拍摄至少10张不同姿态的平面棋盘格图案,然后计算摄像头的内部矩阵(Intrinsic matrix)和鱼眼畸变系数(distortioncoefficient)。
b)双摄像头标定。我们需要对每一层的两个相机同时拍摄标定图像,并加以反畸变操作。然后,使用上一步估算的内部矩阵以及标定图案中特征点的三维以及二维位置,解PnP来得到每个相机到标定板平面的姿态,进而获得它们之间的相对位置和角度。
B、获得商品的三维模型。为了获得商品的精确位置信息,我们还需要估算它在三维空间中的姿态,例如,一个饮料瓶是躺倒的还是直立的。我们是通过特征图与三维模型的匹配来计算的。首先我们要获得商品的三维模型。
三维重建的第一步是获得物体不同视角的已标定图片。即对于每一个视角拍摄的图片,我们都需要计算出相机是从哪个角度拍摄到的这张图片。
第二步是对目标进行背景移除,生成前景图像。为了获得精确的前景掩膜像(maskimage),我们采用了基于深度学习的Mask R-CNN神经网络,以及谷歌开源的DeepLabv3+工程。
第三步是模型雕刻和内部挖空处理,即在一个封闭的三维空间中创造一些三维坐标点云,并且根据相机的标定参数和剪影图像,从每个角度去掉非物体的点云。由于只需要知道图像的表面信息,为了简化模型,我们去掉了物体的内部点云。首先把点云转换为三维像素(voxel),然后分别在两个坐标轴上进行形态学操作。
第四步是对这个模型进行水平集转换,进而实施形状优化。水平集转换是把整个模型分为若干个层,即切面,由于挖空处理,每一个切面是一个轮廓,可以用极值坐标来表示轮廓上的点云坐标。我们把每一层都按照固定数量的角度进行量化,得到了一个二维的流形(manifold),其中横轴为角度,纵轴为物体的z轴,每个像素值表示半径,然后我们对这个流形进行双边滤波,以及强化平滑的非线性优化,得到一个保留细节的平滑模型。
第五步是点云染色,即顶点染色,使用第一步获得的彩色图像和第二步获得的前景图像,以及相机参数,即可找到点云到彩色图像上像素点的对应关系,并对其赋予颜色值。
第六步是生成模型文件。我们选择了通用性较高的ply格式。该格式的文件包括顶点信息以及平面信息。每个顶点信息包括该顶点的xyz坐标以及颜色rgb。为了使用GPU进行模型渲染,我们需要给定面信息,即顶点的连接方式。由于在第四步以及进行了水平集转换,我们只需要连接相邻4个顶点即可。
C、商品位置估计。为了判断商品是否还在货架上,我们需要估算商品在三维空间中的位置。第一步,对于一张输入图像,首先使用商品检测部分获得的物品中心点的图像坐标,以及拍摄该图像的相机的姿态和参数,计算出一个物体射线(object ray),这个射线的原点是相机中心点,射线本身与图像坐标点重合。假设没有测量误差,我们可以确定物体中心点就在这条射线上。实际上,由于测量误差,导致的中心点到射线有一个微小的距离。
第二步,计算物体在射线上的位置,进而获得它的三维坐标。由于并不是所有商品都有一台以上相机同时观测到,我们选择通过物体在图像上的投影大小和它的实际投影面积来得到它的深度。然而物体的投影面积和它的姿态有关,比如瓶盖对着摄像头时的投影面积,就比瓶身对着摄像头时的面积要小。为了解决这个问题,我们使用了先前生成的三维模型。进一步说,就是寻找一个三维模型的姿态和位置,能和相机所看到的实际物体尽可能相似,即
Figure GDA0003166736250000051
其中L=||B(P(M,r,t)-B(I)||,其中M表示三维模型,r和t表示物体的姿态,I表示实际图像,P表示平面投影映射,B表示从图像到特征图的映射,为了获得三维模型的平面投影,我们使用了OpenGL渲染先前生成的三维模型,并生成某个投影面的图像,与物体图像进行匹配,由于单纯的模板匹配受到光照、亮度以及颜色的影响较大,我们在特征图空间中,通过ROIAlign的方法执行这个操作,在获得物体姿态之后,我们就可以使用相机参数和透视变换求得商品在物体摄像上的位置。
D、单摄像头以及双摄像头交叉验证:为了评估检测结果是否精确,我们首先对每个摄像头获得的检测结果做一个置信度估算。这个数值由两方面的数据获得。第一,最小化后的损失函数L=||B(P(M,r,t)-B(I)||。例如,某物体的检测位置和种类不相符,那么它的最小化损失函数会高出给定阈值。第二,若估算出的物体坐标超出有效区域,那么可以直接判断该检测结果无效。
为了扩大视场角而又不受图像边缘畸变所影响,我们的冰柜使用了每层两个摄像头的设计。每个摄像头分别对准货架的左右两边。假如覆盖范围正好互补,那么放在范围交界处的物体则无法有效识别。因此我们设计了有一定重合范围的相机朝向,计算物体数量之后再减去多算的数量。对于重合区域的物体,两个摄像头都可以观察到,此时我们做的两条物体射线必然重合(在没有测量误差的前提下),我们就可以找出多算的商品。然而由于测量误差,这两条射线未必重合,我们通过计算射线之间的距离来判断到底这两条射线是否对应同一个商品。使用先前完成的双摄标定参数,我们首先把这两条射线映射到同一个坐标系,然后便可使用两直线距离公式计算出这两条线之间的距离,以及垂直于这两条线的线段中点(这个中点即双摄估计的三维坐标,也可以辅助我们提高重合区域的定位信息)。我们使用一个阈值2厘米,来判断射线是否对应同一个物体。
实施例2:在实施例1的基础上,机器视觉无人智能零售柜,在柜子内有多层货架来摆放饮料零食等货品,每层货架上方,安装2个或多个摄像头来监控货架上货品的种类和数量。用户开门前,摄像头拍摄监控货架上商品种类和数量,用户拿取货品后关门后,再次计算统计剩余货品种类和数量,从而得出用户购物的商品交易详单。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种利用计算机视觉与图像识别的物品统计方法,其特征在于,包含以下步骤:
A、首先要对六个摄像头进行相机标定,相机标定的目标是计算相机的内部参数,包括焦距和图像中心坐标,以及每对相机之间的相对位置以及角度,相机标定包括以下两种方式;a)单摄像头标定,用每一个摄像头拍摄至少10张不同姿态的平面棋盘格图案,然后计算摄像头的内部矩阵和鱼眼畸变系数,b)双摄像头标定,需要对每一层的两个相机同时拍摄标定图像,并加以反畸变操作,然后,使用上一步估算的内部矩阵以及标定图案中特征点的三维以及二维位置,解PnP来得到每个相机到标定板平面的姿态,进而获得每个相机到标定板平面之间的相对位置和角度;
B、获得商品的三维模型;估算商品在三维空间中的姿态:通过特征图与三维模型的匹配计算得到,具体步骤如下:第一步是获得物体不同视角的已标定图片,即对于每一个视角拍摄的图片,都需要计算出相机是从哪个角度拍摄到的这张图片,第二步是对目标进行背景移除,生成前景图像,为了获得精确的前景掩膜像,采用基于深度学习的Mask R-CNN神经网络,以及谷歌开源的DeepLabv3+工程;第三步是模型雕刻和内部挖空处理,即在一个封闭的三维空间中创造一些三维坐标点云,并且根据相机的标定参数和剪影图像,从每个角度去掉非物体的点云,由于只需要知道图像的表面信息,为了简化模型,去掉了物体的内部点云,首先把点云转换为三维像素,然后分别在两个坐标轴上进行形态学操作,第四步是进行水平集转换,进而实施形状优化,水平集转换是把整个模型分为若干个层,即切面,由于挖空处理,每一个切面是一个轮廓,可以用极值坐标来表示轮廓上的点云坐标,把每一层都按照固定数量的角度进行量化,得到了一个二维的流形,其中横轴为角度,纵轴为物体的z轴,每个像素值表示半径,然后对这个流形进行双边滤波,以及强化平滑的非线性优化,得到一个保留细节的平滑模型,第五步是点云染色,即顶点染色,使用第一步获得的彩色图像和第二步获得的前景图像,以及相机参数,即可找到点云到彩色图像上像素点的对应关系,并对其赋予颜色值,第六步是生成模型文件,选择了通用性较高的ply格式,该格式的文件包括顶点信息以及平面信息,每个顶点信息包括该顶点的xyz坐标以及颜色rgb,为了使用GPU进行模型渲染,需要给定面信息,即顶点的连接方式,由于在第四步以及进行了水平集转换,只需要连接相邻4个顶点即可;
C、商品位置估计;估算商品在三维空间中的位置:第一步,对于一张输入图像,首先使用商品检测部分获得的物品中心点的图像坐标,以及拍摄该图像的相机的姿态和参数,计算出一个物体射线,这个射线的原点是相机中心点,射线本身与图像坐标点重合,第二步,计算物体在射线上的位置,进而获得它的三维坐标;由于并不是所有商品都有一台以上相机同时观测到,选择通过物体在图像上的投影大小和它的实际投影面积来得到它的深度,然而物体的投影面积和它的姿态有关,包括瓶盖对着摄像头时的投影面积,就比瓶身对着摄像头时的面积要小,为了解决这个问题,使用了先前生成的三维模型,进一步说,就是寻找一个三维模型的姿态和位置,能和相机所看到的实际物体尽可能相似,即r,
Figure FDA0003166736240000021
其中L=||B(P(M,r,t)-B(I)||,其中M表示三维模型,r和t表示物体的姿态,I表示实际图像,P表示平面投影映射,B表示从图像到特征图的映射,为了获得三维模型的平面投影,使用了OpenGL渲染先前生成的三维模型,并生成某个投影面的图像,与物体图像进行匹配,由于单纯的模板匹配受到光照、亮度以及颜色的影响较大,在特征图空间中,通过ROIAlign的方法执行,在获得物体姿态之后,就可以使用相机参数和透视变换求得商品在物体摄像上的位置;
D、单摄像头以及双摄像头交叉验证,首先对每个摄像头获得的检测结果做一个置信度估算,这个数值由两方面的数据获得,第一,最小化后的损失函数L=||B(P(M,r,t)-B(I)||,某物体的检测位置和种类不相符,那么它的最小化损失函数会高出给定阈值,第二,若估算出的物体坐标超出有效区域,那么可以直接判断该检测结果无效。
CN201810964446.4A 2018-08-23 2018-08-23 一种利用计算机视觉与图像识别的物品统计方法 Active CN109215085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810964446.4A CN109215085B (zh) 2018-08-23 2018-08-23 一种利用计算机视觉与图像识别的物品统计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810964446.4A CN109215085B (zh) 2018-08-23 2018-08-23 一种利用计算机视觉与图像识别的物品统计方法

Publications (2)

Publication Number Publication Date
CN109215085A CN109215085A (zh) 2019-01-15
CN109215085B true CN109215085B (zh) 2021-09-17

Family

ID=64989102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810964446.4A Active CN109215085B (zh) 2018-08-23 2018-08-23 一种利用计算机视觉与图像识别的物品统计方法

Country Status (1)

Country Link
CN (1) CN109215085B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109934166A (zh) * 2019-03-12 2019-06-25 中山大学 基于语义分割和孪生神经网络的无人机图像变化检测方法
CN110349138B (zh) * 2019-06-28 2021-07-27 歌尔股份有限公司 基于实例分割框架的目标物体的检测方法及装置
CN110400315B (zh) * 2019-08-01 2020-05-05 北京迈格威科技有限公司 一种缺陷检测方法、装置及系统
CN112444312B (zh) * 2019-08-30 2022-06-14 梅特勒-托利多(常州)测量技术有限公司 检重秤
EP3901911A1 (en) * 2020-04-23 2021-10-27 Siemens Aktiengesellschaft Object measurement method and device thereof
CN111553277B (zh) * 2020-04-28 2022-04-26 电子科技大学 一种引入一致性约束的中文签名鉴定方法及终端
CN112380953B (zh) * 2020-11-10 2023-05-09 支付宝(杭州)信息技术有限公司 售货柜摄像设备的通信地址标定方法、装置及标定板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393012A (zh) * 2008-10-16 2009-03-25 汤一平 新型的双目立体视觉测量装置
CN103335634A (zh) * 2013-06-24 2013-10-02 南京航空航天大学 一种用于部件安装姿态校准的视觉靶板装置及标定方法
CN105096324A (zh) * 2015-07-31 2015-11-25 深圳市大疆创新科技有限公司 一种摄像装置标定方法及摄像装置
CN106851104A (zh) * 2017-02-28 2017-06-13 努比亚技术有限公司 一种根据用户视角进行拍摄的方法及装置
CN106949836A (zh) * 2017-05-25 2017-07-14 中国科学技术大学 一种立体视觉摄像头同侧目标位置标定装置及方法
CN107052086A (zh) * 2017-06-01 2017-08-18 扬州苏星机器人科技有限公司 基于三维视觉的冲压件表面缺陷检测装置及检测方法
CN107578450A (zh) * 2017-09-14 2018-01-12 长沙全度影像科技有限公司 一种用于全景相机装配误差标定的方法及系统
CN207215015U (zh) * 2017-05-25 2018-04-10 中国科学技术大学 一种立体视觉摄像头同侧目标位置标定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9426447B2 (en) * 2012-10-09 2016-08-23 Electronics And Telecommunications Research Institute Apparatus and method for eye tracking
US10078228B2 (en) * 2016-09-29 2018-09-18 Jeremy Paul Willden Three-dimensional imaging system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393012A (zh) * 2008-10-16 2009-03-25 汤一平 新型的双目立体视觉测量装置
CN103335634A (zh) * 2013-06-24 2013-10-02 南京航空航天大学 一种用于部件安装姿态校准的视觉靶板装置及标定方法
CN105096324A (zh) * 2015-07-31 2015-11-25 深圳市大疆创新科技有限公司 一种摄像装置标定方法及摄像装置
CN106851104A (zh) * 2017-02-28 2017-06-13 努比亚技术有限公司 一种根据用户视角进行拍摄的方法及装置
CN106949836A (zh) * 2017-05-25 2017-07-14 中国科学技术大学 一种立体视觉摄像头同侧目标位置标定装置及方法
CN207215015U (zh) * 2017-05-25 2018-04-10 中国科学技术大学 一种立体视觉摄像头同侧目标位置标定装置
CN107052086A (zh) * 2017-06-01 2017-08-18 扬州苏星机器人科技有限公司 基于三维视觉的冲压件表面缺陷检测装置及检测方法
CN107578450A (zh) * 2017-09-14 2018-01-12 长沙全度影像科技有限公司 一种用于全景相机装配误差标定的方法及系统

Also Published As

Publication number Publication date
CN109215085A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109215085B (zh) 一种利用计算机视觉与图像识别的物品统计方法
CN101996407B (zh) 一种多相机颜色标定方法
EP4042101A1 (en) Systems and methods for surface normals sensing with polarization
Tian et al. Handling occlusions in augmented reality based on 3D reconstruction method
CN110853151A (zh) 一种基于视频的三维立体点集恢复方法
WO2008036092A1 (en) A method and system for three-dimensional model acquisition
KR102206108B1 (ko) 체적형 객체 촬영을 위한 다중 rgb-d 카메라 기반의 포인트 클라우드 정합 방법
GB2464453A (en) Determining Surface Normals from Three Images
Yuan et al. 3D reconstruction of background and objects moving on ground plane viewed from a moving camera
CN110310331A (zh) 一种基于直线特征与点云特征结合的位姿估计方法
Chen et al. A comparative analysis between active structured light and multi-view stereo vision technique for 3D reconstruction of face model surface
Ichimaru et al. Unified underwater structure-from-motion
Gouiaa et al. 3D reconstruction by fusioning shadow and silhouette information
Fleuret et al. Fixed point probability field for complex occlusion handling
Vidal et al. A closed form solution to direct motion segmentation
De Sorbier et al. Augmented reality for 3D TV using depth camera input
Yao et al. A dense stereovision system for 3D body imaging
Drouin et al. Camera-projector matching using an unstructured video stream
WO2018056802A1 (en) A method for estimating three-dimensional depth value from two-dimensional images
Lasang et al. Optimal depth recovery using image guided TGV with depth confidence for high-quality view synthesis
Abdelhamid et al. Extracting depth information using a correlation matching algorithm
Ming et al. Face stereo matching and disparity calculation in binocular vision system
Kumar et al. Dense reconstruction of 3D human face using 5 images and no reference model
Yamazaki et al. The theory and practice of coplanar shadowgram imaging for acquiring visual hulls of intricate objects
Huang et al. A semi-automatic camera calibration method for augmented reality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220307

Address after: Room b1-8008, building 3, 258 Changjiang Road, Baoshan District, Shanghai 200441

Patentee after: Shanghai Weimeng Enterprise Development Co.,Ltd.

Address before: Room b1-4002, building 3, No. 258, Changjiang Road, Baoshan District, Shanghai 201900

Patentee before: SHANGHAI XIAOMENG TECHNOLOGY Co.,Ltd.