CN109212032A - 基于改进多次反射全聚焦成像算法的界面型缺陷检测方法 - Google Patents

基于改进多次反射全聚焦成像算法的界面型缺陷检测方法 Download PDF

Info

Publication number
CN109212032A
CN109212032A CN201811245799.5A CN201811245799A CN109212032A CN 109212032 A CN109212032 A CN 109212032A CN 201811245799 A CN201811245799 A CN 201811245799A CN 109212032 A CN109212032 A CN 109212032A
Authority
CN
China
Prior art keywords
echo
multiple reflections
total focus
array element
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811245799.5A
Other languages
English (en)
Other versions
CN109212032B (zh
Inventor
钟舜聪
范学腾
伏喜斌
沈耀春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201811245799.5A priority Critical patent/CN109212032B/zh
Publication of CN109212032A publication Critical patent/CN109212032A/zh
Application granted granted Critical
Publication of CN109212032B publication Critical patent/CN109212032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves

Abstract

本发明涉及一种基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,包括以下步骤:步骤S1:根据界面深度S及接收P次回波所需的时长,设置仪器参数;步骤S2:采用全矩阵捕获技术对待测工件进行回波捕获;步骤S3:对待测区域离散的每一个目标成像点采用改进多次反射全聚焦算法进行虚拟聚焦,得到待测区域界面型缺陷检测结果。本发明基于改进多次反射全聚焦成像算法,采集多次回波,将每一次回波中所包含的目标成像点信息都进行深度累加,从而突出了界面缺陷的特征,大大提高了脱粘缺陷的检出率。

Description

基于改进多次反射全聚焦成像算法的界面型缺陷检测方法
技术领域
本发明涉及超声无损检测缺陷定位技术领域,具体涉及一种基于改进多次反射全聚焦成像算法的界面型缺陷检测方法。
背景技术
粘接结构具有比强度、比模量高,减震性能优越和工艺简单的特点,在工业制造领域等领域中逐渐替代了传统的组合技术。但是,在加工和使用过程中,不可避免在粘结层会出现脱粘、孔洞、微孔隙和强度弱化等缺陷。因此,研究一种高效准确的粘接结构无损检测方法具有很大的现实意义。
近年来,超声相控阵从医学领域逐渐开发应用到无损检测领域,可以通过电子技术控制相控阵换能器阵元激励脉冲的时间和振幅,控制声束的方向和形状,灵活地控制声束焦点,因此相控阵具有更优越的检测配置能力以及更高的检测灵敏度、分辨率以及覆盖率。
2005年,HOLMES等基于全矩阵数据提出了全聚焦成像算法,并且已经得到验证,全聚焦算法具有识别常规超声检测所不能识别的微小缺陷和复杂结构缺陷的能力。目前,全聚焦成像算法已经应用到了诸多领域并且得到了广泛的认可,如核电站焊接结构和压力管道焊缝的检测。但是目前全聚焦算法大都应用在空间型、面积型的缺陷检测中,针对界面缺陷这一特殊类型,本发明提出了相应的改进方法。
发明内容
有鉴于此,本发明的目的在于提供一种基于改进多次反射全聚焦成像算法的界面型缺陷检测方法。
为实现上述目的,本发明采用如下技术方案:
一种基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,包括以下步骤:
步骤S1:根据界面深度S及接收P次回波所需的时长,设置仪器参数;
步骤S2:采用全矩阵捕获技术对待测工件进行回波捕获;
步骤S3:对待测区域离散的每一个目标成像点采用改进多次反射全聚焦算法进行虚拟聚焦,得到待测区域界面型缺陷检测结果。
进一步的,所述设置仪器参数具体为:假设声波在工件中传播速度为c,探头中阵元到目标成像点(x,z)的最大距离为u,设置仪器接收回波的闸门时间T为:
进一步的,所述步骤S2具体为:
步骤S21:依次激发相控阵探头的每个阵元发射超声波,声波传播到界面时发生反射,开启探头全部阵元的接收功能
步骤S22:重复步骤S21,直至探头中全部阵元都激励发射过超声波;
步骤S23:假设激活孔径共包含N个阵元,最终得到的是一个N×N×T的三维数据矩阵,记m号阵元发射,n号阵元接收到的回波A信号记为Amn,其中m=1,2,…N;n=1,2,3,…N。
进一步的,所述改进的多次反射全聚焦算法具体为:
步骤S31:根据目标成像点到不同阵元的直接声程计算延迟时间,实现各个发射-接收阵元组合的虚拟聚焦,假设孔径中共有1-5号阵元,当2号阵元发射,3号阵元接收时,直接声程为L0+L1,设一目标成像点Q坐标为(x,z),则延迟时间计算公式为:
其中L0和L1分别为目标成像点到阵元2和阵元3的声程。
则单次回波该点像素值计算公式表示如下:
其中D,B点分别为指向性和扩散校正系数;
步骤S32:假设同时接收2次回波,则第一次回波中的延迟时间计算公式为:
第二次回波中,延迟时间的计算声程为:L2(0)+L3(0)+L0+L1,延迟时间计算公式可表示为:
发射-接收组合时的目标成像点Q的声压幅值信息为:
A23[t231(x,z)]+A23[t232(x,z)]
Q点的最终像素值为:
步骤S33:遍历成像区域每一个目标成像点,最终得到完整图像。
本发明与现有技术相比具有以下有益效果:
本发明提出多次反射全聚焦成像算法,除接收一次回波中的有效信息进行延迟叠加外,考虑检测对象为界面型缺陷,因此同样接收二次、三次等反射波中的有效信息,并将多次回波中的有效信息进行叠加后在与其他发射-接收阵元组合的叠加信息进行虚拟聚焦。由于得到了更多包含界面的信息,脱粘区域的缺陷特征也因此增强,提高了脱粘缺陷的精确度和检出率。
附图说明
图1是本发明一实施例中复合粘接结构脱粘缺陷示意图;
图2是本发明一实施例中全矩阵数据矩阵;
图3是本发明一实施例中全聚焦成像算法和改进的二次反射全聚焦成像算法声束传播路径。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
本发明提供一种基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,检测对象为如图1所示的粘接结构脱粘缺陷,包括以下步骤
步骤S1:根据界面深度S及接收P次回波所需的时长,设置仪器参数:假设声波在工件中传播速度为c,探头中阵元到目标成像点(x,z)的最大距离为u,设置仪器接收回波的闸门时间T为:
步骤S2:采用全矩阵捕获技术对待测工件进行回波捕获;
步骤S21:依次激发相控阵探头的每个阵元发射超声波,声波传播到界面时发生反射,开启探头全部阵元的接收功能
步骤S22:重复步骤S21,直至探头中全部阵元都激励发射过超声波;
步骤S23:假设激活孔径共包含N个阵元,最终得到的是一个N×N×T的三维数据矩阵,记m号阵元发射,n号阵元接收到的回波A信号记为Amn,其中m=1,2,…N;n=1,2,3,…N,如图2例,得到一个5×5×T三维数据矩阵。
步骤S3:对待测区域离散的每一个目标成像点采用改进多次反射全聚焦算法进行虚拟聚焦,得到待测区域界面型缺陷检测结果。
步骤S31:根据目标成像点到不同阵元的直接声程计算延迟时间,如图3例中,阵元2-3的发射-接收组合中直接声程为L0+L1,假设图3中Q点坐标值为(x,z),则延迟时间计算公式为:
该点像素值计算公式表示如下:
其中D,B点分别为指向性和扩散校正系数;
步骤S32:假设同时接收2次回波,则第一次回波中的延迟时间计算公式为:
第二次回波中,延迟时间的计算声程为:L2(0)+L3(0)+L0+L1,延迟时间计算公式可表示为:
该发射-接收组合得到的目标成像点Q的声压幅值信息为:
A23[t231(x,z)]+A23[t232(x,z)]
Q点的最终像素值为:
步骤S33:遍历成像区域每一个目标成像点,最终得到完整图像。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,其特征在于,包括以下步骤:
步骤S1:根据界面深度S及接收P次回波所需的时长,设置仪器参数;
步骤S2:采用全矩阵捕获技术对待测工件进行回波捕获;
步骤S3:对待测区域离散的每一个目标成像点采用改进多次反射全聚焦算法进行虚拟聚焦,得到待测区域界面型缺陷检测结果。
2.根据权利要求1所述的基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,其特征在于:所述设置仪器参数具体为:假设声波在工件中传播速度为c,探头中阵元到目标成像点(x,z)的最大距离为u,设置仪器接收回波的闸门时间T为:
3.根据权利要求1所述的基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,其特征在于:所述步骤S2具体为:
步骤S21:依次激发相控阵探头的每个阵元发射超声波,声波传播到界面时发生反射,开启探头全部阵元的接收功能
步骤S22:重复步骤S21,直至探头中全部阵元都激励发射过超声波;
步骤S23:假设激活孔径共包含N个阵元,最终得到的是一个N×N×T的三维数据矩阵,记m号阵元发射,n号阵元接收到的回波A信号记为Amn,其中m=1,2,…N;n=1,2,3,…N。
4.根据权利要求1所述的基于改进多次反射全聚焦成像算法的界面型缺陷检测方法,其特征在于:所述改进的多次反射全聚焦算法具体为:
步骤S31:根据目标成像点到不同阵元的直接声程计算延迟时间,实现各个发射-接收阵元组合的虚拟聚焦,假设孔径中共有1-5号阵元,当2号阵元发射,3号阵元接收时,直接声程为L0+L1,设一目标成像点Q坐标为(x,z),则延迟时间计算公式为:
其中L0和L1分别为目标成像点到阵元2和阵元3的声程。
则单次回波该点像素值计算公式表示如下:
其中D,B点分别为指向性和扩散校正系数;
步骤S32:假设同时接收2次回波,则第一次回波中的延迟时间计算公式为:
第二次回波中,延迟时间的计算声程为:L2(0)+L3(0)+L0+L1,延迟时间计算公式可表示为:
发射-接收组合时的目标成像点Q的声压幅值信息为:
A23[t231(x,z)]+A23[t232(x,z)]
Q点的最终像素值为:
步骤S33:遍历成像区域每一个目标成像点,最终得到完整图像。
CN201811245799.5A 2018-10-25 2018-10-25 基于改进多次反射全聚焦成像算法的界面型缺陷检测方法 Active CN109212032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811245799.5A CN109212032B (zh) 2018-10-25 2018-10-25 基于改进多次反射全聚焦成像算法的界面型缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811245799.5A CN109212032B (zh) 2018-10-25 2018-10-25 基于改进多次反射全聚焦成像算法的界面型缺陷检测方法

Publications (2)

Publication Number Publication Date
CN109212032A true CN109212032A (zh) 2019-01-15
CN109212032B CN109212032B (zh) 2021-11-26

Family

ID=64997160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811245799.5A Active CN109212032B (zh) 2018-10-25 2018-10-25 基于改进多次反射全聚焦成像算法的界面型缺陷检测方法

Country Status (1)

Country Link
CN (1) CN109212032B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111047547A (zh) * 2019-12-17 2020-04-21 中国科学院声学研究所 一种基于多视图tfm的联合缺陷定量方法
CN111610254A (zh) * 2020-05-18 2020-09-01 武汉大学 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法
CN112305080A (zh) * 2020-11-23 2021-02-02 西安热工研究院有限公司 一种反t型叶根槽裂纹的相控阵超声检测方法
CN113533526A (zh) * 2021-06-02 2021-10-22 中北大学 超声相控阵界面脱粘缺陷全聚焦c扫描成像方法及系统
CN113552217A (zh) * 2021-07-16 2021-10-26 大连理工大学 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法
CN113808092A (zh) * 2021-09-09 2021-12-17 广州大学 钢管混凝土界面脱粘缺陷检测方法、系统、装置及介质
CN113899816A (zh) * 2021-09-10 2022-01-07 国营芜湖机械厂 一种t型复合结构的超声无损检测装置及方法和r区检测方法及装置
CN114047256A (zh) * 2021-10-25 2022-02-15 扬州大学 基于动态阵元合成孔径聚焦的平板陶瓷膜缺陷超声成像方法
CN117554493A (zh) * 2024-01-11 2024-02-13 中国特种设备检测研究院 一种金属材料近表面缺陷检测方法、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699492A (zh) * 2014-11-27 2016-06-22 中国科学院声学研究所 一种用于焊缝检测的超声成像方法
CN106596736A (zh) * 2016-12-14 2017-04-26 天津大学 一种实时超声相控阵全聚焦成像方法
CN106770664A (zh) * 2016-11-22 2017-05-31 中国计量大学 一种基于全聚焦成像算法改进边缘缺陷检测的方法
CN107219305A (zh) * 2017-06-02 2017-09-29 北京航空航天大学 一种基于环形阵列换能器的全聚焦成像检测方法
CN108375630A (zh) * 2018-01-28 2018-08-07 北京工业大学 一种板结构表面缺陷无损检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699492A (zh) * 2014-11-27 2016-06-22 中国科学院声学研究所 一种用于焊缝检测的超声成像方法
CN106770664A (zh) * 2016-11-22 2017-05-31 中国计量大学 一种基于全聚焦成像算法改进边缘缺陷检测的方法
CN106596736A (zh) * 2016-12-14 2017-04-26 天津大学 一种实时超声相控阵全聚焦成像方法
CN107219305A (zh) * 2017-06-02 2017-09-29 北京航空航天大学 一种基于环形阵列换能器的全聚焦成像检测方法
CN108375630A (zh) * 2018-01-28 2018-08-07 北京工业大学 一种板结构表面缺陷无损检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘钊等: "全聚焦成像技术在薄板焊缝检测中的应用", 《无损探伤》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111047547A (zh) * 2019-12-17 2020-04-21 中国科学院声学研究所 一种基于多视图tfm的联合缺陷定量方法
CN111047547B (zh) * 2019-12-17 2023-10-17 中国科学院声学研究所 一种基于多视图tfm的联合缺陷定量方法
CN111610254A (zh) * 2020-05-18 2020-09-01 武汉大学 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法
CN111610254B (zh) * 2020-05-18 2021-08-17 武汉大学 一种基于高速振镜协同的激光超声全聚焦成像检测装置及方法
CN112305080A (zh) * 2020-11-23 2021-02-02 西安热工研究院有限公司 一种反t型叶根槽裂纹的相控阵超声检测方法
CN113533526A (zh) * 2021-06-02 2021-10-22 中北大学 超声相控阵界面脱粘缺陷全聚焦c扫描成像方法及系统
CN113552217B (zh) * 2021-07-16 2022-05-10 大连理工大学 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法
CN113552217A (zh) * 2021-07-16 2021-10-26 大连理工大学 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法
CN113808092A (zh) * 2021-09-09 2021-12-17 广州大学 钢管混凝土界面脱粘缺陷检测方法、系统、装置及介质
CN113808092B (zh) * 2021-09-09 2023-06-23 广州大学 钢管混凝土界面脱粘缺陷检测方法、系统、装置及介质
CN113899816A (zh) * 2021-09-10 2022-01-07 国营芜湖机械厂 一种t型复合结构的超声无损检测装置及方法和r区检测方法及装置
CN114047256A (zh) * 2021-10-25 2022-02-15 扬州大学 基于动态阵元合成孔径聚焦的平板陶瓷膜缺陷超声成像方法
CN114047256B (zh) * 2021-10-25 2023-10-20 扬州大学 基于动态阵元合成孔径聚焦的平板陶瓷膜缺陷超声成像方法
CN117554493A (zh) * 2024-01-11 2024-02-13 中国特种设备检测研究院 一种金属材料近表面缺陷检测方法、设备及介质

Also Published As

Publication number Publication date
CN109212032B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN109212032A (zh) 基于改进多次反射全聚焦成像算法的界面型缺陷检测方法
CN105699492B (zh) 一种用于焊缝检测的超声成像方法
CN102809610B (zh) 一种基于改进的动态深度聚焦的相控阵超声检测方法
CN107219305B (zh) 一种基于环形阵列换能器的全聚焦成像检测方法
CN108169331B (zh) 薄板栅格翼结构焊缝相控阵超声检测装置及检测方法
JP2009524803A (ja) 少なくとも1つの音響異方性材料領域を有する被検体の非破壊検査方法
CN106404911B (zh) 用于板状结构检测的真时延单模态Lamb波相控阵系统
CN105004793A (zh) 一种用于复合材料泡沫结构的超声检测方法
CN111624252B (zh) 一种提高Lamb波相控阵聚焦检测速度的方法
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
CN104698089A (zh) 一种适用于倾斜裂纹定量和成像的超声相对时间传播技术
CN105044209A (zh) 材料缺陷位置和尺寸的超声多途检测方法
JP2010266416A (ja) フェーズドアレイ開口合成処理方法並びにその適用効果評価方法
CN112432998B (zh) 一种带有声腔结构的橡胶板粘接缺陷超声波无损检测方法
CN112505153A (zh) 一种用于耐张线夹压接质检的技术可行性分析方法及系统
CN111257426A (zh) 火箭燃料贮箱焊缝的多模式全聚焦检测方法、系统及介质
CA2908682A1 (en) Conical ultrasonic probe
CN110687205A (zh) 一种超声波纵波反射法与衍射时差法联合检测方法及其中所应用的tofd探头
CN114062492B (zh) 一种基于全聚焦的Lamb波相位成像方法
CN111665296A (zh) 基于emat测量超声换能器三维辐射声场的方法及装置
Li et al. Research on the imaging of concrete defect based on the pulse compression technique
Han et al. Combination of direct, half-skip and full-skip TFM to characterize defect (II)
CN105548363A (zh) 基于多途识别的超声检测成像方法
Havugarurema et al. Damage detection in concrete using synthetic aperture focusing technique
CN211086201U (zh) 一种超声波纵波反射法与衍射时差法联合检测探头组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant