CN108923809B - 一种耳道杂物提示方法及相关产品 - Google Patents
一种耳道杂物提示方法及相关产品 Download PDFInfo
- Publication number
- CN108923809B CN108923809B CN201810606179.3A CN201810606179A CN108923809B CN 108923809 B CN108923809 B CN 108923809B CN 201810606179 A CN201810606179 A CN 201810606179A CN 108923809 B CN108923809 B CN 108923809B
- Authority
- CN
- China
- Prior art keywords
- intensity values
- audio
- input data
- sundries
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000000613 ear canal Anatomy 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004364 calculation method Methods 0.000 claims abstract description 56
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 30
- 230000005540 biological transmission Effects 0.000 claims description 64
- 238000003062 neural network model Methods 0.000 claims description 38
- 238000012545 processing Methods 0.000 claims description 37
- 239000011159 matrix material Substances 0.000 claims description 31
- 238000012549 training Methods 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 13
- 238000010801 machine learning Methods 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims 6
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000005236 sound signal Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/3827—Portable transceivers
- H04B1/385—Transceivers carried on the body, e.g. in helmets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
- H04M1/72403—User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Telephone Function (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本申请实施例公开了一种耳道杂物的提示方法及相关产品,所述方法应用于可穿戴式设备,所述方法包括如下步骤:与电子设备保持无线连接,通过所述无线连接接收音频文件;播放所述音频文件,并获取多个音频发射强度值、多个音频接收强度值;获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如所述耳道具有杂物,发出提示。本申请提供的技术方案具有用户体验度高的优点。
Description
技术领域
本申请涉及移动终端配件技术领域,具体涉及一种耳道杂物提示方法及相关产品。
背景技术
随着智能手机的普及和应用,用户越来越多的依赖智能手机,可穿戴式设备,例如,无线耳机、智能手表、智能手环等等设备也随着智能手机的兴起得到了广泛的应用。对于可穿戴式设备,这里以无线耳机为例,无线耳机具有与智能手机连接便利的优点,对于无线耳机,其无法对耳道的杂物进行检测,影响了用户的体验度。
发明内容
本申请实施例提供了一种耳道杂物提示方法及可穿戴式设备,以期进行耳道杂物的检测,依据检测结果对用户进行提示,提高用户体验度。
第一方面,本申请实施例提供一种可穿戴式设备,所述可穿戴式设备包括:处理部件、音频收发部件和无线收发器;其中,所述处理部件与所述音频收发部件以及无所述线收发器分别连接;
所述无线收发器,用于与电子设备保持无线连接,通过所述无线连接接收音频文件;
所述音频收发部件,用于播放所述音频文件,并获取多个音频发射强度值、多个音频接收强度值;
所述处理部件,用于获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如所述耳道具有杂物,发出提示。
第二方面,提供一种耳道杂物的提示方法,所述方法应用于可穿戴式设备,所述可穿戴式设备包括:处理部件、音频收发部件和无线收发器;所述方法包括如下步骤:
与电子设备保持无线连接,通过所述无线连接接收音频文件;
播放所述音频文件,并获取多个音频发射强度值、多个音频接收强度值;
获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如所述耳道具有杂物,发出提示。
第三方面,提供一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行二方面提供的方法。
第四方面,提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行第二方面提供的方法
可以看出,本申请提供的技术方案在获取音频文件后,控制音频收发部件对该音频文件播放,然后获取该音频文件的多个发射强度值(即发射音量值),多个接收强度值(即反射后的音量值)、多个发射时间、多个接收时间,然后将该多个发射强度值、多个接收强度值、多个发射时间、多个接收时间组成输入数据,然后将该输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据该计算结果确定耳道是否有杂物,进而能够提示用户,该提示方式包括但不限于:语音提示、振动提示等方式。这样本申请的技术方案通过人工智能计算模型确定耳道是否有杂物,实现了杂物提示,提高了用户体验度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种可穿戴式设备与无线通信设备的网络构架示意图。
图1a是本申请提供的一种无线耳机的结构示意图。
图1b是本申请提供的一种无线耳机的另一种结构示意图。
图2是本申请提供的一种无线耳机的结构示意图。
图3a是本申请实施例输入矩阵的结构示意图。
图3b是本申请实施例输入三维数据的结构示意图。
图4为本申请的耳道杂物提示方法的流程示意图。
图5为本申请的一种可穿戴式设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在第一方面提供的可穿戴式设备中,
所述预设的人工智能计算模型为:预设的机器学习模型或预设的神经网络模型。
在第一方面提供的可穿戴式设备中,如所述预设的人工智能计算模型为预设的神经网络模型;
所述处理部件,具体用于将所述输入数据输入到所述预设的神经网络模型中执行多层正向运算得到正向运算结果,依据所述正向运算结果确定是否具有杂物。
在第一方面提供的可穿戴式设备中,所述处理部件,具体用于从所述正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如所述X个位置中有超过X/2个位置对应耳道具有杂物,确定所述正向运算结果为耳道具有杂物,如所述X个位置中有超过X/2个位置对应耳道不具有杂物,确定所述正向运算结构为耳道不具有杂物。
在第一方面提供的可穿戴式设备中,所述处理部件,具体用于获取所述预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,如所述类型为矩阵数据,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按所述排列规则组成输入矩阵,如所述类型为三维数据块,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
在第二方面提供的方法中,所述预设的人工智能计算模型为:预设的机器学习模型或预设的神经网络模型。
在第二方面提供的方法中,如所述预设的人工智能计算模型为预设的神经网络模型;所述将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物具体包括:
将所述输入数据输入到所述预设的神经网络模型中执行多层正向运算得到正向运算结果,依据所述正向运算结果确定是否具有杂物。
在第二方面提供的方法中,所述依据所述正向运算结果确定是否具有杂物具体包括:
从所述正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如所述X个位置中有超过X/2个位置对应耳道具有杂物,确定所述正向运算结果为耳道具有杂物,如所述X个位置中有超过X/2个位置对应耳道不具有杂物,确定所述正向运算结构为耳道不具有杂物。
在第二方面提供的方法中,所述将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据具体包括:
获取所述预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,如所述类型为矩阵数据,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按所述排列规则组成输入矩阵,如所述类型为三维数据块,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
本申请实施例所涉及到的无线通信设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。当然在其他应用中,上述无线通信设备还可以为网络侧设备,例如基站、接入点等网络侧设备。为方便描述,上面提到的设备统称为无线通信设备。
请参阅图1,图1是本申请实施例公开的一种网络构架示意图,该网络架构可以包括电子设备和无线耳机,其中,无线耳机可以通过无线网络(例如,蓝牙、红外线或WiFi)与电子设备通信连接。需要说明的是,无线耳机可包含一个或者多个耳塞,本申请实施例不作限定。具体实施中,无线耳机可向电子设备法发送配对请求,电子设备可接收由可穿戴设备发送的配对请求,可穿戴设备包括至少一个独立部件,响应配对请求,检测可穿戴设备包含的部件数量,依据部件数量显示可穿戴设备的信息,例如电量、配对数量等等。
如图1a所示,图1a是本申请实施例提供的一种无线耳机的结构图,如图1a所示的,两个耳塞可以完全分离设置。如图1a所示,该无线耳机包括:二个耳塞,每个耳塞包括:耳塞外壳121、设置在耳塞外壳121表面的扬声器,该耳塞还可以包括:无线收发器122、处理芯片(图中未画出)和电池(图中未画出),该处理芯片与触控板、无线收发器以及扬声器之间电连接,具体的,该电连接的方式可以通过总线方式来连接,当然在实际应用中,上述电连接也可以是通过其他连接方式来连接。
请参阅图1b,图1b是本申请实施例公开的一种电子设备100的结构示意图,电子设备100包括存储和处理电路110,以及与所述存储和处理电路110连接的通信电路120和音频组件140,其中,在一些特定的电子设备100内,还可以设置显示组件130或触控组件。
电子设备100可以包括控制电路,该控制电路可以包括存储和处理电路110。该存储和处理电路110可以存储器,例如硬盘驱动存储器,非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程只读存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。存储和处理电路110中的处理电路可以用于控制电子设备100的运转。该处理电路可以基于一个或多个微处理器,微控制器,数字信号处理器,基带处理器,功率管理单元,音频编解码器芯片,专用集成电路,显示驱动器集成电路等来实现。
存储和处理电路110可用于运行电子设备100中的软件,例如互联网协议语音(Voice over Internet Protocol,VOIP)电话呼叫应用程序,同声翻译功能,媒体播放应用程序,操作系统功能等。这些软件可以用于执行一些控制操作,例如,基于照相机的图像采集,基于环境光传感器的环境光测量,基于接近传感器的接近传感器测量,基于诸如发光二极管的状态指示灯等状态指示器实现的信息显示功能,基于触摸传感器的触摸事件检测,与执行无线通信功能相关联的操作,与收集和产生音频信号相关联的操作,与收集和处理按钮按压事件数据相关联的控制操作,以及电子设备100中的其它功能等,本申请实施例不作限制。
电子设备100还可以包括输入-输出电路150。输入-输出电路150可用于使电子设备100实现数据的输入和输出,即允许电子设备100从外部设备接收数据和也允许电子设备100将数据从电子设备100输出至外部设备。输入-输出电路150可以进一步包括传感器170。传感器170可以包括环境光传感器,基于光和电容的接近传感器,触摸传感器(例如,基于光触摸传感器和/或电容式触摸传感器,其中,触摸传感器可以是触控显示屏的一部分,也可以作为一个触摸传感器结构独立使用),加速度传感器,和其它传感器等。
输入-输出电路150还可以包括触摸传感器阵列(即,显示器130可以是触控显示屏)。触摸传感器可以是由透明的触摸传感器电极(例如氧化铟锡(ITO)电极)阵列形成的电容式触摸传感器,或者可以是使用其它触摸技术形成的触摸传感器,例如音波触控,压敏触摸,电阻触摸,光学触摸等,本申请实施例不作限制。
电子设备100还可以包括音频组件140。音频组件140可以用于为电子设备100提供音频输入和输出功能。电子设备100中的音频组件140可以包括扬声器,麦克风,蜂鸣器,音调发生器以及其它用于产生和检测声音的组件。
通信电路120可以用于为电子设备100提供与外部设备通信的能力。通信电路120可以包括模拟和数字输入-输出接口电路,和基于射频信号和/或光信号的无线通信电路。通信电路120中的无线通信电路可以包括射频收发器电路、功率放大器电路、低噪声放大器、开关、滤波器和天线。举例来说,通信电路120中的无线通信电路可以包括用于通过发射和接收近场耦合电磁信号来支持近场通信(Near Field Communication,NFC)的电路。例如,通信电路120可以包括近场通信天线和近场通信收发器。通信电路120还可以包括蜂窝电话收发器和天线,无线局域网收发器电路和天线等。
电子设备100还可以进一步包括电池,电力管理电路和其它输入-输出单元160。输入-输出单元160可以包括按钮,操纵杆,点击轮,滚动轮,触摸板,小键盘,键盘,照相机,发光二极管或其它状态指示器等。
用户可以通过输入-输出电路150输入命令来控制电子设备100的操作,并且可以使用输入-输出电路150的输出数据以实现接收来自电子设备100的状态信息和其它输出。
参阅图2,图2为本申请提供的一种可穿戴式设备的结构示意图,如图2所示,该可穿戴式设备包括:第一耳塞和第二耳塞,其中,第一耳塞或第二耳塞可以包括:处理部件201、音频收发部件202和无线收发器203;其中,该处理部件201与该音频收发部件202以及无线收发器203分别连接。
无线收发器203,用于与电子设备保持无线连接,通过该无线连接接收音频文件;
上述无线连接具体可以为,蓝牙连接、wifi连接、射频连接等等无线连接方式,当然在实际应用中,也可以采用其他的无线连接方式,本申请并不局限上述无线连接的具体方式。
上述音频文件具体可以为,单独的音频文件,当然也可以为视频文件中的音频部分的文件,本申请并不局限上述音频文件通过何种方式得到。
音频收发部件202,用于播放所述音频文件,并获取该音频文件的多个音频发射强度值、多个音频接收强度值;
处理部件201,用于获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将该输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据该计算结果确定耳道是否具有杂物,如该耳道具有杂物,发出提示。
本申请提供的技术方案在获取音频文件后,控制音频收发部件对该音频文件播放,然后获取该音频文件的多个发射强度值(即发射音量值),多个接收强度值(即反射后的音量值)、多个发射时间、多个接收时间,然后将该多个发射强度值、多个接收强度值、多个发射时间、多个接收时间组成输入数据,然后将该输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据该计算结果确定耳道是否有杂物,进而能够提示用户,该提示方式包括但不限于:语音提示、振动提示等方式。这样本申请的技术方案通过人工智能计算模型确定耳道是否有杂物,实现了杂物提示,提高了用户体验度。
可选的,上述人工智能计算模型具体可以为,机器学习模型或神经网络计算模型。
如该人工智能计算模型为神经网络计算模型,该将该输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据该计算结果确定耳道是否具有杂物具体可以包括:
处理部件201,用于将该输入数据输入到预设的神经网络模型中执行多层正向运算得到正向运算结果,依据该正向运算结果确定是否具有杂物。
可选的,依据该正向运算结果确定是否具有杂物具体可以包括:处理部件,具体用于从正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如X个位置中有超过X/2个位置对应耳道具有杂物,确定该正向运算结果为耳道具有杂物,反之,如X个位置中有超过X/2个位置对应耳道不具有杂物,确定该正向运算结构为耳道不具有杂物。
需要说明的,对于正向运算结果中每个元素值对应的耳道不具有杂物或耳道具有杂物可以通过训练时确定,对于训练样本输入数据,由于其是标注过的样本数据,即已知该训练样本输入数据是否具有杂物,将该训练样本(耳道不具有杂物)输入到预设的神经网络模型中得到正向运算结果,该正向运算结果中大于设定阈值的元素对应的位置即为耳道不具有杂物。同理,将该训练样本(耳道具有杂物)输入到预设的神经网络模型中得到正向运算结果,该正向运算结果中大于设定阈值的元素对应的位置即为耳道具有杂物。
可选的,上述将多个发射强度值,多个接收强度值、多个发射时间、多个接收时间组成输入数据的实现方式具体可以为:
处理部件201,具体用于获取预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,如该类型为矩阵数据,则将该多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入矩阵,如该类型为三维数据块,则将该多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
下面通过一个实际的例子来确定上述输入数据的方式,这里的输入数据的类型以矩阵数据为例,其排列规则可以为,按宽度方向(W)排列,顺序为:发射强度值—接收强度值—发射时间—接收时间,如该多个发射强度值、多个接收强度值、多个发射时间、多个接收时间的数量不够组成矩阵,则通过补充零元素使得该多个接收强度值、多个发射时间、多个接收时间能够组成矩阵。具体的补充示意图如图3a所示,如图3a所示,最后黑色的方框为补充零的元素,图3a中的每个方框代表一个矩阵的元素。当然上述排列规则还可以为:按宽度方向排列,顺序为:发射强度值—发射时间—接收强度值—接收时间,当然还可以为其他的排列规则,例如按高度(H)方向排列。图3a中的每个方框代表一个输入矩阵的元素
这里的输入数据的类型以三维数据块为例,其排列规则可以为,按宽度方向(W)排列,顺序为:发射强度值—接收强度值—发射时间—接收时间,如该多个发射强度值、多个接收强度值、多个发射时间、多个接收时间的数量不够组成三维数据块,则通过补充零元素使得该加速度数据以及采集该加速度数据的时间的数量组成三维数据块。具体的补充示意图如图3b所示,如图3b所示,最后黑色的方框为补充零的元素,图3b中的每个方框代表一个三维数据块的元素。
对于预设的神经网络模型,其为已经完成训练的神经网络模型,该神经网络模型的训练方法中,将多个样本输入数据中每个样本输入数据依据输入到神经网络模型中进行训练对神经网络模型中的权值数据进行更新,将所有的多个样本输入数据训练对权值数据更新,此时的神经网络模型为训练好的神经网络模型,当神经网络模型训练好以后该权值数据将不在改变。上述多个样本输入数据至少需要包括:耳道具有杂物的样本输入数据和耳道不具有杂物的样本输入数据。由于预设的神经网络模型中的权值数据不改变,那么输入预设神经网络模型中进行正向运算的输入数据就需要和样本输入数据的类型一致,如果类型不一致,其神经网络模型可能执行运算的结果会有很多的偏差。具体的,数学计算中的矩阵与矩阵的乘法以及三维数据块与三维数据块之间的计算是依据元素的位置来执行计算的,如果其类型不一致,那么其对应的位置肯定有所变化,例如如图3a所示的输入矩阵与如图3b所示的输入三维数据,即使采用相同的多个发射强度值、多个接收强度值、多个发射时间、多个接收时间分别组成输入矩阵以及输入三维数据,由于类型不一致,那么大部分元素的在输入矩阵以及输入三维数据的位置不一致,这些位置的错位肯定会导致计算的结果的偏差很大,从而出现正向输出结果不准确,不准确的正向输出结果肯定会导致依据该正向输出结果确定的手势出现偏差。那么采用相同的类型以及排列规则形成输入数据可以减少因为位置不一致以及类型不一致,提高了正向输出结果的准确性。
可选的,处理部件201,具体用于获取预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,如该类型为矩阵数据【H0】【W0】,确定加速度数据以及采集时间的总数量Y,如Y<H0*W0;计算执行插入n个值的处理得到插入处理后的数据,该插入n个值的处理具体包括:在多个发射强度值插入n个发射强度数据,在多个发射时间插入n个发射时间,在多个接收强度值插入n个接收强度数据,在多个接收时间插入n个接收时间,将插入处理后的数据按该排列规则组成输入矩阵,该输入矩阵的尺寸为【H0】【W0】,该H0为矩阵的高度值,该W0可以为矩阵的宽度值。
上述n个加速度数据的插入方式可以有多种,例如,在一种可选的方式中,在多个发射强度值之后插入n个发射强度值数据,该n个发射强度值数据可以为多个发射强度值的平均值,当然还可以为n个发射强度值数据可以为离散分布的n个值,离散分布的n个值在设定范围内且离散分布的n个值的平均值与多个发射强度值的平均值相同。该插入n个发射时间具体可以为,以设定间隔在多个发射时间之后插入n个发射时间,该设定间隔可以为用户设定的间隔。上述n个接收信号强度值数据以及n个接收时间的插入方式可以参见n个发射时间数据和n个发射时间的插入方式,这里不再赘述。
此种插入的方式能够尽量的仿真原始采集的多个发射强度值,多个接收强度值、多个发射时间、多个接收时间,这样能够提高输入矩阵数据的真实性,进而提高正向运算结果的准确性。
参阅图4,图4提供了一种耳道杂物提示方法,所述方法应用与所述可穿戴式设备,所述可穿戴式设备包括:处理部件、音频收发部件和无线收发器;所述方法包括如下步骤:
步骤S401、与电子设备保持无线连接,通过所述无线连接接收音频文件;
步骤S402、播放所述音频文件,并获取多个音频发射强度值、多个音频接收强度值;
步骤S403、获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如所述耳道具有杂物,发出提示。
可选的,所述预设的人工智能计算模型为:预设的机器学习模型或预设的神经网络模型。
可选的,如所述预设的人工智能计算模型为预设的神经网络模型;所述将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物具体包括:
将所述输入数据输入到所述预设的神经网络模型中执行多层正向运算得到正向运算结果,依据所述正向运算结果确定是否具有杂物。
可选的,所述依据所述正向运算结果确定是否具有杂物具体包括:
从所述正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如所述X个位置中有超过X/2个位置对应耳道具有杂物,确定所述正向运算结果为耳道具有杂物,如所述X个位置中有超过X/2个位置对应耳道不具有杂物,确定所述正向运算结构为耳道不具有杂物。
可选的,所述将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据具体包括:
获取所述预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,如所述类型为矩阵数据,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按所述排列规则组成输入矩阵,如所述类型为三维数据块,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
图5示出的是与本申请实施例提供的移动终端连接的可穿戴式设备的部分结构的框图。参考图5,可穿戴式设备包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、传感器950、音频收发器960、无线保真(Wireless Fidelity,WiFi)模块970、应用处理器AP980、电源990等部件。本领域技术人员可以理解,图5中示出的可穿戴式设备结构并不构成对可穿戴式设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,例如该射频电路910可以连接单根或多根天线。
下面结合图5对可穿戴式设备的各个构成部件进行具体的介绍:
输入单元930可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控显示屏933以及其他输入设备932。具体地,其他输入设备932可以包括但不限于物理按键、功能键(比如音量控制按键、开关按键等)、轨迹球、操作杆等中的一种或多种。其中,
射频电路910,用于与电子设备保持无线连接,通过所述无线连接接收音频文件;
音频收发器960,用于播放所述音频文件,并获取多个音频发射强度值、多个音频接收强度值;
应用处理器AP980,用于获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如所述耳道具有杂物,发出提示。
应用处理器AP980,具体用于将所述输入数据输入到所述预设的神经网络模型中执行多层正向运算得到正向运算结果,依据所述正向运算结果确定是否具有杂物。
应用处理器AP980,具体用于从所述正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如所述X个位置中有超过X/2个位置对应耳道具有杂物,确定所述正向运算结果为耳道具有杂物,如所述X个位置中有超过X/2个位置对应耳道不具有杂物,确定所述正向运算结构为耳道不具有杂物。
应用处理器AP980具体用于获取所述预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,如所述类型为矩阵数据,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按所述排列规则组成输入矩阵,如所述类型为三维数据块,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
AP980是可穿戴式设备的控制中心,利用各种接口和线路连接整个可穿戴式设备的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在存储器920内的数据,执行可穿戴式设备的各种功能和处理数据,从而对可穿戴式设备进行整体监控。可选的,AP980可包括一个或多个处理单元;可选的,AP980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到AP980中。
此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个闪存器件、或其他易失性固态存储器件。
RF电路910可用于信息的接收和发送。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于蓝牙、wifi、全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、新空口等。
可穿戴式设备还可包括至少一种传感器950,比如超声波传感器、角度传感器、光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗,运动传感器可以检测可穿戴式设备是否处于插耳状态,依据该插耳状态来调节触控显示屏的亮度,接近传感器可在可穿戴式设备移动到耳边时,关闭触控显示屏和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别可穿戴式设备姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于可穿戴式设备还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频收发器960、扬声器961,传声器962可提供用户与可穿戴式设备之间的音频接口。音频收发器960可将接收到的音频数据转换后的电信号,传输到扬声器961,由扬声器961转换为声音信号播放;另一方面,传声器962将收集的声音信号转换为电信号,由音频收发器960接收后转换为音频数据,再将音频数据播放AP980处理后,经RF电路910以发送给比如手机,或者将音频数据播放至存储器920以便进一步处理。
WiFi属于短距离无线传输技术,可穿戴式设备通过WiFi模块970可以帮助用户收发数据等,它为用户提供了无线的宽带互联网访问。虽然图5示出了WiFi模块970,但是可以理解的是,其并不属于可穿戴式设备的必须构成,完全可以根据需要在不改变申请的本质的范围内而省略。
该可穿戴式设备还可以包括蓝牙模块,该蓝牙模块用于实现与电子设备之间的连接,该蓝牙模块可以单独设置,当然在实际应用中,由于选择的应用处理器不同,也可以集成在应用处理器内。
可穿戴式设备还包括给各个部件供电的电源990(比如电池),可选的,电源可以通过电源管理系统与AP980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,可穿戴式设备还可以包括摄像头、补光装置、光线传感器等,在此不再赘述。
可以看出,本申请提供的技术方案在获取音频文件后,控制音频收发部件对该音频文件播放,然后获取该音频文件的多个发射强度值(即发射音量值),多个接收强度值(即反射后的音量值)、多个发射时间、多个接收时间,然后将该多个发射强度值、多个接收强度值、多个发射时间、多个接收时间组成输入数据,然后将该输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据该计算结果确定耳道是否有杂物,进而能够提示用户,该提示方式包括但不限于:语音提示、振动提示等方式。这样本申请的技术方案通过人工智能计算模型确定耳道是否有杂物,实现了杂物提示,提高了用户体验度。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任何一种耳道杂物提示方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种耳道杂物提示方法的部分或全部步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
Claims (5)
1.一种可穿戴式设备,其特征在于,所述可穿戴式设备包括:
处理部件、音频收发部件和无线收发器;其中,所述处理部件与所述音频收发部件以及所述无线收发器分别连接;
所述无线收发器,用于与电子设备保持无线连接,通过所述无线连接接收音频文件;
所述音频收发部件,用于播放所述音频文件,并获取多个音频发射强度值和多个音频接收强度值;
所述处理部件,用于获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值对应的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如耳道具有杂物,发出提示;
其中,
所述预设的人工智能计算模型为:预设的机器学习模型或预设的神经网络模型;
其中,如所述预设的人工智能计算模型为预设的神经网络模型;
所述处理部件,具体用于将所述输入数据输入到所述预设的神经网络模型中执行多层正向运算得到正向运算结果,依据所述正向运算结果确定是否具有杂物;
其中,
所述处理部件,具体用于从所述正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如所述X个位置中有超过X/2个位置对应耳道具有杂物,确定所述正向运算结果为耳道具有杂物,如所述X个位置中有超过X/2个位置对应耳道不具有杂物,确定所述正向运算结构为耳道不具有杂物。
2.根据权利要求1所述的可穿戴式设备,其特征在于,
所述处理部件,具体用于获取所述预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,其中,所述样本输入数据至少包括耳道具有杂物的样本输入数据和耳道不具有杂物的样本输入数据,如所述类型为矩阵数据,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按所述排列规则组成输入矩阵,如所述类型为三维数据块,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
3.一种耳道杂物的提示方法,其特征在于,
所述方法应用于可穿戴式设备,所述可穿戴式设备包括:处理部件、音频收发部件和无线收发器;所述方法包括如下步骤:
与电子设备保持无线连接,通过所述无线连接接收音频文件;
播放所述音频文件,并获取多个音频发射强度值和多个音频接收强度值;
获取多个音频发射强度值对应的多个发射时间,多个音频接收强度值对应的多个接收时间,将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据,将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物,如所述耳道具有杂物,发出提示;
其中,
所述预设的人工智能计算模型为:预设的机器学习模型或预设的神经网络模型;
其中,如所述预设的人工智能计算模型为预设的神经网络模型;所述将所述输入数据输入到预设的人工智能计算模型中计算得到计算结果,依据所述计算结果确定耳道是否具有杂物具体包括:
将所述输入数据输入到所述预设的神经网络模型中执行多层正向运算得到正向运算结果,依据所述正向运算结果确定是否具有杂物;
其中,所述依据所述正向运算结果确定是否具有杂物具体包括:
从所述正向运算结果中提取元素值大于设定阈值的X个元素以及X个元素对应的X个位置,如所述X个位置中有超过X/2个位置对应耳道具有杂物,确定所述正向运算结果为耳道具有杂物,如所述X个位置中有超过X/2个位置对应耳道不具有杂物,确定所述正向运算结构为耳道不具有杂物。
4.根据权利要求3所述的方法,其特征在于,所述将多个音频发射强度值、多个音频接收强度值、多个发射时间、多个接收时间组成输入数据具体包括:
获取所述预设的神经网络模型的训练样本中样本输入数据的类型以及样本输入数据的排列规则,其中,所述样本输入数据至少包括耳道具有杂物的样本输入数据和耳道不具有杂物的样本输入数据,如所述类型为矩阵数据,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按所述排列规则组成输入矩阵,如所述类型为三维数据块,则将所述多个发射强度值,多个接收强度值、多个发射时间、多个接收时间按该排列规则组成输入三维数据块。
5.一种计算机可读存储介质,其特征在于,其存储有计算机程序,所述计算机程序被处理器执行时能够实现如权利要求3-4任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810606179.3A CN108923809B (zh) | 2018-06-13 | 2018-06-13 | 一种耳道杂物提示方法及相关产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810606179.3A CN108923809B (zh) | 2018-06-13 | 2018-06-13 | 一种耳道杂物提示方法及相关产品 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108923809A CN108923809A (zh) | 2018-11-30 |
CN108923809B true CN108923809B (zh) | 2020-03-06 |
Family
ID=64419679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810606179.3A Expired - Fee Related CN108923809B (zh) | 2018-06-13 | 2018-06-13 | 一种耳道杂物提示方法及相关产品 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108923809B (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101477798A (zh) * | 2009-02-17 | 2009-07-08 | 北京邮电大学 | 一种分析和提取设定场景的音频数据的方法 |
CN102163427A (zh) * | 2010-12-20 | 2011-08-24 | 北京邮电大学 | 一种基于环境模型的音频异常事件检测方法 |
CN106027809A (zh) * | 2016-07-27 | 2016-10-12 | 维沃移动通信有限公司 | 一种音量的调节方法及移动终端 |
KR20160134019A (ko) * | 2015-05-14 | 2016-11-23 | 한국과학기술원 | 인공 신경망의 하향식 선택적 주의집중 트레이닝 방법 |
KR101704925B1 (ko) * | 2015-10-22 | 2017-02-09 | 한양대학교 산학협력단 | Evs 코덱 파라미터를 이용한 심화 신경망 기반의 음성 검출 장치 및 그 방법 |
KR101729189B1 (ko) * | 2016-03-15 | 2017-04-25 | 한림대학교 산학협력단 | 상황 인식 기반의 이어폰 출력을 제어하기 위한 장치, 이를 위한 방법 및 이 방법이 기록된 컴퓨터 판독 가능한 기록매체 |
CN106878849A (zh) * | 2017-01-22 | 2017-06-20 | 歌尔股份有限公司 | 无线耳机装置以及人工智能装置 |
CN107272885A (zh) * | 2017-05-09 | 2017-10-20 | 北京光年无限科技有限公司 | 一种用于智能机器人的人机交互方法及装置 |
CN107395873A (zh) * | 2017-06-30 | 2017-11-24 | 广东欧珀移动通信有限公司 | 音量调节方法、装置、存储介质及终端 |
CN107689227A (zh) * | 2017-08-23 | 2018-02-13 | 上海爱优威软件开发有限公司 | 一种基于数据融合的语音降噪方法及系统 |
CN107766939A (zh) * | 2017-11-07 | 2018-03-06 | 维沃移动通信有限公司 | 一种数据处理方法、装置及移动终端 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180061393A1 (en) * | 2016-08-24 | 2018-03-01 | Microsoft Technology Licensing, Llc | Systems and methods for artifical intelligence voice evolution |
-
2018
- 2018-06-13 CN CN201810606179.3A patent/CN108923809B/zh not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101477798A (zh) * | 2009-02-17 | 2009-07-08 | 北京邮电大学 | 一种分析和提取设定场景的音频数据的方法 |
CN102163427A (zh) * | 2010-12-20 | 2011-08-24 | 北京邮电大学 | 一种基于环境模型的音频异常事件检测方法 |
KR20160134019A (ko) * | 2015-05-14 | 2016-11-23 | 한국과학기술원 | 인공 신경망의 하향식 선택적 주의집중 트레이닝 방법 |
KR101704925B1 (ko) * | 2015-10-22 | 2017-02-09 | 한양대학교 산학협력단 | Evs 코덱 파라미터를 이용한 심화 신경망 기반의 음성 검출 장치 및 그 방법 |
KR101729189B1 (ko) * | 2016-03-15 | 2017-04-25 | 한림대학교 산학협력단 | 상황 인식 기반의 이어폰 출력을 제어하기 위한 장치, 이를 위한 방법 및 이 방법이 기록된 컴퓨터 판독 가능한 기록매체 |
CN106027809A (zh) * | 2016-07-27 | 2016-10-12 | 维沃移动通信有限公司 | 一种音量的调节方法及移动终端 |
CN106878849A (zh) * | 2017-01-22 | 2017-06-20 | 歌尔股份有限公司 | 无线耳机装置以及人工智能装置 |
CN107272885A (zh) * | 2017-05-09 | 2017-10-20 | 北京光年无限科技有限公司 | 一种用于智能机器人的人机交互方法及装置 |
CN107395873A (zh) * | 2017-06-30 | 2017-11-24 | 广东欧珀移动通信有限公司 | 音量调节方法、装置、存储介质及终端 |
CN107689227A (zh) * | 2017-08-23 | 2018-02-13 | 上海爱优威软件开发有限公司 | 一种基于数据融合的语音降噪方法及系统 |
CN107766939A (zh) * | 2017-11-07 | 2018-03-06 | 维沃移动通信有限公司 | 一种数据处理方法、装置及移动终端 |
Also Published As
Publication number | Publication date |
---|---|
CN108923809A (zh) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111106821B (zh) | 一种触摸控制方法及穿戴设备 | |
CN109150221B (zh) | 一种可穿戴设备主从切换方法及相关产品 | |
CN108897516B (zh) | 一种可穿戴设备音量调整方法及相关产品 | |
CN108196815B (zh) | 一种通话声音的调节方法和移动终端 | |
CN110442261B (zh) | 电子设备及其触控操作检测方法 | |
CN109348504A (zh) | 功率检测方法、移动终端及功率检测电路 | |
CN108834013B (zh) | 一种可穿戴设备电量均衡方法及相关产品 | |
CN108600887B (zh) | 基于无线耳机的触摸控制方法及相关产品 | |
CN108833683A (zh) | 动态天线调整实现方法及相关产品 | |
CN108882084B (zh) | 一种可穿戴设备电量均衡方法及相关产品 | |
CN108377483A (zh) | 一种蓝牙信道的处理方法及移动终端 | |
CN108989546B (zh) | 电子装置的接近检测方法及相关产品 | |
CN109121034B (zh) | 基于音量的主从切换方法及相关产品 | |
CN110058837B (zh) | 一种音频输出方法及终端 | |
CN108810261B (zh) | 通话中天线切换方法及相关产品 | |
CN110764650A (zh) | 按键触发检测方法和电子设备 | |
CN110209543B (zh) | 一种耳机插座的检测方法及终端 | |
CN111510075B (zh) | 一种功率放大器的电压调整方法、装置及电子设备 | |
CN108923809B (zh) | 一种耳道杂物提示方法及相关产品 | |
CN111225308B (zh) | 电量提示方法、收纳盒及耳机 | |
CN108900942A (zh) | 一种播放控制方法及电子设备 | |
CN107995372A (zh) | 一种误触接地识别处理方法、电路及移动终端 | |
CN111143166B (zh) | 一种电子设备及入水检测方法 | |
CN109218922B (zh) | 输出音频信号的控制方法、终端及音频信号输出装置 | |
CN107864294B (zh) | 一种免打扰模式启动方法及移动终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200306 |