CN109061505B - Lithium battery SOH detection method - Google Patents

Lithium battery SOH detection method Download PDF

Info

Publication number
CN109061505B
CN109061505B CN201810991631.2A CN201810991631A CN109061505B CN 109061505 B CN109061505 B CN 109061505B CN 201810991631 A CN201810991631 A CN 201810991631A CN 109061505 B CN109061505 B CN 109061505B
Authority
CN
China
Prior art keywords
lithium battery
internal resistance
soc
equation
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810991631.2A
Other languages
Chinese (zh)
Other versions
CN109061505A (en
Inventor
王业琴
陈基础
赵志国
杨艳
夏奥运
郭畅
桑英军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201810991631.2A priority Critical patent/CN109061505B/en
Publication of CN109061505A publication Critical patent/CN109061505A/en
Application granted granted Critical
Publication of CN109061505B publication Critical patent/CN109061505B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a detection method of lithium battery SOH, which comprises the following steps: 1) establishing an equivalent circuit model of the lithium battery, wherein the equivalent circuit model comprises a branch formed by sequentially connecting an open-circuit voltage Uoc, a polarization capacitor Cp and an ohmic internal resistance Ro in series, the two ends of the open-circuit voltage Uoc are connected with a self-discharge resistor Rd in parallel, and the two ends of the polarization capacitor Cp are connected with a polarization internal resistance Rp in parallel to obtain an equation of the equivalent circuit model of the lithium battery; 2) establishing a discrete system state space equation and an observation equation of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd according to an equivalent circuit model equation of the lithium battery; iterative calculation is carried out by adopting an extended Kalman filtering algorithm to obtain estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd; 3) and inputting the estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd and the cycle number H of the lithium battery as input variables into a neural network model, and estimating to obtain the SOH of the lithium battery.

Description

Lithium battery SOH detection method
Technical Field
The invention relates to the technical field of lithium battery detection, in particular to a method for detecting SOH of a lithium battery.
Background
Along with the development of cities and the improvement of living standard, the demand of society on fossil energy is continuously increased, and the adverse effect of the fossil energy on the environment is increasingly prominent. In order to deal with the continuously intensified energy crisis and environmental pollution, the research and development and popularization of new energy are carried forward; the power lithium ion battery is one of new energy sources, as a complex electrochemical system, the state of health (SOH) of the lithium ion battery gradually degrades with use, and it is very important to accurately grasp the state of SOH of the lithium ion battery in the use process of the lithium ion battery. However, in the actual use process, parameters for characterizing the lithium battery SOH are difficult to directly test, and the lithium battery SOH diagnosis is a great problem in the world.
Currently, there are two main methods for measuring the SOH of a lithium battery: firstly, the ratio of the maximum available capacity to the rated maximum available capacity of the lithium battery in the use process of the lithium battery; and secondly, the ratio of the impedance of the lithium battery in the using process to the impedance of the lithium battery in the health state. In the first method, the lithium battery needs to be charged to a full-charge state by adopting constant current and constant voltage under a relatively stable condition, the lithium battery is discharged to a cut-off voltage by adopting a constant current mode, multiple groups of measurements are obtained after multiple cycles, and finally an average value is taken as the current available capacity of the lithium battery. In the second method, the change amplitude of the impedance value before and after the lithium battery is aged is small, and methods for acquiring the impedance value mainly comprise a pulse method and an electrochemical impedance spectroscopy method, are easily influenced by the environment and are few in practical use.
At present, there are two methods for estimating the SOH of a lithium battery, one of which is an SOH method based on voltage measurement estimation: calculating the change of the voltage of the lithium battery in the charging process by using the measured voltage value, and further estimating the relative SOH of the lithium battery; the method excessively depends on voltage value measurement, and if the error of the measured value is large, the SOH value of the lithium battery has an error, so that an accumulated error is caused. Secondly, an estimation method for estimating the SOH of the lithium battery based on the capacity of the lithium battery comprises the following steps: the method comprises the steps of firstly determining the initial capacity of a lithium battery, charging the lithium battery until the lithium battery is in a cut-off state, calculating the charged capacity according to charging current time, calculating the capacity of the lithium battery when the lithium battery is cut off, and obtaining the SOH of the lithium battery by utilizing the ratio of the capacity of the lithium battery when the lithium battery is cut off to the rated capacity; according to the method, the lithium battery capacity is calculated by using the current, but an error exists in the current measuring process, a larger error exists in the final cut-off lithium battery capacity, and meanwhile, a measuring error also exists when the initial capacity of the lithium battery is determined, so that the estimation of the SOH of the lithium battery is not facilitated.
In summary, the current method for detecting the SOH of the lithium battery has great disadvantages.
Disclosure of Invention
The invention aims to solve the technical problem of providing a lithium battery SOH detection method, which adopts a plurality of measurement parameters capable of representing the lithium battery SOH to estimate, and greatly improves the estimation precision by using a Kalman filtering algorithm and a neural network algorithm.
The invention is realized by the following technical scheme:
a detection method for lithium battery SOH comprises the following steps:
1) establishing an equivalent circuit model of a lithium battery, wherein the equivalent circuit model comprises a branch consisting of an open-circuit voltage Uoc, a polarization capacitor Cp and an ohmic internal resistance Ro which are sequentially connected in series, the two ends of the branch represent terminal voltage U of the lithium battery, the two ends of the open-circuit voltage Uoc are connected in parallel with a self-discharge resistor Rd, the two ends of the polarization capacitor Cp are connected in parallel with a polarization internal resistance Rp, and an equation of the equivalent circuit model of the lithium battery is obtained:
Figure BDA0001779329130000011
Figure BDA0001779329130000021
wherein Up is the voltage at two ends of the polarization capacitor Cp;
2) establishing a discrete system state space equation and an observation equation of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd according to an equivalent circuit model equation of the lithium battery; iterative calculation is carried out by adopting an extended Kalman filtering algorithm to obtain estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd;
3) and inputting the estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd and the cycle number H of the lithium battery as input variables into a neural network model, and estimating to obtain the SOH of the lithium battery.
The invention further adopts the scheme that an Elman neural network model is adopted in the step 3); the Elman neural network adds a carrying layer in the hidden of the feed-forward network, and the carrying layer is used as an operator for one-step time delay to achieve the purpose of memory, so that the system has the capability of adapting to time-varying characteristics, can directly and dynamically reflect the characteristics of a dynamic process system, and improves the estimation accuracy of a nonlinear system.
The further scheme of the invention is that step 2) adopts an ampere-hour integration method to obtain a state space equation of the battery SOC:
Figure BDA0001779329130000022
in the formula, mu is the coulombic efficiency of the lithium battery, Qt is the rated capacity of the lithium battery at the moment t, and SOC0 is the initial residual capacity of the lithium battery;
and (3) discretizing the formula (3) by using EKF estimation to obtain a discrete system state space equation of the battery SOC:
Figure BDA0001779329130000023
wherein k is a certain time node after discrete processing, and delta t is the current charging or discharging time;
establishing an observation equation according to an equivalent circuit model equation of the lithium battery:
Figure BDA0001779329130000024
vk is the noise in the model represented by the observation equation;
the further scheme of the invention is that step 2) establishes a discrete system state space equation of ohmic internal resistance Ro and self-discharge internal resistance Rd:
Figure BDA0001779329130000025
Figure BDA0001779329130000026
wherein k is a certain time node after discrete processing;
the observation equation:
Figure BDA0001779329130000027
where vk is the noise in the model represented by the observation equation.
Compared with the prior art, the invention has the advantages that:
adding a self-discharge resistor R into a Thevenin equivalent circuit modeldThe characteristic of the lithium ion battery is better simulated, the variable is iteratively calculated by using the efficient and simple extended Kalman filtering algorithm, the SOH of the lithium ion battery is obtained by estimation, and the reliability is higher.
Drawings
FIG. 1 is a flow chart of the present invention.
Fig. 2 is an equivalent circuit diagram of a lithium battery.
FIG. 3 is a diagram of an Elman neural network model.
FIG. 4 is a graph of cycle number versus capacity.
Fig. 5 is a graph of ohmic internal resistance versus battery capacity.
Fig. 6 is a graph of the number of cycles versus the battery capacity under different self-discharges.
Detailed Description
As shown in fig. 4, as the number of cycles increases, the capacity of the lithium battery decreases, and the capacity have a linear relationship; as shown in fig. 5, the ohmic internal resistance of the lithium battery gradually increases with the increase of the service time, and at this time, the ohmic internal resistance can be one of the key factors for estimating the capacity of the lithium battery; as shown in fig. 6, the difference of the initial self-discharge resistance of the lithium battery has a great influence on the SOH and SOH variation of the lithium battery, and the self-discharge resistance of the lithium battery slowly decays with the increase of the cycle period. The self-discharge resistance of a lithium battery is inversely proportional to the self-discharge current and decays as the cycle life of the lithium battery increases, and therefore, the self-discharge resistance factor of the battery is not negligible in the estimation of the SOH of the lithium battery.
The method for detecting the lithium battery SOH as shown in FIG. 1 comprises the following steps:
1) establishing an equivalent circuit model of the lithium battery as shown in fig. 2, wherein the equivalent circuit model comprises a branch circuit formed by sequentially connecting an open-circuit voltage Uoc, a polarization capacitor Cp and an ohmic internal resistance Ro in series, the two ends of the branch circuit represent the terminal voltage U of the lithium battery, the two ends of the open-circuit voltage Uoc are connected in parallel with a self-discharge resistor Rd, the two ends of the polarization capacitor Cp are connected in parallel with a polarization internal resistance Rp, and an equation of the equivalent circuit model of the lithium battery is obtained:
Figure BDA0001779329130000031
Figure BDA0001779329130000032
wherein Up is the voltage at two ends of the polarization capacitor Cp;
2) establishing a discrete system state space equation and an observation equation of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd according to an equivalent circuit model equation of the lithium battery; iterative calculation is carried out by adopting an extended Kalman filtering algorithm to obtain estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd; the method comprises the following specific steps:
the state of charge of the battery, also called the remaining capacity, refers to the ratio of the available capacity of the battery at the current moment to the rated capacity of the battery at the moment, and the expression is as follows:
Figure BDA0001779329130000033
in the formula QnIs the current residual capacity, Q, of the lithium battery at the moment ttIs a lithium batteryRated capacity at time t;
obtaining a state space equation of the battery SOC by adopting an ampere-hour integration method:
Figure BDA0001779329130000034
in the formula, mu is the coulomb efficiency of the lithium battery, and SOC0 is the initial residual capacity of the lithium battery;
and (3) discretizing the formula (3) by using EKF estimation to obtain a discrete system state space equation of the battery SOC:
Figure BDA0001779329130000041
wherein k is a certain time node after discrete processing, and delta t is the current charging or discharging time;
establishing an observation equation according to an equivalent circuit model equation of the lithium battery:
Figure BDA0001779329130000042
vk is the noise in the model;
the open circuit voltages of 5 lithium batteries and the battery SOC are fitted into a polynomial:
Uoc=K0+K1SOC+K2SOC2+K3SOC3+K4SOC4+K5SOC5 (6)
k1, K2, K3, K4 and K5 respectively represent parameters of each battery, the voltage of each battery has a fixed relation with the SOC, and the voltages and the SOC can be mutually represented by fitting;
substituting equation (6) for equation (5) yields the measurement equation:
Figure BDA0001779329130000043
the general forms of EKF were used for the expression of formula (4) and formula (7), respectively:
xk+1=f(xk,uk)+wk (8)
yk=g(xk,uk)+vk (9)
in the formula f (x)k,uk)=Axk+Buk,g(xk,uk)=Cxk+Duk,ukFor the input signal, xkIs a status signal, ykWk is the noise in the model for the output signal;
the following results are obtained from equations (4), (7), (8) and (9):
A=1 (10)
Figure BDA0001779329130000044
Figure BDA0001779329130000045
initialization:
k=0 (13)
Figure BDA0001779329130000051
Figure BDA0001779329130000052
Wk=E(w*wT) (16)
Vk=E(v*vT) (17)
time update equation for discrete systems:
Figure BDA00017793291300000510
Figure BDA00017793291300000511
measurement update equation for discrete systems:
Figure BDA0001779329130000053
Figure BDA0001779329130000054
Figure BDA0001779329130000055
obtaining the value x of the SOC of the battery through the estimation of EKFk
Establishing a discrete system state space equation of ohmic internal resistance Ro and self-discharge internal resistance Rd:
Figure BDA0001779329130000056
Figure BDA0001779329130000057
wherein k is a certain time node after discrete processing;
the observation equation:
Figure BDA0001779329130000058
where vk is the noise in the model.
The estimation of the ohmic internal resistance Ro is:
when k is 0, the parameters of ohmic internal resistance are as follows:
xk=Rk (26)
Figure BDA0001779329130000059
A=1 (28)
Figure BDA0001779329130000061
Figure BDA0001779329130000062
Wk=E(r*rT) (31)
Vk=E(v*vT) (32)
the time updating equation and the measurement updating equation of the discrete system are in the same expression (18) to expression (22) to obtain the ohmic internal resistance R of the lithium batteryo
The estimation of the self-discharge internal resistance Rd is:
Figure BDA0001779329130000063
Figure BDA0001779329130000064
A=1 (35)
Figure BDA0001779329130000065
Figure BDA0001779329130000066
Wk=E(n*nT) (38)
Vk=E(v*vT) (39)
the self-discharge internal resistance Rd of the lithium battery is obtained by the time updating equation and the measurement updating equation of the system in the same formulas (18) to (22).
3) And inputting the estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd and the cycle number H of the lithium battery as input variables into the Elman neural network model, and estimating to obtain the SOH of the lithium battery.
The specific process is as follows:
and respectively taking n groups of four parameters including the estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd and the cycle number H of the lithium battery, wherein the data of each group are acquired at the same moment. 1 st time node [ SOC1,Ro1,Rd1,H1]2 nd time node [ SOC2,Ro2,Rd2,H2].. nth time node [ SOCn,Ron,Rdn,Hn]. Using the normalization equation:
Figure BDA0001779329130000067
the battery state [ SOC ] of the ith time nodei,Roi,Rdi,Hi]1, 2, … …, n, normalized to: [ SOCi′,R′oi,R′di,Hi]I ═ 1, 2, … …, n; taking the normalization of ohmic internal resistance as an example, the normalization equation is:
Figure BDA0001779329130000071
wherein Rmax and Rmin represent the maximum value and the minimum value of the n time node voltage parameters, respectively. The obtained parameters are used as input variables x (k) of the neural network, and the lithium battery state of health (SOH) value corresponding to each moment is used as a sample output value yd(k)。
As can be seen from fig. 5, the Elman neural network not only has an input layer, a hidden layer and an output layer, but also has a special association layer of the link units, and memorizes the output values before the middle layer and feeds them back to the input layer in a delayed manner. Here, the input layer input is x (k), and the input of the hidden layer is x0(k) Output is
Figure BDA0001779329130000076
The correlation layer output is yc(k) The output layer output is y (k). The following formula can be obtained:
x0(k)=W1x(k)+W3yc(k)+θ1 (40)
yc(k)=o(k-1)=f(x0(k-1)) (41)
Figure BDA0001779329130000072
in the formula, theta1、θ2Threshold values for the intermediate layer and the output layer; w1、W2、W3Respectively are the connection weights between the input layer and the hidden layer, between the middle layer and the output layer and between the middle layer and the associated layer; f (x) is a Sigmiod-type activation function, i.e., a hyperbolic activation function.
The method comprises the following steps: the neural network is trained using N sets of training samples, where the training set is [ x (k), y (k) ] (k ═ 1, 2, 3.. N). The neural network training output value can be calculated from the expressions (40), (41) and (42). The single sample error is:
Figure BDA0001779329130000073
the total error of a single training is:
Figure BDA0001779329130000074
in the formula, yd(k) And y (k) are the sample output value and the training output value, respectively.
After the system error is obtained through calculation, the network weight W is calculated1、W2、W3And (6) carrying out correction.
To W1(weight between input layer and intermediate layer) to correct:
Figure BDA0001779329130000075
to W2(the weight between the output layer and the intermediate layer) is corrected to obtainAnd (3) correction:
Figure BDA0001779329130000081
to W3(the weight between the middle layer and the associated layer) is corrected to obtain a correction:
Figure BDA0001779329130000082
Figure BDA0001779329130000083
according to the principle of a dynamic reverse error transfer algorithm, a steepest descent method is adopted, and a connection weight is adjusted to enable an error E function to reach a minimum value at the fastest speed. The basic formula of weight correction is as follows:
Figure BDA0001779329130000084
where ρ is the learning rate.
The Elman network weight correction formula obtained by integrating the above formula is as follows:
Figure BDA0001779329130000085
Figure BDA0001779329130000086
Figure BDA0001779329130000087
Figure BDA0001779329130000088
obtaining a weight:
Wi'=Wi+ΔWi (i=1、2、3) (54)
and calculating to obtain a training error E through training of the training sample. And if the error meets the test requirement, stopping training, and assigning the weight obtained by training to the neural network model so as to be used for actual work. Otherwise, continuing training until the requirements are met.

Claims (2)

1. A detection method for lithium battery SOH is characterized by comprising the following steps:
1) establishing an equivalent circuit model of a lithium battery, wherein the equivalent circuit model comprises a branch consisting of an open-circuit voltage Uoc, a polarization capacitor Cp and an ohmic internal resistance Ro which are sequentially connected in series, the two ends of the branch represent terminal voltage U of the lithium battery, the two ends of the open-circuit voltage Uoc are connected in parallel with a self-discharge resistor Rd, the two ends of the polarization capacitor Cp are connected in parallel with a polarization internal resistance Rp, and an equation of the equivalent circuit model of the lithium battery is obtained:
Figure FDA0002823903740000011
Figure FDA0002823903740000012
wherein Up is the voltage at two ends of the polarization capacitor Cp;
2) establishing a discrete system state space equation and an observation equation of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd according to an equivalent circuit model equation of the lithium battery; iterative calculation is carried out by adopting an extended Kalman filtering algorithm to obtain estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd;
obtaining a state space equation of the battery SOC by adopting an ampere-hour integration method:
Figure FDA0002823903740000013
in the formula, mu is the coulombic efficiency of the lithium battery, Qt is the rated capacity and SOC of the lithium battery at the moment t0The initial residual capacity of the lithium battery is obtained;
and (3) carrying out discretization treatment by using an extended Kalman filtering algorithm to obtain a discrete system state space equation of the battery SOC:
Figure FDA0002823903740000014
wherein k is a certain time node after discrete processing, and delta t is the current charging or discharging time;
establishing an observation equation according to an equivalent circuit model equation of the lithium battery:
Figure FDA0002823903740000021
in the formula vkIs the noise in the model;
the open circuit voltages of 5 lithium batteries and the battery SOC are fitted into a polynomial:
Uoc=K0+K1SOC+K2SOC2+K3SOC3+K4SOC4+K5SOC5 (6)
k1, K2, K3, K4 and K5 respectively represent parameters of each battery, the voltage of each battery has a fixed relation with the SOC, and the voltages and the SOC can be mutually represented by fitting;
substituting equation (6) for equation (5) yields the observation equation:
Figure FDA0002823903740000022
establishing a discrete system state space equation of ohmic internal resistance Ro and self-discharge internal resistance Rd:
Figure FDA0002823903740000023
Figure FDA0002823903740000024
wherein k is a certain time node after discrete processing;
the observation equation:
Figure FDA0002823903740000025
in the formula vkNoise in the model represented by the observation equation;
3) and inputting the estimated values of the battery SOC, the ohmic internal resistance Ro and the self-discharge internal resistance Rd and the cycle number H of the lithium battery as input variables into a neural network model, and estimating to obtain the SOH of the lithium battery.
2. The method for detecting the SOH of the lithium battery as claimed in claim 1, wherein:
and 3) adding a carrying layer in a hidden layer of the feed-forward network by adopting an Elman neural network model to serve as a one-step time-delay operator to achieve the aim of memorizing, so that the system has the capability of adapting to time-varying characteristics, can directly and dynamically reflect the characteristics of a dynamic process system, and improves the estimation precision of a nonlinear system.
CN201810991631.2A 2018-08-28 2018-08-28 Lithium battery SOH detection method Active CN109061505B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810991631.2A CN109061505B (en) 2018-08-28 2018-08-28 Lithium battery SOH detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810991631.2A CN109061505B (en) 2018-08-28 2018-08-28 Lithium battery SOH detection method

Publications (2)

Publication Number Publication Date
CN109061505A CN109061505A (en) 2018-12-21
CN109061505B true CN109061505B (en) 2021-02-19

Family

ID=64756429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810991631.2A Active CN109061505B (en) 2018-08-28 2018-08-28 Lithium battery SOH detection method

Country Status (1)

Country Link
CN (1) CN109061505B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725266B (en) * 2018-12-29 2021-05-11 蜂巢能源科技有限公司 Method and device for calculating SOH (state of health) of battery
CN109617187B (en) * 2018-12-29 2022-07-22 东莞钜威动力技术有限公司 Battery offline estimation balancing method, battery management system and readable storage medium
CN109633470B (en) * 2019-01-04 2021-04-16 深圳市计量质量检测研究院 Estimation method for battery real-time full charge time based on EKF-GPR and daily segment data
CN110850298B (en) * 2019-10-29 2021-08-17 上海交通大学 Lithium battery SOH estimation method and system based on data driving
CN110632528B (en) * 2019-11-04 2021-08-31 桂林电子科技大学 Lithium battery SOH estimation method based on internal resistance detection
CN111736085B (en) * 2020-07-07 2023-11-10 中国检验检疫科学研究院 Lithium ion battery health state estimation method based on electrochemical impedance spectrum
CN112034371B (en) * 2020-08-28 2022-10-18 厦门科灿信息技术有限公司 Battery health degree prediction method and terminal equipment
CN112600413B (en) * 2020-11-05 2022-04-12 北京信息科技大学 Internal resistance observation method and internal resistance observer of DC-DC converter
CN112526352B (en) * 2020-12-17 2023-10-31 合肥工业大学 SOH estimation method for retired lithium ion battery
US11422199B1 (en) 2021-06-17 2022-08-23 Hong Kong Applied Science and Technology Research Institute Company Limited State of health evaluation of retired lithium-ion batteries and battery modules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554296B2 (en) * 2005-02-14 2009-06-30 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
JP4623448B2 (en) * 2005-04-20 2011-02-02 株式会社デンソー Secondary battery remaining capacity calculation method
CN102062841A (en) * 2009-11-11 2011-05-18 北汽福田汽车股份有限公司 Estimation method and system of state of charge (SOC) of power battery
CN103941195A (en) * 2014-05-05 2014-07-23 山东大学 Method for battery SOC estimation based on small model error criterion expanding Kalman filter
CN104181470A (en) * 2014-09-10 2014-12-03 山东大学 Battery state-of-charge (SOC) estimation method based on nonlinear prediction extended Kalman filtering
CN104537166A (en) * 2014-12-19 2015-04-22 中国汽车技术研究中心 Equivalent circuit model method for power battery
CN105203969A (en) * 2015-10-23 2015-12-30 南昌航空大学 Modification-based state-of-charge estimation method for RC battery model
CN106443471A (en) * 2016-09-20 2017-02-22 首都师范大学 System on chip (SOC) estimation method for lithium ion battery and hardware implementation of estimation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237791A (en) * 2013-06-20 2014-12-24 电子科技大学 Lithium battery charge state estimation method, battery management system and battery system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554296B2 (en) * 2005-02-14 2009-06-30 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
JP4623448B2 (en) * 2005-04-20 2011-02-02 株式会社デンソー Secondary battery remaining capacity calculation method
CN102062841A (en) * 2009-11-11 2011-05-18 北汽福田汽车股份有限公司 Estimation method and system of state of charge (SOC) of power battery
CN103941195A (en) * 2014-05-05 2014-07-23 山东大学 Method for battery SOC estimation based on small model error criterion expanding Kalman filter
CN104181470A (en) * 2014-09-10 2014-12-03 山东大学 Battery state-of-charge (SOC) estimation method based on nonlinear prediction extended Kalman filtering
CN104537166A (en) * 2014-12-19 2015-04-22 中国汽车技术研究中心 Equivalent circuit model method for power battery
CN105203969A (en) * 2015-10-23 2015-12-30 南昌航空大学 Modification-based state-of-charge estimation method for RC battery model
CN106443471A (en) * 2016-09-20 2017-02-22 首都师范大学 System on chip (SOC) estimation method for lithium ion battery and hardware implementation of estimation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"动力锂离子电池组SOH估计方法研究";薛辉;《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》;20130915(第9期);C042-121 *
"电动汽车动力电池SOH在线实时估计算法研究";汤露曦;《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》;20151015(第10期);C035-59 *
"锂离子电池建模与故障预测方法研究";张卓识;《中国优秀硕士学位论文全文数据库(工程科技II辑)》;20160715(第7期);C042-481 *

Also Published As

Publication number Publication date
CN109061505A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109061505B (en) Lithium battery SOH detection method
CN108445406B (en) Power battery state of health estimation method
CN105301509B (en) The combined estimation method of charge states of lithium ion battery, health status and power rating
CN110632528B (en) Lithium battery SOH estimation method based on internal resistance detection
CN106054084B (en) A kind of power battery SOC estimation method
CN111337832B (en) Power battery multidimensional fusion SOC and SOH online joint estimation method
CN109669132B (en) Battery state of charge estimation method based on variational Bayesian filtering
CN108459278B (en) Lithium ion battery internal resistance and charge state synchronous estimation method
CN113030764B (en) Battery pack health state estimation method and system
CN106250576A (en) A kind of modeling method of lithium battery model based on motional impedance
WO2014202684A2 (en) Monitoring charge stored in a battery
CN106054081A (en) Lithium battery modeling method for SOC (State of Charge) estimation of electric vehicle power battery
CN110554321B (en) Method for detecting SOC (state of charge) of retired power battery in real time
CN112345939B (en) Lithium ion battery model parameter identification method based on continuous impulse response
CN110196395B (en) Storage battery SOC estimation method
CN110133505A (en) A kind of power battery charging and discharging state observation method based on variable parameter model
CN111707953A (en) Lithium battery SOC online estimation method based on backward smoothing filtering framework
CN112098849A (en) Lithium battery residual capacity estimation method based on integral Kalman filtering
CN107769335A (en) A kind of multi-mode lithium battery intelligent charging management method and device
CN108829911A (en) A kind of open-circuit voltage and SOC functional relation optimization method
CN110361657B (en) Method for estimating state of charge of battery
CN110716146A (en) Estimation method of power battery open circuit voltage
CN114441984A (en) Lithium battery health state estimation method
CN110412472B (en) Battery state of charge estimation method based on normal gamma filtering
Trinandana et al. Real time state of charge estimation for lead acid battery using artificial neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant