CN108919405A - Reflection filter insensitive to angle - Google Patents

Reflection filter insensitive to angle Download PDF

Info

Publication number
CN108919405A
CN108919405A CN201810719243.9A CN201810719243A CN108919405A CN 108919405 A CN108919405 A CN 108919405A CN 201810719243 A CN201810719243 A CN 201810719243A CN 108919405 A CN108919405 A CN 108919405A
Authority
CN
China
Prior art keywords
layer
thickness
angle
absorption
metallic silver
Prior art date
Application number
CN201810719243.9A
Other languages
Chinese (zh)
Inventor
季陈纲
Original Assignee
深圳市融光纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市融光纳米科技有限公司 filed Critical 深圳市融光纳米科技有限公司
Priority to CN201810719243.9A priority Critical patent/CN108919405A/en
Publication of CN108919405A publication Critical patent/CN108919405A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Abstract

The invention relates to a reflection filter insensitive to angle. The reflection filter insensitive to angle sequentially comprises a substrate (1.1), a lower metal silver layer (1.2), an absorptionmedium layer (1.3) and an upper metal silver layer (1.5) from bottom to top. The absorption medium layer is a-Si layer, the thickness value of the absorption medium layer is changed according to the required wavelength, and the absorption capacity of the absorption medium layer is less than or equal to (shown in the description), wherein c is the speed of light, epsilon 0 is the dielectric constant of free space, n is the real part of the refractive index, (shown in the description) is the extinction coefficient, alpha is the absorption coefficient of the absorption medium, E( x, lambda) represents that the electric field E is a function of x and lambda , x is the position of the absorption medium layer in the thickness direction, lambda is the wavelength, the thickness of the lower metalsilver layer is greater than the thickness of the upper metal silver layer, the absorption bandwidth of the optical filter reaches 0-200 nm, and the filter has an angle insensitivity of up to +/- 70 degrees.

Description

角度不敏感反射滤光片 The angle of reflection filters insensitive

技术领域 FIELD

[0001] 本发明涉及一种反射滤光片,尤其涉及一种对角度不敏感的滤光片。 [0001] The present invention relates to a reflection filters, particularly to a filter insensitive to angle.

背景技术 Background technique

[0002] 彩色滤光片作为关键元件已被广泛用在发光二极管、图像传感器、液晶显示技术等各个领域中。 [0002] As a key element of the color filter has been widely used in light-emitting diodes, image sensors, liquid crystal display technology in various fields. 基于表面等离子激元纳米结构和亚波长光栅的滤光片已成为传统有机染料滤光片的替代品,以解决它们各种各样的内在缺点。 Based on the nanostructured surface plasmon and the like sub-wavelength grating filter has become a substitute for a conventional organic dye filters, to address their various inherent drawback. 传统有机染料滤光片容易受到环境因素影响,例如长时间的紫外线照射和高温会导致性能下降。 Conventional organic dye filters vulnerable to environmental factors such as ultraviolet irradiation and high temperature for a long time can cause performance degradation. 另一方面,基于表面等离子激元的纳米结构彩色滤光片所面临的最大挑战在于,共振波长随着入射光角度偏移,从而产生不同的颜色。 On the other hand, the biggest challenge of the color filter based nanostructure surface plasmon like face is, as the resonance wavelength of the incident light angle offset, resulting in different colors. 这是因为这些结构依靠光栅耦合实现动量匹配从而激发表面等离子激元或光子模式,无法避免的显示出角度敏感特性。 This is because these structures rely on momentum matching grating coupler implemented to excite the plasmon surface photon mode or the like, the angle can not be avoided exhibit sensitivity characteristics. 这种与角度有关的光谱特性是纳米结构色一个显著的缺点,这使得这种滤光片难以应用于实际。 Such spectral characteristic angle-dependent color is a nanostructure significant drawback, which makes it difficult to apply this filter practical. 为了解决这个问题,研究人员提出了基于小尺寸金属纳米腔的角度不敏感结构色,这种纳米结构成功将入射光导向深亚波长槽中, 形成局域表面等离子激元。 To solve this problem, researchers have proposed a structure based on color is not sensitive to small angular size of the metal nano-cavities, such nanostructures successfully deep sub-wavelength incident guide groove formed localized surface plasmon. 然而,这种结构的加工工艺复杂,对于许多实际应用来说难以大面积实现。 However, this structure complicated process, for many practical applications it is difficult to realize a large area.

[0003] 最近科研人员证实了吸收介质中强干涉效应的存在,与由透明材料构成的传统谐振腔相比,吸收介质谐振腔的厚度显著减小。 [0003] Recently researchers demonstrated absorption medium strong interference effect is present, as compared with the conventional resonator formed of a transparent material, the thickness of the dielectric resonator absorption is significantly reduced. 这是由吸收材料的较大的吸收系数和吸收材料与金属材料界面上反射的非寻常相变引起的。 This is unusual with a larger absorption coefficient and absorption of the absorbent material and the metal material reflecting material interface becomes due. 利用这些性质,在金(Au)基底镀上几个纳米厚的吸收材料锗(Ge)就可以形成光学谐振。 With these properties, the gold (Au) substrate coated with the absorbent material of several nanometers thick germanium (Ge) and form an optical resonator. 然而,由于Au在470nm波长处的带间跃迀产生的吸收和Ge材料本身较强的吸收(带隙约0.66eV),所形成的谐振腔在可见光频率下的吸收非常强烈,相应较低的品质因子(Q因子)导致这种滤光片较宽的吸收带宽和较低的反射效率,显示出来的颜色纯度也较差。 However, because of their strong absorption (bandgap of approximately 0.66 eV) and Ge and Au absorbent interband transitions at a wavelength of 470nm generated Gan, a resonant cavity is formed under visible light absorption frequency is very strong, the corresponding lower quality factor (Q factor) results in a filter such broad absorption bandwidth and low reflection efficiency, color purity is also displayed poor. 此外,光在空气和Ge界面处的反射很弱,会进一步加宽吸收带宽,影响滤光片的光学特性。 Further, the reflection light is weak and Ge in the air at the interface, further widening the absorption bandwidth, filter characteristics of the optical influence.

发明内容 SUMMARY

[0004] 有鉴于此,本发明提出了一种基于纳米谐振腔的新型高纯度色反射型滤光片,以解决上述技术问题。 [0004] Accordingly, the present invention provides a novel reflective type color filter of high-purity nano-based resonator, to solve the above problem.

[0005] 根据本发明的一实施例,提供了一种角度不敏感的反射滤光片,其特征在于:自下而上依次包括衬底(I. 1),下金属银层(1.2),吸收介质层(1.3)和上金属银层(1.5),所述吸收介质层为a-Si层,其中超薄吸收介质层的厚度根据需要的波长而改变厚度值,其吸收能力小于等于 [0005] According to one embodiment of the present invention, there is provided an insensitive angle of the reflection filter, characterized in that: the substrate includes, in order from bottom to top (I. 1), the lower layer of metallic silver (1.2), absorbing dielectric layer (1.3) and an upper layer of metallic silver (1.5), the absorbing layer is a dielectric a-Si layer, wherein the thin thickness of the dielectric layer thickness values ​​vary according to the absorption wavelength required absorption capacity less

Figure CN108919405AD00031

,其中c为光速,为自由空间的介电常数,η为折射率的实部, , Where c is the speed of light, is the permittivity of free space, [eta] is the real part of the refractive index,

Figure CN108919405AD00032

为消光系数,α为吸收介质的吸收系数,E (χ,λ)表示电场E是X和λ的函数,X为吸收介质层沿着厚度方向的位置,λ为波长,所述下金属银层的厚度大于上金属银层的厚度,所述滤光片的吸收带宽达到0_200nm,并具有高达±70°的角度不敏感特性。 Extinction coefficient of the absorption coefficient, [alpha] is the absorption medium, E (χ, λ) represents the electric field E and [lambda] is a function of X, X is the position of the absorption medium layer along the thickness direction, [lambda] is the wavelength, the lower layer of metallic silver a thickness greater than the thickness of the layer of metallic silver, the filter bandwidth of the absorbent 0_200nm, and having an angle of up to ± 70 ° insensitivity. .

[0006] 根据本发明的一实施例,在吸收介质层和上金属银层之间还包括润湿层(I .4)。 [0006] According to an embodiment of the present invention, the absorbent layer between the metallic silver and the dielectric layer further comprises a wetting layer (I .4).

[0007] 根据本发明的一实施例,所述吸收介质层针对青色,紫红色,黄色三色来说,其采用的厚度值分别为34nm,20nm,14nm〇 [0007] According to one embodiment of the present invention, the dielectric layer for absorbing cyan, magenta, yellow, three color, the thickness values ​​which are used 34nm, 20nm, 14nm〇

[0008] 根据本发明的一实施例,下金属银层的厚度为150nm,用于反射光线。 [0008] According to one embodiment of the invention, the thickness of the lower layer of metallic silver is 150nm, for reflecting light.

[0009] 根据本发明的一实施例,所述上金属银层的厚度为18nm。 [0009] According to one embodiment of the present invention, the silver metal layer has a thickness of 18nm.

[0010] 根据本发明的一实施例,所述润湿层为PTCBI层,厚度为3-10nm。 [0010] According to one embodiment of the present invention, the wetting layer is a layer of PTCBI a thickness of 3-10nm.

[0011] 根据本发明的一实施例,所述润湿层的厚度为5nm。 [0011] 5nm in accordance with an embodiment of the present invention, the thickness of the wetting layer.

[0012] 根据本发明的一实施例,所述上金属银层,下金属银层和PTCBI用过热蒸发的方式加工,所述a-Si层通过等离子体增强化学气相沉积(PECVD)的方式沉积。 [0012] According to one embodiment of the present invention, the silver metal layer, a lower layer of metallic silver and an evaporator superheat of PTCBI with processing manner, the a-Si layer enhanced chemical vapor deposition (PECVD) is deposited by plasma .

附图说明 BRIEF DESCRIPTION

[0013] 附图1示出了本发明反射滤光片的结构示意图; [0013] Figure 1 shows a schematic structure of the present invention reflection filter;

[00M]附图2:图2 (a)本发明角度不敏感反射滤光片的结构示意图,图2⑹计算的由不同半导体和金属基底组成的光学谐振腔的反射光谱,图2 (c)和图2⑹种不同结构反射光谱对于的色坐标,显示出颜色纯度的逐渐提升。 [00M] Figure 2: structural diagram of FIG angle 2 (a) of the present invention is insensitive to reflection filter, the reflection spectrum of a different optical resonant cavity and a metal substrate consisting of a semiconductor of FIG 2⑹ calculation, FIG. 2 (c) and FIG 2⑹ different structure for the reflection spectrum of the color coordinates showing the color gradually increase purity. 图2(d)垂直观测加工的CMY三个颜色器件,图2 (e)计算和测量的正入射反射光谱,图2 (f)整个结构的吸收效率和每一层的吸收效率; Normal incidence reflectance spectra of FIG. 2 (d) perpendicular to the observation processing CMY three color components, measurement and calculation of FIG. 2 (e), FIG. 2 (f) absorption efficiency of the entire structure of each layer and the absorption efficiency;

[0015] 附图3:图3 (a)-图3 (c)和图3 (d) - (f)分别为TM和TE偏振光在倾斜入射角为15°到65°范围内测量和计算的反射光谱。 [0015] Figure 3: Figure 3 (a) - FIG. 3 (c) and 3 (d) - (f) are TM and TE polarized light within the range of 15 ° to 65 ° measured and calculated in the incident angle of inclination reflection spectrum. 图3 (a)和图3 (d)对应谐振波长在485nm处的黄色样品。 FIG. 3 (a) and 3 (d) yellow resonant wavelength corresponding to the sample at 485nm. 图3 (b)和图3 (e)对应谐振波长在545nm的紫红色样品。 FIG 3 (b) and 3 (e) corresponding to the resonant wavelength of 545nm purple sample. 图3 (c)和图3 (f)对应谐振波长在645nm的青色样品。 FIG. 3 (c) and 3 (f) corresponding to the resonant wavelength of 645nm blue sample. 图3(g)在四个不同角度下观测的三种颜色样品。 FIG. 3 (g) of three colors observed at four different angles samples.

具体实施方式 Detailed ways

[0016] 需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。 [0016] Incidentally, in the case of no conflict, embodiments and features of the embodiments of the present application can be combined with each other. 下面将参考附图并结合实施例来详细说明本发明。 Below with reference to accompanying drawings and embodiments of the present invention will be described in detail.

[0017] 如图1所示,本发明的角度不敏感反射滤光片包括玻璃衬底1.1,下金属银层1.2, 吸收介质层1.3,润湿层(例如PTCBI层)1.4,上金属银层1.5。 [0017] As shown in FIG. 1, the present invention is not sensitive to angle reflection filter comprising a glass substrate is 1.1, the lower layer of metallic silver 1.2, 1.3 absorbing dielectric layer, a wetting layer (e.g., PTCBI layer) is 1.4, the layer of metallic silver 1.5. 其中吸收介质层的厚度根据需要的波长而改变厚度值,例如针对CMY青色,紫红色,黄色)三色来说,其采用的厚度值分别为3 4nm,2 0 nm,I 4nm,并且该层材料的折射率虚部小于G e锗,其吸收能力满足( Wherein the thickness of the absorbent dielectric layer varies according to the thickness of the desired wavelength value, for example, CMY, cyan, magenta, yellow) color, the thickness values ​​which are employed to 3 4nm, 2 0 nm, I 4nm, and the layer refractive index material is less than the imaginary part of G e germanium, which satisfies the absorption capacity (

Figure CN108919405AD00041

,其中c为光速,ε〇为自由空间的介电常数,η为折射率的实部, , Where c is the speed of light, ε〇 the permittivity of free space, [eta] is the real part of the refractive index,

Figure CN108919405AD00042

为消光系数,α为吸收介质的吸收系数,E (χ,λ)表示电场E是X和λ的函数,X为吸收介质层沿着厚度方向的位置,λ为波长。 Extinction coefficient of the absorption coefficient, α is the absorption medium, E (χ, λ) represents the electric field E and [lambda] is a function of X, X is the position of the absorption medium in the thickness direction of the layer, λ is the wavelength. 示例性的吸收介质材料可包括a-Si。 Exemplary absorbent materials can include dielectric a-Si. 这样可以在提升纳米谐振腔Q 因子的同时仍然在超薄谐振腔中实现了强光学干涉,这样在与其他层的配合当中可改善反射颜色的纯度。 Such may be achieved while still lifting nanometer resonator Q factor resonator in thin strong optical interference, so that in conjunction with other layers which may improve the purity of the reflected color. 下金属层的厚度要大于上金属银等的厚度,上金属Ag层的厚度设计为18nm, 允许入射光进入结构的同时保证谐振腔内较强的光学谐振,下金属Ag层的厚度为120-200nm,用于反射光线,下金属Ag层的厚度为150nm最优。 The thickness of the metal layer is greater than the thickness of a metal such as silver, the thickness of the metallic Ag layer design is 18nm, allowing incident light enters the structure while ensuring a strong resonant cavity optical resonator, the thickness of the metallic Ag layer 120- 200 nm, for reflecting light, the thickness of the metallic Ag layer of 150nm is optimal. 本申请在两个金属银层之间夹住吸收介质层,这种新颖的三层结构中,通过选择吸收低、反射率高的Ag作为基底材料,并在结构顶部增加了一层薄Ag层增加谐振腔反射的方式,显著增强了反射颜色的纯度。 The present application is sandwiched between two layers of metallic silver layer absorbing medium, the novel three-layer structure, by selecting a low absorption, high reflectance Ag as a base material, and increases the Ag thin layer on top of the structure increasing the resonator mirrors manner, significantly enhances the purity of color reflection. 需要特别说明的是,Ag金属层的厚度不能随意进行选取,因为我们研究发现,随着上金属层的厚度增加,吸收光谱带宽会变窄从而色纯度的改善,但是吸收效率的降低反而会使得颜色纯度又变差,因此上金属Ag层有一个最优厚度,也即为18nm,现有技术中的研究往往集中在带宽变窄,而一般不会关注到吸收效率的降低会带来相反的影响,我们首次发现了上述规律的存在,进而在确定了取值特定值所带来的优越效果。 Of particular note, the thickness of the Ag metal layer can be arbitrarily selected, because we found that, as the thickness of the metal layer, the absorption spectrum bandwidth is reduced so as to improve color purity, but it will reduce the absorption efficiency of such and the color purity is deteriorated, and therefore the metallic Ag layer has an optimum thickness, that is also 18nm, the prior art studies tend to focus on a narrower bandwidth, while generally not concerned to reduce the absorption efficiency would have the opposite impact, we first discovered the existence of the law, thereby determining the value of a specific value brought excellent results. 下金属Ag层的厚度为150nm,用于阻挡所有反射光线。 The thickness of the metallic Ag layer is 150nm, for blocking all reflect light. 所述滤光片的吸收带宽能够达到0_200nm,并具有高达±70°的角度不敏感特性,目前实验样品的滤光片吸收带宽最窄已达到74nm,并具有高达±65°的角度不敏感特性。 The absorption bandwidth filter can reach 0_200nm, and having an angle of up to ± 70 ° insensitivity, the current experimental samples have reached the narrowest filter absorption bandwidth 74nm, and having an angle of up to ± 65 ° insensitivity .

[0018] 润湿层(例如PTCBI,perylenetetracarboxylic bis-benzimidazole,花四竣酸二苯并咪唑)预先镀在上金属Ag层下方,其目的是减少结构散射,促进薄金属银层成膜,因为我们研究发现,散射损耗会加宽吸收光谱,该层的厚度值例如可选择3_10nm,5nm时效果最佳。 [0018] The wetting layer (e.g., PTCBI, perylenetetracarboxylic bis-benzimidazole, di-benzimidazol-Jun spend four) pre-coated on the metallic Ag layer below, which aims to reduce the scattering structure, promote the deposition of a thin metal layer of silver, because we the study found that the scattering loss widens the absorption spectrum of the layer thickness values ​​e.g. Alternatively 3_10nm, when 5nm best. Ag和PTCBI可以用过热蒸发的方式加工。 Ag can be processed and PTCBI manner superheat evaporation. 下面以a-Si为例来说明超薄吸收介质层的制作,a-Si通过等离子体增强化学气相沉积(PECVD)的方式沉积。 In the following example to illustrate a-Si thin dielectric layer is made absorbent, a-Si is deposited by plasma enhanced chemical vapor deposition (PECVD) manner. 青色,品红色和黄色三种颜色结构中a-Si层的厚度依次为34nm,20nm和14nm,并且相应的共振波长(S卩反射波谷或吸收峰位置)为650nm,545nm和490nm。 Cyan, magenta, and yellow colors structure a-Si layer of a thickness of the order of 34nm, 20nm and 14nm, and the corresponding resonance wavelength (S Jie reflection or absorption at a valley) of 650nm, 545nm and 490nm. 在空气和非晶硅界面反射时发生的相移大于银/非晶硅界面,因此,为了得到相同的谐振位置,即当传播相位和两个反射相位的净移位等于2Π13Ι时,在设置了上金属Ag层后的结构中需要相对较厚的a-Si层,也即上述a-Si层的厚度值并不是随意确定的,这些厚度的基础均基于上述理论上的发现。 Is greater than the phase shift occurring when the air interface reflection silver and amorphous / amorphous silicon interface, therefore, in order to obtain the same resonance position, i.e., when the propagation phase and two reflection phase shift is equal to the net 2Π13Ι, provided the a metal structure after the Ag layer is relatively thick a-Si layer, i.e., thickness values ​​of the a-Si layer are not arbitrarily determined, and based on these thicknesses are based on the theoretical findings.

[0019] 我们对不同金属和吸收材料构成的谐振腔对应的反射光谱进行了仿真计算(如图2〇3)所示)。 [0019] We conducted a simulation (FIG 2〇3) below) and different metals constituting the resonant cavity of the absorbing material corresponding to the reflection spectrum. 图2〇3)中坐标原点的¥轴上由高到低曲线的序号分别是#4,#2,#3,#1。 FIG 2〇3) NO ¥ shaft descending curve are the coordinate origin # 4, # 2, # 3, # 1. 如前所述,Au衬底(#1)上的Ge (9nm)结构带宽最宽,主要是由于Au的带间跃迀吸收和Ge在可见光范围内的强吸收导致的。 As described above, the substrate Ge Au (9nm) on (# 1) structure of the widest bandwidth, mainly due to the absorption and Ge Gan jump strong absorption in the visible range of the band caused between Au. 相比之下,在银(Ag)衬底上加上吸收相对较弱的a-Si所形成结构的反射谱线变得陡峭一些(#2)。 In contrast, the silver (Ag) of the substrate plus the relatively weak reflection absorption spectrum of the formed a-Si structure becomes steeper on (# 2). 由于远离带间跃迀波长,Au在550nm处的吸收并不显著,所以# 3的对应的品红色的纯度与#2的纯度相似。 As far away from the wavelength band between transitions Gan, Au absorption at 550nm is not significant, the # 3 is similar to the corresponding product with a purity of red # 2 purity. 如果在吸收材料顶部增加额外的一层薄金属(# 4),这种新的三层结构显示出显著提高的颜色纯度,具体表现为其对应的颜色在色坐标中向着更外的方向移动(图2(c))。 If additional thin layer of metal on top of the absorbent material (# 4), the new three-layer structure shows significantly improved color purity, specific performance toward the moving direction further outside its corresponding color in the color coordinates ( FIG. 2 (c)). 这一结论也适用于CMY (青色,紫红色,黄色)三原色中的其它两种颜色(即青色和黄色)。 This conclusion is also applicable to the CMY (cyan, magenta, yellow) of the three primary colors of the other two colors (i.e., cyan, and yellow). 我们注意到图2 (b)中#2 (16nm)和#4 (20nm)的a-Si层厚度不同,这是因为在空气和非晶硅界面反射时发生的相移大于#4所示的银/非晶硅界面。 We note FIG. 2 (b) in # 2 (16nm) and # 4 (20nm) a-Si layer is different in thickness, because the phase shift is greater than # 4 shown in FIG occurs when the air interface reflection and amorphous Ag / Si interface. 因此, 为了得到相同的谐振位置,即当传播相位和两个反射相位的净移位等于2Π13Ι时,顶部增加了额外Ag层的结构需要相对较厚的a-Si层。 Accordingly, in order to obtain the same resonance position, i.e. when the net propagation phase and a reflection phase shift is equal to two 2Π13Ι, the top Ag layer adds additional structure requires a relatively thick layer of a-Si. 这也验证了我们上面所提出的结论。 It also verified the conclusions we have set forth above.

[0020] 图2⑹展示了我们加工的CMY器件正入射照片。 [0020] FIG. 2⑹ shows our processing device CMY normal incidence photos. 在图2 (f)中,将整个结构的吸收曲线与各层材料单独的吸收对比可以发现,由于a-Si较大的折射率虚部,吸收主要来自于αεί 层。 In FIG. 2 (f), the absorption curve of the individual and the entire structure of the layers of contrasting material can be found, since the a-Si large refractive index imaginary part, mainly from αεί absorption layer. 此外,因为谐振波长处的入射光可以比非共振波长的光更多地穿过每一层,每一层材料中的吸收峰都落在共振波长附近,从而导致最终在谐振波长处整体的高吸收率,其中图2 (f)中吸收率最高的那个曲线对应着本发明反射滤光片的吸收率。 In addition, since the incident light at the resonance wavelength can be more than the light passing through each layer of non-resonance wavelength, the absorption peak of each layer of material in the vicinity of the resonance wavelength fall, ultimately leading to a whole at a wavelength of a resonant high absorption rate, wherein FIG. 2 (f) that the highest rate of absorption curves corresponding to the reflective absorption filter of the invention.

[0021] 为了探索这种光学滤光片对入射角度的依赖性,我们将横向磁(TM)和横向电(TE) 偏振光随角度变化的反射光谱的计算(实线)和测量(实心符号)结果列在图3 (a) - (f)中,入射角度变化范围为15°至65°,计算结果与实验数据吻合良好。 [0021] In order to explore this incident angle dependence of the optical filter, we transverse magnetic (TM) and transverse electric (TE) polarized light with varying angles calculated reflection spectrum (solid line) and measured (closed symbols ) the results are shown in FIG. 3 (a) - (f), the incident angle range of 15 ° to 65 °, the calculation results agree well with the experimental data. 不管哪种偏振,三种颜色的共振波长在很大的入射角范围内保持不变。 Regardless of the polarization, the resonant wavelength of the three colors remains constant over a large range of incident angles. 我们注意到在即使在大于65°入射角下,共振波长的位置仍然保持不变,只是吸收强度降低了一些。 We note that even at an incident angle greater than 65 °, the position of the resonance wavelength remains unchanged, but some reduced absorption intensity. 图3(g)中的照片是在四个不同角度下拍摄的样品,显而易见,样品没有发生任何颜色变化。 (G) in FIG. 3 is a photograph of a sample taken at four different angles, it is obvious, without any color change in the sample.

[0022] 这种角度不变的共振行为与常见的的法布里-珀罗(FP)共振器(例如,通过在两个反射金属薄膜之间夹入透明介质)中的现象截然不同。 [0022] This angular change of the resonance behavior of the common Fabry - Perot (FP) resonator (e.g., by a metal thin film sandwiched between two reflectors in a transparent medium) distinct phenomena. 加工的实验样品证实了吸收带宽能低至〜74nm,与仿真结果非常吻合。 Processing of experimental samples confirmed the absorption bandwidth can be as low ~74nm, and simulation results are very consistent. 此外,这些器件还具有高达±65°的角度不敏感特性, 即外观颜色不随观测角度变化,这彻底解决了目前基于表面等离子激元和光子纳米结构滤光片中存在的角度敏感性问题,为包括发光器件,显示技术和图像传感器在内的各种应用打开新的大门。 In addition, these devices also have an angle of up to ± 65 ° insensitivity, i.e. the appearance of color does not change with the viewing angle, which solve the current based on the angle and the surface plasmon photonic nanostructure sensitivity problems existing in the filter, as comprising a light emitting device, an image sensor and display technology including a variety of applications to open a new door.

Claims (8)

1. 一种角度不敏感的反射滤光片,其特征在于:自下而上依次包括衬底(I. I),下金属银层(1.2),吸收介质层(1.3)和上金属银层(1.5),所述吸收介质层为a-Si层,其中吸收介质层的厚度根据需要的波长而改变厚度值,其吸收能力小于等于 An angle insensitive reflection filters, wherein: the substrate includes, in order from bottom to top (I. I), the lower layer of metallic silver (1.2), the absorption medium layer (1.3) and an upper layer of metallic silver (1.5), the absorbing layer is a dielectric a-Si layer, wherein the thickness of the dielectric layer thickness value varies according to the desired wavelength absorption, the absorption capacity of less
Figure CN108919405AC00021
其中c 为光速,ε 〇为自由空间的介电常数,η为折射率的实部, Where c is the speed of light, [epsilon] is the permittivity of free space square, [eta] is the real part of the refractive index,
Figure CN108919405AC00022
为消光系数,α为吸收介质的吸收系数,E (χ,λ)表示电场E是X和λ的函数,X为吸收介质层沿着厚度方向的位置,λ为波长, 所述下金属银层的厚度大于上金属银层的厚度,所述滤光片的吸收带宽达到0_200nm,并具有高达±70°的角度不敏感特性。 Extinction coefficient of the absorption coefficient, [alpha] is the absorption medium, E (χ, λ) represents the electric field E and [lambda] is a function of X, X is the position of the absorption medium layer along the thickness direction, [lambda] is the wavelength, the lower layer of metallic silver a thickness greater than the thickness of the layer of metallic silver, the filter bandwidth of the absorbent 0_200nm, and having an angle of up to ± 70 ° insensitivity.
2. 根据权利要求1所述的角度不敏感的反射滤光片,其特征在于:在吸收介质层和上金属银层之间还包括润湿层(1.4)。 2. The angle of claim 1, insensitive to reflection filter, characterized in that: between the dielectric layer and the upper absorbent layer further comprises a wetting metallic silver layer (1.4).
3. 根据权利要求1或2所述的角度不敏感的反射滤光片,其特征在于:所述吸收介质层针对青色,紫红色,黄色三色来说,其采用的厚度值分别为34nm,20nm,14nm〇 The angle of claim 1 or 2 or insensitive reflector filter as claimed in claim, wherein: said dielectric layer for absorbing cyan, magenta, yellow for three color, thickness values ​​thereof were employed 34nm, 20nm, 14nm〇
4. 根据上述任一权利要求所述的角度不敏感的反射滤光片,其特征在于:下金属银层的厚度为120_200nm,用于反射光线。 The angle is not sensitive to any preceding claim reflection filters, wherein: a thickness of the metallic silver layer 120_200nm, for reflecting light.
5. 根据权利要求4所述的角度不敏感的反射滤光片,其特征在于:所述下金属银层的厚度为150nm。 The angle according to claim 4 insensitive reflection filters, wherein: the thickness of said metallic silver layer is 150nm.
6. 根据上述任一权利要求所述的角度不敏感的反射滤光片,其特征在于:所述上金属银层的厚度为18nm〇 The angle is not sensitive to any preceding claim reflection filters, wherein: said metallic silver layer has a thickness 18nm〇
7. 根据上述利要求2-5任一所述的角度不敏感的反射滤光片,其特征在于:所述润湿层为PTCBI层,厚度为5nm〇 The angle of the above claims any one of claims 2-5 insensitive reflection filters, wherein: said wetting layer is a layer of PTCBI thickness 5nm〇
8. 根据权利要求6所述的角度不敏感的反射滤光片,其特征在于:所述上金属银层,下金属银层和PTCBI用过热蒸发的方式加工,所述a-Si层通过等离子体增强化学气相沉积(PECVD)的方式沉积。 The silver layer on the metal ion, the lower layer of metallic silver and an evaporator superheat of PTCBI with processing manner, the a-Si layer and the like: according to claim 6, wherein the angle of the reflection filters insensitive, characterized in that -enhanced chemical vapor deposition (PECVD) is deposited.
CN201810719243.9A 2018-07-03 2018-07-03 Reflection filter insensitive to angle CN108919405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810719243.9A CN108919405A (en) 2018-07-03 2018-07-03 Reflection filter insensitive to angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810719243.9A CN108919405A (en) 2018-07-03 2018-07-03 Reflection filter insensitive to angle

Publications (1)

Publication Number Publication Date
CN108919405A true CN108919405A (en) 2018-11-30

Family

ID=64423613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810719243.9A CN108919405A (en) 2018-07-03 2018-07-03 Reflection filter insensitive to angle

Country Status (1)

Country Link
CN (1) CN108919405A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079820A (en) * 1992-05-19 1993-12-22 阿克佐公司 Fabry-Perot with coated mirrors
US6031653A (en) * 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
CN103547948A (en) * 2011-04-20 2014-01-29 密执安州立大学董事会 Spectrum filtering for visual displays and imaging having minimal angle dependence
CN107340556A (en) * 2016-05-02 2017-11-10 丰田自动车工程及制造北美公司 omnidirectional high chroma red structural color
CN108919404A (en) * 2018-07-03 2018-11-30 深圳市融光纳米科技有限公司 Transmission filter insensitive to angle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079820A (en) * 1992-05-19 1993-12-22 阿克佐公司 Fabry-Perot with coated mirrors
US6031653A (en) * 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
CN103547948A (en) * 2011-04-20 2014-01-29 密执安州立大学董事会 Spectrum filtering for visual displays and imaging having minimal angle dependence
CN107340556A (en) * 2016-05-02 2017-11-10 丰田自动车工程及制造北美公司 omnidirectional high chroma red structural color
CN108919404A (en) * 2018-07-03 2018-11-30 深圳市融光纳米科技有限公司 Transmission filter insensitive to angle

Similar Documents

Publication Publication Date Title
Weber et al. Giant birefringent optics in multilayer polymer mirrors
Kavokin et al. Lossless interface modes at the boundary between two periodic dielectric structures
Kats et al. Nanometre optical coatings based on strong interference effects in highly absorbing media
JP4152645B2 (en) Wire grid polarizer
CN102714281B (en) Black organic light-emitting diode device
US20100328770A1 (en) Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US20050201717A1 (en) Surface plasmon resonance device
CN103033870B (en) Durable inorganic ultraviolet absorption grid polarizer
Xu et al. Structural colors: from plasmonic to carbon nanostructures
Lee et al. Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm
JP5774807B2 (en) Omnidirectional reflector narrow band and their use as structural color
JP4995231B2 (en) Optical filter
JP2001133618A (en) Optical transmission equipment
Banerjee Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals
CN101730857A (en) Optical filter
EP1014119B1 (en) Dichroic polariser
US7848020B2 (en) Thin-film design for positive and/or negative C-plate
JP2005308871A (en) Interference color filter
Catrysse et al. Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission
Liang et al. Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure
RU2012129658A (en) Golden lamellar element with a multilayer structure
Lochbihler Colored images generated by metallic sub-wavelength gratings
Kume et al. Interaction between localized and propagating surface plasmons: Ag fine particles on Al surface
JP2005248158A (en) All-dielectric optically variable pigments
US4929063A (en) Nonlinear tunable optical bandpass filter

Legal Events

Date Code Title Description
PB01
SE01