CN108912054A - 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用 - Google Patents

巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用 Download PDF

Info

Publication number
CN108912054A
CN108912054A CN201810719058.XA CN201810719058A CN108912054A CN 108912054 A CN108912054 A CN 108912054A CN 201810719058 A CN201810719058 A CN 201810719058A CN 108912054 A CN108912054 A CN 108912054A
Authority
CN
China
Prior art keywords
ionic liquid
xxxy
dmmp
corrosion resistant
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810719058.XA
Other languages
English (en)
Other versions
CN108912054B (zh
Inventor
张松伟
胡丽天
李毅
丁奇
李昊坤
秦宝锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201810719058.XA priority Critical patent/CN108912054B/zh
Publication of CN108912054A publication Critical patent/CN108912054A/zh
Application granted granted Critical
Publication of CN108912054B publication Critical patent/CN108912054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/38One sulfur atom
    • C07D239/40One sulfur atom as doubly bound sulfur atom or as unsubstituted mercapto radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/32Heterocyclic sulfur, selenium or tellurium compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/12Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having a phosphorus-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/09Heterocyclic compounds containing no sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Lubricants (AREA)

Abstract

本发明一种巯基嘧啶类抗腐蚀性离子液体,公开了巯基苯并噻唑类抗腐蚀性离子液体,该离子液体的名称为[PXXXY][DMMP],其结构式如下:,其中X为R1基团中碳原子数,Y为R2基团中碳原子数。本发明还公开了该离子液体的制备方法及其在润滑剂组合物中的应用。本发明所述离子液体具有优异的抗腐蚀性能,含该离子液体的润滑剂组合物具有良好的摩擦学性能。

Description

巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用
技术领域
本发明涉及巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用,该离子液体具有优异的抗腐蚀性能,含该离子液体的润滑剂组合物具有良好的摩擦学性能。
背景技术
离子液体是指在室温附近呈液态的完全由正、负离子构成的熔融盐,具有液程宽、饱和蒸气压极低、良好的选择性溶解能力、高热稳定性和可设计性强等特点。这些独特的优点使得离子液体不仅在有机合成、电化学、催化学科以及环境科学等领域具有重要的应用,同时也引发了国内外摩擦及润滑科学研究人员的广泛关注(Ye C, Liu W, Chen Y, Yu L.Chem. Commun. 2001:2244-2245;Qu J, Bansal DG, Yu B, Howe JY, Luo H, Dai S.ACS Appl. Mater. Interfaces. 2012;4:997-1002)。研究表明:作为润滑剂或润滑添加剂,离子液体表现出优异的润滑性能,也能大幅提高基础油或传统润滑剂的承载能力(Zhang S.W., Hu L.T., Qiao D., Tribol. Int., 2013, 66: 289-295; Qu J,Barnhill WC, Luo H, Meyer HM, Leonard DN, Landauer AK. Adv. Mater. 2015;27:4767-4774)。但是随着研究的深入,在离子液体的应用研究过程中,也发现了一些不容忽视的问题,如:常规离子液体在使用过程中,会对金属摩擦副造成较为严重的腐蚀,不仅会损坏金属基运动机构及其相关部件,同时还会加剧金属摩擦部件的腐蚀磨损,影响设备整体的运转稳定性以及长效性。目前比较有效的解决方案是,利用离子液体结构可设计性强的特点,通过分子结构设计,采用引入功能性基团、降低分子中腐蚀性元素含量等手段,解决其腐蚀性问题。
发明内容
本发明的目的在于提供巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用。
巯基嘧啶类抗腐蚀性离子液体,其特征在于该离子液体的名称为[PXXXY][DMMP],其结构式如下:
,其中X为R1基团中碳原子数,Y为R2基团中碳原子数。
所述R1基团为正丁基、正己基或正辛基中的一种,相对应的碳原子数X分别为4、6或8。
所述R2基团为正辛基、正癸基或正十四烷基中的一种,相对应的碳原子数Y分别为8、10或14。
如上所述巯基嘧啶类抗腐蚀性离子液体的制备方法,其特征在于具体步骤为:将4,6-二甲基-2-巯基嘧啶和氢氧化钾分别溶解在甲醇中,然后将二者混合,40-60 ℃条件下搅拌20-50 min,然后将溶液冷却至室温,加入[PXXXY]Br离子液体,搅拌反应16-36 h,过程中有沉淀生成。过滤除去沉淀,收集滤液并旋蒸除去溶剂,再经80-120 ℃真空干燥24-36 h得到巯基嘧啶类抗腐蚀性离子液体,记作[PXXXY][DMMP]。
所述4,6-二甲基-2-巯基嘧啶和氢氧化钾的摩尔比为1:1。
所述[PXXXY]Br与4,6-二甲基-2-巯基嘧啶的摩尔比为1:1。
所述[PXXXY]Br离子液体的制备方法,其特征在于具体步骤为:将三烷基膦与溴代烷烃混合于烧瓶中,在100-160 ℃氮气保护条件下,搅拌反应12-36 h,然后100-160 ℃减压蒸馏纯化,得到溴代四烷基季鏻盐离子液体,记作[PXXXY]Br。
所述三烷基膦与溴代烷烃的摩尔比为1:1~1.15。
所述三烷基膦为三正丁基膦、三正己基膦或三正辛基膦。
所述溴代烷烃为溴代正辛烷、溴代正癸烷或溴代正十四烷。
如上所述巯基嘧啶类抗腐蚀性离子液体的应用,其特征在于将[PXXXY][DMMP]溶于聚乙二醇基础油中,经超声波分散1-5 min即可获得含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物。
所述润滑剂组合物中[PXXXY][DMMP]的质量分数为1-3%,聚乙二醇基础油的质量分数为97-99%。
所述聚乙二醇基础油为PEG200、PEG400、PEG600中的一种。
本发明获得的巯基嘧啶类离子液体具有优异的抗腐蚀性能,其具体测试方案通过以下步骤来完成:
制备含巯基嘧啶类抗腐蚀性离子液体的稀硫酸溶液:将[PXXXY][DMMP]离子液体取1.5×10-6 mol溶于500 mL,0.5 mol/L的硫酸标准溶液中,配制成摩尔浓度为0.003 mmol/L的[PXXXY][DMMP]的稀硫酸溶液,用于后续的电化学试验。
制备含[BMIM][BF4]的稀硫酸溶液:将常规离子液体1-甲基-3-丁基咪唑四氟硼酸盐[BMIM][BF4] 取1.5×10-6 mol溶于500 mL,0.5 mol/L的硫酸标准溶液中,配制成摩尔浓度为0.003 mmol/L的[BMIM][BF4]的稀硫酸溶液(做为参比),用于后续的电化学实验。
电化学实验:选取打磨好的铜锡合金样块作为工作电极,铂电极作为辅助电极,汞∣硫酸亚汞电极作为参比电极,电解液分别是摩尔浓度为0.5 mol/L的硫酸标准溶液、摩尔浓度为0.003 mmol/L的[BMIM][BF4]的稀硫酸溶液、摩尔浓度为0.003 mmol/L的[PXXXY][DMMP]的稀硫酸溶液,在电化学工作站Gamry Reference 3000上进行电化学阻抗谱和动电位极化曲线测试。电化学阻抗谱测试是在溶液的开路电位下进行,施加的正弦波幅值是5.0mV,扫描频率范围是105 Hz到10-1 Hz,动电位极化曲线扫描电位的范围为相对于工作电极开路电位的-350 mV到350 mV,扫描速率为0.5 mV/s,工作电极的暴露面积是1.0 cm2
电化学实验结果:通过Gamry Echem. Analyst软件对电化学实验结果进行分析,得到相关的电化学参数(见表1)。结果表明,铜锡合金在0.5 mol/L的硫酸标准溶液中的腐蚀电流密度大,腐蚀情况严重;常规离子液体[BMIM][BF4]能够在一定程度上减缓稀硫酸对铜锡合金的腐蚀,但作用有限;本发明制备的几种巯基嘧啶类离子液体均具有较高的缓蚀效率,优异的抗腐蚀性能,能够大幅抑制稀硫酸对铜锡合金的腐蚀情况。
表1 稀硫酸溶液、含[BMIM][BF4]的稀硫酸溶液以及含巯基嘧啶类抗腐蚀性离子液体的稀硫酸溶液对铜锡合金腐蚀的极化电阻(Rp)、缓蚀效率(ηEIS)、腐蚀电流密度(Icorr)和缓蚀效率(ηTafel)。
本发明获得的含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物具有良好的摩擦学性能,其具体测试方案通过以下步骤来完成:
在Optimol 公司SRV-IV 微振动摩擦磨损试验机上考察了含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物的摩擦学性能,并与常规离子液体[BMIM][BF4]做对比。选定载荷100N,温度100 ℃,频率25 Hz,振幅1 mm,实验时间30 min,实验上试球为AISI 52100钢球,下试样为铜锡合金样块。摩擦实验结束后,采用MicroXAM公司非接触式三维表面轮廓仪检测铜锡合金样块的磨损情况。实验结果表明,[BMIM][BF4]对基础油的减摩抗磨性能改善有限,而含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物均表现出较低且平稳的摩擦系数和优异的抗磨性能。
表2 聚乙二醇基础油、含[BMIM][BF4]的润滑剂组合物和含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物作为钢/铜锡合金润滑剂的平均摩擦系数
附图说明
图1为稀硫酸溶液、含[BMIM][BF4]的稀硫酸溶液以及含巯基嘧啶类抗腐蚀性离子液体的稀硫酸溶液对铜锡合金腐蚀的电化学阻抗谱对比图。
图2为稀硫酸溶液、含[BMIM][BF4]的稀硫酸溶液以及含巯基嘧啶类抗腐蚀性离子液体的稀硫酸溶液对铜锡合金腐蚀的动电位极化曲线对比图。
图3为聚乙二醇基础油、含[BMIM][BF4]的润滑剂组合物和含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物作为钢/铜锡合金润滑剂的实时摩擦系数比较图。
图4为聚乙二醇基础油、含[BMIM][BF4]的润滑剂组合物和含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物作为钢/铜锡合金润滑剂的平均磨损体积比较图。
具体实施方式
下面通过具体实施例来说明本发明,其在于进一步描述而非限制本发明。
实施例1
将51.16 g三丁基膦和51 g正溴辛烷混合于装有冷凝管与温度计的500mL三口圆底烧瓶中,氮气保护条件下,120 ℃搅拌12 h,然后120 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三丁基辛基季鏻盐离子液体,记作[P4448]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,40 ℃条件下搅拌30 min,然后将溶液冷却至室温,加入39.51 g [P4448]Br离子液体,继续搅拌反应16 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经80 ℃真空干燥24 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P4448][DMMP]。
将1 g巯基嘧啶类抗腐蚀性离子液体[P4448][DMMP]溶于99 g基础油PEG200中,经超声波分散1 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG200+1%[P4448][DMMP]。
实施例2
将51.16 g三丁基膦和51.8 g正溴辛烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,120 ℃搅拌12 h,然后120 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三丁基辛基季鏻盐离子液体,记作[P4448]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,40 ℃条件下搅拌20 min,然后将溶液冷却至室温,加入39.51 g [P4448]Br离子液体,继续搅拌反应16 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经80 ℃真空干燥24 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P4448][DMMP]。
将2 g巯基嘧啶类抗腐蚀性离子液体[P4448][DMMP]溶于98 g基础油PEG400中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG400+2%[P4448][DMMP]。
实施例3
将51.16 g三丁基膦和52.6 g正溴辛烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,120 ℃搅拌12 h,然后120 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三丁基辛基季鏻盐离子液体,记作[P4448]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,40 ℃条件下搅拌40 min,然后将溶液冷却至室温,加入39.51 g [P4448]Br离子液体,继续搅拌反应16 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经100 ℃真空干燥24 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P4448][DMMP]。
将3 g巯基嘧啶类抗腐蚀性离子液体[P4448][DMMP]溶于97 g基础油PEG600中,经超声波分散5 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG600+3%[P4448][DMMP]。
实施例4
将51.16 g三丁基膦和58.4 g正溴癸烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,120 ℃搅拌15 h,然后120 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三丁基癸基季鏻盐离子液体,记作[P44410]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,40 ℃条件下搅拌50 min,然后将溶液冷却至室温,加入42.31 g [P44410]Br离子液体,继续搅拌反应16 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经100 ℃真空干燥24 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P44410][DMMP]。
将2 g巯基嘧啶类抗腐蚀性离子液体[P44410][DMMP]溶于98 g基础油PEG200中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG200+2%[P44410][DMMP]。
实施例5
将51.16 g三丁基膦和75.2 g正溴十四烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,140 ℃搅拌18 h,然后140 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三丁基十四烷基季鏻盐离子液体,记作[P44414]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,40 ℃条件下搅拌40 min,然后将溶液冷却至室温,加入47.91 g [P44414]Br离子液体,继续搅拌反应16 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经100 ℃真空干燥30 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P44414][DMMP]。
将2 g巯基嘧啶类抗腐蚀性离子液体[P44414][DMMP]溶于98 g基础油PEG400中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG400+2%[P44414][DMMP]。
实施例6
将72.48 g三己基膦和52.36 g正溴辛烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,140 ℃搅拌20 h,然后140 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三己基辛基季鏻盐离子液体,记作[P6668]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,50 ℃条件下搅拌30 min,然后将溶液冷却至室温,加入47.91 g [P6668]Br离子液体,继续搅拌反应20 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经100 ℃真空干燥30 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P6668][DMMP]。
将2 g巯基嘧啶类抗腐蚀性离子液体[P6668][DMMP]溶于98 g基础油PEG200中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG200+2%[P6668][DMMP]。
实施例7
将72.48 g三己基膦和59.38 g正溴癸烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,140 ℃搅拌20 h,然后140 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三己基辛基季鏻盐离子液体,记作[P66610]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,50 ℃条件下搅拌35 min,然后将溶液冷却至室温,加入50.72 g [P66610]Br离子液体,继续搅拌反应20 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经100 ℃真空干燥30 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P66610][DMMP]。
将3 g巯基嘧啶类抗腐蚀性离子液体[P66610][DMMP]溶于97 g基础油PEG400中,经超声波分散5 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG400+3%[P66610][DMMP]。
实施例8
将72.48 g三己基膦和76.25 g正溴十四烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,140 ℃搅拌24 h,然后140 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三己基辛基季鏻盐离子液体,记作[P66614]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,50 ℃条件下搅拌35 min,然后将溶液冷却至室温,加入56.32 g [P66614]Br离子液体,继续搅拌反应20 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经120 ℃真空干燥30 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P66614][DMMP]。
将1 g巯基嘧啶类抗腐蚀性离子液体[P66614][DMMP]溶于99 g基础油PEG600中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG600+1%[P66614][DMMP]。
实施例9
将93.77 g三辛基膦和50.06 g正溴辛烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,160 ℃搅拌20 h,然后160 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代四辛基季鏻盐离子液体,记作[P8888]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,60 ℃条件下搅拌40 min,然后将溶液冷却至室温,加入56.32 g [P8888]Br离子液体,继续搅拌反应30 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经120 ℃真空干燥30 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P8888][DMMP]。
将2 g巯基嘧啶类抗腐蚀性离子液体[P8888][DMMP]溶于98 g基础油PEG200中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG200+2%[P8888][DMMP]。
实施例10
将93.77 g三辛基膦和64.2 g正溴癸烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,160 ℃搅拌36 h,然后160 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三辛基癸基季鏻盐离子液体,记作[P88810]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,60 ℃条件下搅拌50 min,然后将溶液冷却至室温,加入59.12 g [P88810]Br离子液体,继续搅拌反应36 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经120 ℃真空干燥36 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P88810][DMMP]。
将3 g巯基嘧啶类抗腐蚀性离子液体[P8888][DMMP]溶于97 g基础油PEG400中,经超声波分散5 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG400+3%[P88810][DMMP]。
实施例11
将93.77 g三辛基膦和80.48 g正溴十四烷混合于装有冷凝管与温度计的500 mL三口圆底烧瓶中,氮气保护条件下,160 ℃搅拌36 h,然后160 ℃条件下用油泵减压蒸馏至不再有馏出物,得到溴代三辛基癸基季鏻盐离子液体,记作[P88814]Br。
将14 g 4,6-二甲基-2-巯基嘧啶和5.6 g氢氧化钾分别溶解在甲醇中,然后将二者混合,60 ℃条件下搅拌50 min,然后将溶液冷却至室温,加入64.73 g [P88814]Br离子液体,继续搅拌反应36 h,过程中逐渐有沉淀生成。产物通过慢速滤纸过滤,用150 mL甲醇分三次洗涤,将滤液旋蒸除去溶剂,再经120 ℃真空干燥36 h得到巯基嘧啶类抗腐蚀性离子液体,记作[P88814][DMMP]。
将2 g巯基嘧啶类抗腐蚀性离子液体[P88814][DMMP]溶于98 g基础油PEG600中,经超声波分散3 min,即可获得100 g含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物,记作PEG600+2%[P88814][DMMP]。
对比实施例
将2 g常规离子液体[BMIM][BF4]溶于98 g基础油PEG200中,经超声波分散3 min,即可获得100 g含[BMIM][BF4]的润滑剂组合物,记作PEG200+2% [BMIM][BF4]。

Claims (10)

1.巯基嘧啶类抗腐蚀性离子液体,其特征在于该离子液体的名称为[PXXXY][DMMP],其结构式如下:
,其中X为R1基团中碳原子数,Y为R2基团中碳原子数。
2.如权利要求1所述的离子液体,其特征在于所述R1基团为正丁基、正己基或正辛基中的一种,相对应的碳原子数X分别为4、6或8;所述R2基团为正辛基、正癸基或正十四烷基中的一种,相对应的碳原子数Y分别为8、10或14。
3.如权利要求1或2所述离子液体的制备方法,其特征在于具体步骤为:将4,6-二甲基-2-巯基嘧啶和氢氧化钾分别溶解在甲醇中,然后将二者混合,40-60 ℃条件下搅拌20-50min,然后将溶液冷却至室温,加入[PXXXY]Br离子液体,搅拌反应16-36 h,过滤除去沉淀,收集滤液并旋蒸除去溶剂,再经80-120 ℃真空干燥24-36 h得到巯基嘧啶类抗腐蚀性离子液体,记作[PXXXY][DMMP]。
4.如权利要求3所述的制备方法,其特征在于所述4,6-二甲基-2-巯基嘧啶和氢氧化钾的摩尔比为1:1;所述[PXXXY]Br与4,6-二甲基-2-巯基嘧啶的摩尔比为1:1。
5.如权利要求3或4所述的制备方法,其特征在于所述[PXXXY]Br离子液体的制备方法:将三烷基膦与溴代烷烃混合于烧瓶中,在100-160 ℃氮气保护条件下,搅拌反应12-36 h,然后100-160 ℃减压蒸馏纯化,得到溴代四烷基季鏻盐离子液体,记作[PXXXY]Br。
6.如权利要求5所述的制备方法,其特征在于所述三烷基膦与溴代烷烃的摩尔比为1:1~1.15。
7.如权利要求5所述的制备方法,其特征在于所述三烷基膦为三正丁基膦、三正己基膦或三正辛基膦中的一种;所述溴代烷烃为溴代正辛烷、溴代正癸烷或溴代正十四烷中的一种。
8.如权利要求1所述巯基嘧啶类抗腐蚀性离子液体的应用,其特征在于将[PXXXY][DMMP]溶于聚乙二醇基础油中,经超声波分散1-5 min即可获得含巯基嘧啶类抗腐蚀性离子液体的润滑剂组合物。
9.如权利要求8所述的应用,其特征在于所述润滑剂组合物中[PXXXY][DMMP]的质量分数为1-3%,聚乙二醇基础油的质量分数为97-99%。
10.如权利要求8或9所述的应用,其特征在于所述聚乙二醇基础油为PEG200、PEG400、PEG600中的一种。
CN201810719058.XA 2018-07-03 2018-07-03 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用 Active CN108912054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810719058.XA CN108912054B (zh) 2018-07-03 2018-07-03 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810719058.XA CN108912054B (zh) 2018-07-03 2018-07-03 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108912054A true CN108912054A (zh) 2018-11-30
CN108912054B CN108912054B (zh) 2021-09-07

Family

ID=64424828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810719058.XA Active CN108912054B (zh) 2018-07-03 2018-07-03 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108912054B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788788A (zh) * 2021-07-23 2021-12-14 浙江工业大学 一种荧光离子液体及其合成方法与应用
CN114940688A (zh) * 2022-03-24 2022-08-26 中国科学院兰州化学物理研究所 一种甲基巯基噻二唑功能化离子液体及其制备方法与应用
CN114958117A (zh) * 2022-07-04 2022-08-30 浙江鱼童新材料股份有限公司 一种高固、低粘、抗磨、减摩性能的船舶涂料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688144A (zh) * 2007-06-20 2010-03-31 慕尼黑克吕伯尔润滑器两合公司 离子液体用于改善润滑剂组合物性能的用途
CN103059062A (zh) * 2012-12-11 2013-04-24 宁波豪城合成革有限公司 功能化离子液体及其应用
CN103429719A (zh) * 2011-03-22 2013-12-04 奥列格·N·安祖肯 基于离子液体的润滑剂以及包含离子的润滑添加剂
CN106753687A (zh) * 2017-01-13 2017-05-31 宝鸡文理学院 一种抗腐蚀性多功能离子液体润滑剂及其合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688144A (zh) * 2007-06-20 2010-03-31 慕尼黑克吕伯尔润滑器两合公司 离子液体用于改善润滑剂组合物性能的用途
CN103429719A (zh) * 2011-03-22 2013-12-04 奥列格·N·安祖肯 基于离子液体的润滑剂以及包含离子的润滑添加剂
CN103059062A (zh) * 2012-12-11 2013-04-24 宁波豪城合成革有限公司 功能化离子液体及其应用
CN106753687A (zh) * 2017-01-13 2017-05-31 宝鸡文理学院 一种抗腐蚀性多功能离子液体润滑剂及其合成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIJIA WANG ET AL.: "Regiospecific Reductive Elimination from Diaryliodonium Salts", 《ANGEW. CHEM. INT. ED.》 *
DILLON M. LOVE ET AL.: "Amine Induced Retardation of the Radical-Mediated Thiol−Ene Reaction via the Formation of Metastable Disulfide Radical Anions", 《J. ORG. CHEM.》 *
JUNKO KAGIMOTO ET AL.: "Hydrophobic and low-density amino acid ionic liquids", 《JOURNAL OF MOLECULAR LIQUIDS》 *
杨瑞: "4,6-二甲基巯基嘧啶的缓蚀性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788788A (zh) * 2021-07-23 2021-12-14 浙江工业大学 一种荧光离子液体及其合成方法与应用
CN113788788B (zh) * 2021-07-23 2023-12-05 浙江工业大学 一种荧光离子液体及其合成方法与应用
CN114940688A (zh) * 2022-03-24 2022-08-26 中国科学院兰州化学物理研究所 一种甲基巯基噻二唑功能化离子液体及其制备方法与应用
CN114940688B (zh) * 2022-03-24 2024-03-19 中国科学院兰州化学物理研究所 一种甲基巯基噻二唑功能化离子液体及其制备方法与应用
CN114958117A (zh) * 2022-07-04 2022-08-30 浙江鱼童新材料股份有限公司 一种高固、低粘、抗磨、减摩性能的船舶涂料

Also Published As

Publication number Publication date
CN108912054B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN106366049B (zh) 巯基苯并噻唑类抗腐蚀性离子液体及其制备方法和应用
Qiang et al. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid
CN108912054A (zh) 巯基嘧啶类抗腐蚀性离子液体及其制备方法和应用
Xiao et al. Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid
US10370768B2 (en) Catalysts for carbon dioxide conversion
CN109096216A (zh) 苯并三氮唑功能化抗腐蚀性离子液体及其制备方法和应用
Reddy et al. Thermal stability and corrosivity evaluations of ionic liquids as thermal energy storage media
Ejigu et al. The role of adsorbed ions during electrocatalysis in ionic liquids
Yang et al. Aromatic Ester‐Functionalized Ionic Liquid for Highly Efficient CO2 Electrochemical Reduction to Oxalic Acid
Voskian et al. Amine-based ionic liquid for CO2 capture and electrochemical or thermal regeneration
Wang et al. Inhibition effect of monomeric/polymerized imidazole zwitterions as corrosion inhibitors for carbon steel in acid medium
Zhang et al. Separation of ethyl acetate− ethanol azeotropic mixture using hydrophilic ionic liquids
Rafat et al. Corrosion behavior of carbon steel in CO2 saturated amine and imidazolium-, ammonium-, and phosphonium-based ionic liquid solutions
CN110862356B (zh) 苯并三氮唑功能化的季铵盐离子液体及其制备方法和应用
Dilasari et al. Review on corrosion behavior of metallic materials in room temperature ionic liquids
Badea et al. Electrode processes in ionic liquid solvents as mixtures of choline chloride with urea, ethylene glycol or malonic acid
Shvartsev et al. Phenomenological transition of an aluminum surface in an ionic liquid and its beneficial implementation in batteries
Roohi et al. Exploring the physicochemical properties of para-xylyl linked DBU-based dicationic ionic liquids consist of various anions: a GD3–M06–2X study
Yan et al. Study on the anodic behavior of AISI E52100 steel in two fluorine-containing ionic liquids
Wei et al. Superior lubricity and corrosion-resistance response of solvated ionic liquids containing lithium and borate
CN110724065B (zh) 马尿酸盐类抗腐蚀性离子液体及其制备方法和应用
Bawazeer et al. Corrosion inhibition of zinc in sodium sulphate solution using nonionic surfactants of tween series: Experimental and theoretical study
Li et al. Measurement and correlation of the ionic conductivity of ionic liquid‐molecular solvent solutions
Wei et al. The volumetric and transport properties of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid and propylene carbonate binary system
Chen et al. Fabrication of superhydrophobic zirconium surface with a facile electrodeposition process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant