CN109081383A - 过渡金属氟化物的制备方法 - Google Patents

过渡金属氟化物的制备方法 Download PDF

Info

Publication number
CN109081383A
CN109081383A CN201810749033.4A CN201810749033A CN109081383A CN 109081383 A CN109081383 A CN 109081383A CN 201810749033 A CN201810749033 A CN 201810749033A CN 109081383 A CN109081383 A CN 109081383A
Authority
CN
China
Prior art keywords
transition metal
preparation
pyrolysis
fluoride
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810749033.4A
Other languages
English (en)
Other versions
CN109081383B (zh
Inventor
冯立纲
刘宗
方波
王复龙
郁旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201810749033.4A priority Critical patent/CN109081383B/zh
Publication of CN109081383A publication Critical patent/CN109081383A/zh
Application granted granted Critical
Publication of CN109081383B publication Critical patent/CN109081383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/08Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/10Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/08Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种过渡金属氟化物的制备方法。所述方法将过渡金属前驱体和氟化铵按质量比为1:5~20混合或上下游放置,在惰性气氛下,于250℃以上进行热解处理,热解结束后,水洗,过滤,干燥得到过渡金属氟化物。本发明方法操作简单,采用的氟源和过渡金属原材料简单,成本较低,材料结晶性好,适用于大批量生产。

Description

过渡金属氟化物的制备方法
技术领域
本发明属于过渡金属化合物制备技术领域,涉及一种过渡金属氟化物的制备方法。
背景技术
金属氟化物在催化合成,敷膜保护,电源存储和转换中具有广泛的应用价值。例如使用氟化钴制备六氟化硫等[CN201210589193.X];金属氟化物应用在磁性体表面,通过涂敷过渡金属氟化物提高材料的磁特性[CN200810008924.0];在储氢复合材料中,过渡金属氟化物还能有效实现较低温度的氢气存储和释放,如[CN201711123813.X]和[CN201310717737.0];在锂离子电池正极材料中,使用三氟化铁和六氟铁酸锂复合材料有效的增强了正极材料的稳定性[CN201710426552.2]。
过渡金属氟化物由于具有良好的能量存储性能,在锂离子电池正极材料中,得到了较为广泛的研究,如专利报道的CN201611178343.2,CN201710743814.8等。此外,过渡金属氟化物还能作为一种重要的工业原料如封孔剂,有机反应催化剂等,如CN201510404046.4,CN201611178343.2等。
目前,常用的过渡金属氟化物的合成方法有:(1)电化学电镀法合成CoF2材料,并应用于超级电容中[Chem.Commun.,2014,50,7067-7070.],然而,这类方式合成材料的纯度无法控制,此外,还将生成大量的含氟废液;(2)水热合成氟化钴镍/碳纳米管复合材料,合成材料的步骤较多,同时形成大量废液[CN201510404046.4];(3)湿法合成冶金生产氟化镍,材料存在纯度和由此形成的废弃物如废液,废渣等较多等问题[CN201410551409.2];(4)直流电弧等离子体蒸发制备NiF2[J.Power Sources,2017,366,131-142.],与离子液体共沉淀制备CoF2[J.Power Sources 2016,303,49-56.],高温热解Fe(CF3COO)2(CF3COOH)2制备FeF2[J.Mater.Chem.A,2017,5,7383–7393],热解CoSiF6制备CoF2[Small 2015,11,No.38,5164–5173],热解六氟乙酰基丙酮酸钴水合物制备CoF2和噻吩甲酰三氟丙酮铁制备FeF2应用于锂离子电源领域中,然而这类原材料的成本高昂,无法实现大批量生产。
发明内容
本发明的目的在于提供一种过渡金属氟化物的制备方法。该方法以过渡金属盐、过渡金属氧化物或过渡金属氢氧化物为过渡金属前驱体,与氟化铵,在惰性气氛中,低温氟化,制得过渡金属氟化物。
实现本发明目的的技术方案如下:
过渡金属氟化物的制备方法,具体步骤如下:
将过渡金属前驱体和氟化铵按质量比为1:5~20混合或上下游放置,惰性气氛下,于250℃以上进行热解处理,热解结束后,水洗,过滤,干燥得到过渡金属氟化物。
优选地,所述的过渡金属前驱体可以是过渡金属氢氧化物,过渡金属氧化物或过渡金属盐中的一种或两种以上。所述的过渡金属氢氧化物可以是Fe(OH)3,Co(OH)2或Ni(OH)2等。所述的过渡金属氧化物可以是FeO,NiO,CoO等。所述的过渡金属盐可以是Fe2(SO4),NiCl2,Co(NO)3等。
优选地,所述的热解温度为250℃~600℃。
优选地,所述的热解时间为60分钟以上。
优选地,所述的惰性气氛可以是氮气,氩气或氦气。
优选地,所述的过渡金属前驱体可以负载在泡沫类金属或非金属上,如泡沫钴,泡沫镍,泡沫铁,钛片,铝箔,碳纸,碳布等。
与现有技术相比,本发明具有以下优点:
(1)与湿法、水热法等方法相比,操作简单,成本较低,材料结晶性好,适用于大批量产生;
(2)与其他热解制备氟化物方法相比,采用的氟源和过渡金属原材料简单,成本较低。
附图说明
图1为实施例1制得的负载氟化钴的泡沫镍材料的XRD图谱。
图2为实施例2制得的氟化钴/氟化镍材料的XRD图谱。
图3为实施例3制得的氟化钴材料的XRD图谱。
图4为对比例1制得的氟化镍/氢氧化镍混合物材料的XRD图谱。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例1
负载在泡沫镍上的氟化钴制备:将100mg氢氧化钴前驱体沉积到泡沫镍上,和2g氟化铵上下游放置,置于惰性气氛管式炉中,在350℃,热解处理120分钟后,使用去离子水清洗该混合物,过滤干燥后就能得到负载在泡沫镍上的氟化钴。
图1为制得的负载氟化钴的泡沫镍材料的XRD图,从图中可以看出仅存在氟化钴和泡沫镍的特征峰,不存在其他杂相,证明了氟化钴材料被成功合成。
实施例2
氟化钴/氟化镍的制备:将100mg过渡金属前驱体(硝酸钴和硝酸镍摩尔比为1:1)和2g氟化铵上下游放置,置于惰性气氛管式炉中,在350℃,热解处理120分钟后,使用去离子水清洗该混合物,过滤干燥后就能得到氟化钴/氟化镍混合物。
图2为制得的氟化钴/氟化镍混合物材料的XRD图,从图中可以看出仅存在氟化钴/氟化镍混合物的特征峰,一步合成了氟化钴/氟化镍混合物材料。
实施例3
氟化钴的制备:将100mg氧化钴前驱体和500mg氟化铵混合,置于惰性气氛管式炉中,在350℃,热解处理120分钟后,使用去离子水清洗该混合物,过滤干燥后就能得到氟化钴。
图3为制得的氟化钴的XRD图,从图中可以看出仅存在氟化钴的特征峰。
对比例1
镍化钴/氢氧化镍的制备:将100mg氢氧化镍前驱体和300mg氟化铵混合,置于惰性气氛管式炉中,在350℃,热解处理120分钟后,使用去离子水清洗该混合物,过滤干燥后就能得到氟化镍/氢氧化镍混合材料。
图4为制得的氟化镍/氢氧化镍混合物材料的XRD图谱,从图中可以看出仅存在氟化镍和氢氧化镍的特征峰,说明当过渡金属前驱体和氟化铵的质量比低于1:5时(对比例1中过渡金属前驱体和氟化铵的质量比为1:3),制备得到的材料为混合物,不能得到纯净的过渡金属氟化物。

Claims (10)

1.过渡金属氟化物的制备方法,其特征在于,具体步骤如下:
将过渡金属前驱体和氟化铵按质量比为1:5~20混合或上下游放置,惰性气氛下,于250℃以上进行热解处理,热解结束后,水洗,过滤,干燥得到过渡金属氟化物。
2.根据权利要求1所述的制备方法,其特征在于,所述的过渡金属前驱体选自过渡金属氢氧化物,过渡金属氧化物或过渡金属盐中的一种或两种以上。
3.根据权利要求2所述的制备方法,其特征在于,所述的过渡金属氢氧化物选自Fe(OH)3,Co(OH)2或Ni(OH)2
4.根据权利要求2所述的制备方法,其特征在于,所述的过渡金属氧化物选自FeO,NiO或CoO。
5.根据权利要求2所述的制备方法,其特征在于,所述的过渡金属盐选自Fe2(SO4),NiCl2或Co(NO)3
6.根据权利要求1或2所述的制备方法,其特征在于,所述的热解温度为250℃~600℃。
7.根据权利要求1或2所述的制备方法,其特征在于,所述的热解时间为60分钟以上。
8.根据权利要求1或2所述的制备方法,其特征在于,所述的惰性气氛选自氮气,氩气或氦气。
9.根据权利要求1或2所述的制备方法,其特征在于,所述的过渡金属前驱体负载在泡沫类金属或非金属上。
10.根据权利要求9所述的制备方法,其特征在于,所述的泡沫类金属载体选自泡沫钴,泡沫铁或泡沫镍,所述金属载体选自钛片或铝箔,所述的非金属选自碳纸或碳布。
CN201810749033.4A 2018-07-10 2018-07-10 过渡金属氟化物的制备方法 Active CN109081383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810749033.4A CN109081383B (zh) 2018-07-10 2018-07-10 过渡金属氟化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810749033.4A CN109081383B (zh) 2018-07-10 2018-07-10 过渡金属氟化物的制备方法

Publications (2)

Publication Number Publication Date
CN109081383A true CN109081383A (zh) 2018-12-25
CN109081383B CN109081383B (zh) 2023-08-25

Family

ID=64837384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810749033.4A Active CN109081383B (zh) 2018-07-10 2018-07-10 过渡金属氟化物的制备方法

Country Status (1)

Country Link
CN (1) CN109081383B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235518A (zh) * 2019-11-13 2020-06-05 中山大学 一种高温氟化处理提高钛基合金抗高温氧化性能的方法
CN115207345A (zh) * 2021-04-13 2022-10-18 湘潭大学 一种正极材料制备方法、正极材料、电池制备方法和电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714043A (zh) * 2002-10-28 2005-12-28 铂知识产权有限合伙公司 生产金属氟化物材料的方法
CN101276666A (zh) * 2007-03-29 2008-10-01 日立化成工业株式会社 氟化物涂敷膜形成处理液和氟化物涂敷膜的形成方法
CN104091949A (zh) * 2014-07-16 2014-10-08 北京化工大学常州先进材料研究院 一种炭包覆金属氟化物核壳结构纳米材料、制备方法及其作为锂电池正极材料的应用
CN107934913A (zh) * 2017-11-14 2018-04-20 桂林电子科技大学 一种过渡金属氟化物掺杂的复合储氢材料的制备及其在储氢材料中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714043A (zh) * 2002-10-28 2005-12-28 铂知识产权有限合伙公司 生产金属氟化物材料的方法
CN101276666A (zh) * 2007-03-29 2008-10-01 日立化成工业株式会社 氟化物涂敷膜形成处理液和氟化物涂敷膜的形成方法
CN104091949A (zh) * 2014-07-16 2014-10-08 北京化工大学常州先进材料研究院 一种炭包覆金属氟化物核壳结构纳米材料、制备方法及其作为锂电池正极材料的应用
CN107934913A (zh) * 2017-11-14 2018-04-20 桂林电子科技大学 一种过渡金属氟化物掺杂的复合储氢材料的制备及其在储氢材料中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235518A (zh) * 2019-11-13 2020-06-05 中山大学 一种高温氟化处理提高钛基合金抗高温氧化性能的方法
CN111235518B (zh) * 2019-11-13 2022-04-15 中山大学 一种高温氟化处理提高钛基合金抗高温氧化性能的方法
CN115207345A (zh) * 2021-04-13 2022-10-18 湘潭大学 一种正极材料制备方法、正极材料、电池制备方法和电池

Also Published As

Publication number Publication date
CN109081383B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
Wang et al. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability
Wang et al. Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials
Raj et al. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application
Liu et al. Uniform Hierarchical Fe 3 O 4@ Poly pyrrole Nanocages for Superior Lithium Ion Battery Anodes.
Yan et al. MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor
Han et al. Lattice-disorder layer generation from liquid processing at room temperature with boosted nanointerface exposure toward water splitting
Zhang et al. A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery
Qian et al. Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen
Zhang et al. Electrochemical-induced surface reconstruction to NiFe-LDHs-based heterostructure as novel positive electrode for supercapacitors with enhanced performance in neutral electrolyte
CN108290752A (zh) 作为用于高性能锂电池负极材料的碳掺杂TiO2-青铜纳米结构的直接合成
He et al. Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries
Kumar et al. Cactus-Like Ni-Co/CoMn2O4 composites on Ni foam: Unveiling the potential for advanced electrochemical materials for pseudocapacitors
Motlagh et al. Structural properties of nickel hydroxide/oxyhydroxide and oxide nanoparticles obtained by microwave-assisted oxidation technique
Han et al. Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution
Jiang et al. Facile preparation of Mn 3 O 4 hollow microspheres via reduction of pentachloropyridine and their performance in lithium-ion batteries
Yu et al. Two Dimensional Ir‐Based Catalysts for Acidic OER
Yang et al. Novel preparation of high activity 1T-phase MoS2 ultra-thin flakes by layered double hydroxide for enhanced hydrogen evolution performance
Zhang et al. Simple and low price of monodispersed rice-like Fe2O3 supported by modified bamboo charcoal with enhanced lithium storage
CN109081383A (zh) 过渡金属氟化物的制备方法
US11939684B2 (en) Use of sulfidic compositions
Usman et al. Facile synthesis of ironnickelcobalt ternary oxide (FNCO) mesoporous nanowires as electrode material for supercapacitor application
Chen et al. Facile synthesis of ultrathin CuCo2S4 nanosheets for high-performance supercapacitors
CN114314673B (zh) 一种片状FeOCl纳米材料的制备方法
Chen et al. Micro-mesoporous cobalt phosphosulfide (Co3S4/CoP/NC) nanowires for ultrahigh rate capacity and ultrastable sodium ion battery
Yang et al. Iron-modulated Ni 3 S 2 derived from a Ni-MOF-based Prussian blue analogue for a highly efficient oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant