CN108896448A - 基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法 - Google Patents

基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法 Download PDF

Info

Publication number
CN108896448A
CN108896448A CN201810449933.7A CN201810449933A CN108896448A CN 108896448 A CN108896448 A CN 108896448A CN 201810449933 A CN201810449933 A CN 201810449933A CN 108896448 A CN108896448 A CN 108896448A
Authority
CN
China
Prior art keywords
magnetic
magnetic pole
oil pipe
metallic particles
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810449933.7A
Other languages
English (en)
Other versions
CN108896448B (zh
Inventor
冯松
苏祖强
罗久飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810449933.7A priority Critical patent/CN108896448B/zh
Publication of CN108896448A publication Critical patent/CN108896448A/zh
Application granted granted Critical
Publication of CN108896448B publication Critical patent/CN108896448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification

Abstract

本发明涉及机械装备状态监测领域,特别涉及一种基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法,监测传感器包括磁场回路组件和油管检测组件;磁场回路组件包括第一导磁块、第二导磁块、第一磁极、第二磁极、第一线圈、第二线圈和铜套;第一磁极和第二磁极分别套设在第一线圈和第二线圈的内部,第一磁极的一端通过铜套与第二磁极的一端连接,且第一磁极与第二磁极之间留有气隙,第一磁极的另一端与第一导磁块连接,第二磁极的另一端与第二导磁块连接;油管检测组件包括油管和检测线圈,检测线圈设置在油管中部的外表面上;本发明可运用恒流源做驱动,并且抗干扰能力强,降低传统传感器的制造精度。

Description

基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法
技术领域
本发明涉及机械装备状态监测领域,特别涉及一种基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法。
背景技术
磨损通常发生在摩擦副接触表面间微小的间隙内,难以在不改变摩擦副接触状态的条件下对磨损进行在线测量。声发射、温度和振动监测等间接方法都是侦测由摩擦副磨损导致的装备间接的物理变化实现磨损监测,对于早期异常磨损以及磨损过程的监测还存在不小的障碍。相对地,磨粒携带大量磨损烈度和磨损模式的直接信息,通过提取磨粒的浓度、粒度分布和形貌特征等信息,可以对一个完整的磨损过程进行描述。当前已有多种类型的磨粒分析技术。根据传感器在润滑油路中的安装位置不同,磨粒监测分为离线式(Off-line)、在线式(On-line)和嵌入式(In-line)。离线检测从润滑系统中取出油样送到实验室分析进行全面的分析,取样频繁时产生的润滑油损耗大,分析周期长,整个过程过分依赖于分析人员的经验。在线式分析润滑油路的旁路进行连续或间歇地取样分析,优点在于对润滑系统的流动状态的影响小,但是仅对部分循环油液进行取样分析,结果可能缺乏代表性。嵌入式分析对润滑系统循环油路中的全部油液进行连续取样,优点在于分析结果比较可靠,但是嵌入式的技术难度大,传感器的安装可能增加油路流阻,降低润滑系统的可靠性。在线式和嵌入式都不存在润滑油损耗,分析过程自动进行,无需人为介入,两种方式主要区别在于取样位置以及分析油液的多少不同,二者可统称为在线磨粒监测。
当前国内外已发展了多种在线磨粒监测技术,有代表性的加拿大GasTops公司基于电感检测原理开发的MetalSCAN传感器,可识别>100μm铁磁性和>250μm非铁磁性磨粒,能够实现不同粒度范围的磨粒计数。该传感器对在用润滑油进行全流量监测,不影响油液的流动,已成功地应用于美军各型号飞机的齿轮传动系统、风电齿轮箱等装备的磨损在线监测。英国Kittiwake公司的LinerSCAN,已应用与远洋船舶中,西班牙atten2公司的运用光学成像原理开发了Oilwear,已应用与风电齿轮箱的监测。西安交通大学的在线图像可视铁谱OLVF(CN200610041773.X),运用高梯度磁场对润滑油中的铁磁性颗粒进行在线沉积,并运用图像传感器获得磨粒谱片,实现磨损在线监测。
在已有的在线磨粒监测技术中,只有基于电感检测原理的传感器能够可靠地检测非铁磁性颗粒,最具代表性的是MetalSCAN。国内多个单位根据该原理也推出了一些类似产品,但检测效果还不甚理想。MetalSCAN在西方国家主要用于军用飞机的磨损监测,出口受限,目前我国仍未能掌握相关的军品级产品。
发明内容
为在线监测润滑油中的铁磁性颗粒和非铁磁性颗粒,本发明提出了一种基于轴向高梯度磁场的金属颗粒监测传感器及监测方法,通过监测润滑油中金属颗粒的粒度分布、数量和铁磁特性,有效判断装备的健康状态,并进行故障诊断和剩余寿命预测。
本发明提供一种基于轴向高梯度磁场在线金属颗粒监测传感器,包括磁场回路组件和油管检测组件;所述磁场回路组件包括第一导磁块21、第二导磁块22、第一磁极61、第二磁极62、第一线圈51、第二线圈52和铜套8;所述第一磁极61和第二磁极62分别套设在第一线圈51和第二线圈52的内部,所述第一磁极61的一端通过铜套8与第二磁极62的一端连接,且第一磁极61与第二磁极62之间留有气隙(第一磁极和第二磁极之间相隔的空隙称为气隙),第一磁极61的另一端与第一导磁块21连接,第二磁极62的另一端与第二导磁块22连接;所述油管检测组件包括油管9和检测线圈7,所述检测线圈7设置在油管9中部的外表面上,检测线圈7外表面套设所述第一导磁块21、第二导磁块22、第一磁极61、第二磁极62和铜套8。
优选的,还包括导磁壳体1,磁场回路组件置于导磁壳体1内,且油管9的两端置于导磁壳体1外部。
优选的,所述导磁壳体1两端均设置有连接头4,导磁壳体1两端的端面与连接头4之间均设置有橡胶垫3。
优选的,所述连接头4设置有内凹槽,内凹槽的大小与油管的大小匹配,内凹槽的形状与油管形状匹配。
优选的,所述内凹槽中设置有密封圈。
优选的,第一磁极61和第二磁极62之间气隙为0.5~2mm。
优选的,所述第一磁极61和第二磁极62为中通的柱体;所述第一磁极61和第二磁极62为圆柱体或者正N棱柱,N≥3。
优选的,所述第一磁极61和第二磁极62靠近气隙的一端设有倒角。
利用上述监测传感器进行基于轴向高梯度磁场在线金属颗粒监测方法包括:
S1、监测传感器沿油管轴向施加高梯度磁场,作为激励源;
S2、当油管内有金属颗粒通过高梯度磁场时,监测传感器通过检测线圈的磁通量变化量计算感应电压;
S3、在磨粒通过气隙的过程中,判断感应电压变化过程曲线,若感应电压从零开始负向降低、再上升为正电压时为铁磁性颗粒,则感应电压从零开始正向增大、再下降为负电压时,必定为非铁磁性颗粒;
若感应电压从零开始负向降低、再上升为正电压时为非铁磁性颗粒,则感应电压从零开始正向增大、再下降为负电压时,必定为铁磁性颗粒。
本发明传感器内的油管从两个磁极的内部穿过,整体结构紧凑,能够适应各类监测环境,且只在传感器内部气隙的局部区域产生磁场,导磁壳体一方面可以屏蔽内部的高梯度磁场对外部环境的影响,另一方面可以屏蔽外部电磁场对检测线圈的干扰,提高检测精度;并且本发明采用轴向高梯度静磁场,作为激励源,可实现直流驱动,抗干扰能力强,而传统的电感型传感采用高频激励,驱动电路复杂,激励线圈的微小参数变化也可引起传感器输出的可观变化,产生测量误差,对传感器的制造精度要求较高;最重要的是本发明不仅可以发现油管中的金属颗粒,还可以通过感应电压的变化判断金属颗粒是铁磁性颗粒还是非铁磁性颗粒。
附图说明
图1为本发明基于轴向高梯度磁场在线金属颗粒监测传感器的剖视图;
图2为本发明基于轴向高梯度磁场在线金属颗粒监测传感器的分解示意图;
图3为本发明基于轴向高梯度磁场在线金属颗粒监测传感器的磁场回路组件分解示意图;
图4为本发明传感器气隙中心位置截面的磁场分布示意图;
图5为本发明传感器过油管轴线的截面的磁场分布示意图;
图6本发明油管中心沿轴向的磁场分布;
图7本发明实施例中材料为铁的颗粒通过油管时,感应电压的变化;
图8本发明实施例中材料为铜的颗粒通过油管时,感应电压的变化;
其中,1、导磁壳体,3、橡胶垫,4、连接头,7、检测线圈,8、铜套,9、油管,21、第一导磁块,22、第二导磁块,41、第一密封圈,42、第二密封圈,43、第三密封圈,51、第一线圈,52、第二线圈,61、第一磁极,62、第二磁极。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种基于轴向高梯度磁场的金属颗粒监测传感器,如图1-3,包括磁场回路组件和油管检测组件;所述磁场回路组件包括第一导磁块21、第二导磁块22、第一磁极61、第二磁极62、第一线圈51、第二线圈52和铜套8;所述第一磁极61和第二磁极62分别套设在第一线圈51和第二线圈52的内部,所述第一磁极61的一端通过铜套8与第二磁极62的一端连接,且第一磁极61与第二磁极62之间留有气隙(第一磁极和第二磁极之间相隔的空隙称为气隙),第一磁极61的另一端与第一导磁块21连接,第二磁极62的另一端与第二导磁块22连接;所述油管检测组件包括油管9和检测线圈7,所述检测线圈7设置在油管9中部的外表面上,检测线圈外表面套设所述第一导磁块21、第二导磁块22、第一磁极61、第二磁极62和铜套8。
优选的,铜套8侧表面有两个轴对称的孔,方便为检测线圈7提供驱动电流。
优选的,还包括导磁壳体1,磁场回路组件置于导磁壳体1内,且油管9的两端置于导磁壳体1外部;所述的导磁壳体1与所述的第一导磁块21、第一磁极61、第二磁极62和第二导磁块22形成一个磁场回路;采用这种结构可以运用恒流源作为传感器的驱动源,与电感式传感器相比,可以简化电路。
优选的,所述导磁壳体1两端均设置有连接头4,导磁壳体4两端的端面与连接头4之间均设置有橡胶垫3。
优选的,所述连接头4设置有内凹槽,内凹槽的大小与油管的大小匹配,内凹槽的形状与油管形状匹配。
优选的,所述内凹槽中设置有密封圈;本实施例中,设有三个密封圈,分别是第一密封圈41、第二密封圈42和第三密封圈43,其中第一密封圈41设置于内凹槽与油管9端面的接触位置,第三密封圈43设置于油管9与连接头4端面的接触位置,第二密封圈42设置于第一密封圈41和第三密封圈43之间;设置密封圈的数量可以根据实际环境适量增加或者减少,此设计可以有效的防止漏油。
优选的,第一磁极61和第二磁极62之间设有0.5~2mm的气隙;在气隙处产生漏磁,并在油管内产生磁场。
优选的,所述第一磁极61和第二磁极62为中通的圆柱体或者正N棱柱,N≥3;采用这种结构使得传感器结构紧凑。
优选的,所述第一磁极61和所述第二磁极62靠近气隙的一端有倒角,从而改善油管内磁场的分布,提高轴向磁场的梯度。
本发明提供一种基于轴向高梯度磁场在线金属颗粒监测方法,包括任一上述的监测传感器,包括:
S1、监测传感器沿机械设备的油管轴向施加高梯度磁场,作为激励源;
S2、当油管内有金属颗粒通过高梯度磁场时,根据监测传感器的检测线圈的磁通量变化量计算感应电压,感应电压表示为:
S3、在磨粒通过气隙的过程中,判断感应电压变化过程曲线,若感应电压从零开始负向降低、再上升为正电压时为铁磁性颗粒,则感应电压从零开始正向增大、再下降为负电压时,必定为非铁磁性颗粒;
若感应电压从零开始负向降低、再上升为正电压时为非铁磁性颗粒,则感应电压从零开始正向增大、再下降为负电压时,必定为铁磁性颗粒;
其中,N为检测线圈的匝数,Δφ为轴向高梯度磁场回路的磁通量变化,Δt为磨粒的运动时间。
在利用本传感器检测金属颗粒的过程中,铁磁性颗粒通过气隙时的感应电压变化过程必定与非铁磁性颗粒通过气隙时的感应电压变化过程相反。
当磨粒通过气隙时,磨粒会影响磁通量变化,进而影响感应电压的变化,线圈绕制方向和电流方决定磁场方向,即感应电压的变化与线圈绕制方向和电流方向有关,可以用右手螺旋定则和楞次定理判别,此处不再赘述。
为了说明传感器内部的磁场分布情况,以及磨粒流过传感器时检测线圈内产生的感应电压情况,运用电磁分析软件Ansoft Maxwell对传感器进行了有限元分析。对传感器的第一线圈和第二线圈施加300AN的电磁力,在直径为6mm的油管内气隙中心位置截面的磁场分布如图4所示,中心位置处油管磁感应强度B从轴心处的9.3278×10-2tesla向外逐渐增强至1.4037×10-1tesla,油管内部能够获得较高的磁感应强度;图5为过油管轴线的一个平面内,油管内部磁场从磁感应强度为1.9173×10-4tesla两端向靠近气隙的区域增强,最靠近气隙的磁感应强度可达1.3848×10-1tesla;图6是以气隙的中心位置为0刻度,油管中心轴的磁场强度沿轴向的变化情况,可以看到磁场沿轴向呈高梯度变化,特别在气隙区磁场强度变化剧烈,而远离气隙的地方磁场强度约为0;所以,磨粒只有进入气隙附近的局部区域时,才会引起检测线圈的磁通量变化,这有助于提高磨粒分辨率。
在本实施例中,第一线圈、第二线圈和检测线圈的绕向相同,磨粒在本实施例中的运动方向与气隙处的磁感线方向相反,若一个500μm×500μm×500μm的磨粒以0.06m/s的速度匀速流过传感器时,对检测线圈的感应电压进行动态模拟;图7-8以磨粒运动的时间作为横坐标、以磨粒运动过程中产生的感应电压作为纵坐标建立磨粒随着运动时间感应电压的变化曲线;当磨粒的材料为铁时,如图7,当磨粒靠近气隙区域时,感应电压先负向降低,当磨粒通过气隙中心位置后,感应电压迅速上升变为正电压,当磨粒远离气隙时,电压又变为0,此材料的磨粒运动过程中产生的感应电压的峰值约为125uV、谷值约为-113uV;当磨粒的材质为铜时,如图8,感应电压的变化过程正好相反,即当磨粒靠近气隙区域时,感应电压先正向上升,当磨粒通过气隙中心位置后,感应电压迅速下降变为负电压,当磨粒远离气隙时,电压又变为0,且此时磨粒运动过程中产生的感应电压峰值约为18uV、谷值约为-25uV;对比不同材质的磨粒的计算结果,可以发现本发明的传感器能够分辨出铁磁性颗粒和非铁磁性颗粒;结合图7-8可以看出,相同尺寸条件下,铁磁性颗粒产生的最大感应电压要远大于非铁磁型颗粒。
以上所举实施例,对本发明的目的、技术方案和优点进行了进一步的详细说明,所应理解的是,以上所举实施例仅为本发明的优选实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,包括磁场回路组件和油管检测组件;所述磁场回路组件包括第一导磁块(21)、第二导磁块(22)、第一磁极(61)、第二磁极(62)、第一线圈(51)、第二线圈(52)和铜套(8);所述第一磁极(61)和第二磁极(62)分别套设在第一线圈(51)和第二线圈(52)的内部,所述第一磁极(61)的一端通过铜套(8)与第二磁极(62)的一端连接,且第一磁极(61)与第二磁极(62)之间留有气隙,第一磁极(61)的另一端与第一导磁块(21)连接,第二磁极(62)的另一端与第二导磁块(22)连接;所述油管检测组件包括油管(9)和检测线圈(7),所述检测线圈(7)设置在油管(9)中部的外表面上,检测线圈(7)外表面套设所述第一导磁块(21)、第二导磁块(22)、第一磁极(61)、第二磁极(62)和铜套(8)。
2.根据权利要求1所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,还包括导磁壳体(1),磁场回路组件置于导磁壳体(1)内,且油管(9)的两端置于导磁壳体(1)外部。
3.根据权利要求2所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,所述导磁壳体(1)两端均设置有连接头(4),导磁壳体(1)两端的端面与连接头(4)之间均设置有橡胶垫(3)。
4.根据权利要求3所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,所述连接头(4)设置有内凹槽,内凹槽的大小与油管的大小匹配,内凹槽的形状与油管的形状匹配。
5.根据权利要求4所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,所述内凹槽中设置有密封圈。
6.根据权利要求1所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,第一磁极(61)和第二磁极(62)之间气隙为0.5~2mm。
7.根据权利要求1所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,所述第一磁极(61)和第二磁极(62)为中通的圆柱体或者正N棱柱,N≥3。
8.根据权利要求1所述的基于轴向高梯度磁场在线金属颗粒监测传感器,其特征在于,所述第一磁极(61)和第二磁极(62)靠近气隙的一端设有倒角。
9.基于轴向高梯度磁场在线金属颗粒监测基于轴向高梯度磁场在线金属颗粒监测方法,包括权利要求1-8任一所述的监测传感器,其特征在于,包括:
S1、监测传感器沿油管轴向施加高梯度磁场,作为激励源;
S2、当油管内有金属颗粒通过高梯度磁场时,监测传感器通过检测线圈的磁通量变化量计算感应电压;
S3、在磨粒通过气隙的过程中,判断感应电压变化过程曲线,若感应电压从零开始负向降低、再上升为正电压时为铁磁性颗粒,则感应电压从零开始正向增大、再下降为负电压时,必定为非铁磁性颗粒;
若感应电压从零开始负向降低、再上升为正电压时为非铁磁性颗粒,则感应电压从零开始正向增大、再下降为负电压时,必定为铁磁性颗粒。
CN201810449933.7A 2018-05-11 2018-05-11 基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法 Active CN108896448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810449933.7A CN108896448B (zh) 2018-05-11 2018-05-11 基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810449933.7A CN108896448B (zh) 2018-05-11 2018-05-11 基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法

Publications (2)

Publication Number Publication Date
CN108896448A true CN108896448A (zh) 2018-11-27
CN108896448B CN108896448B (zh) 2020-10-16

Family

ID=64342908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810449933.7A Active CN108896448B (zh) 2018-05-11 2018-05-11 基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法

Country Status (1)

Country Link
CN (1) CN108896448B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738338A (zh) * 2019-02-12 2019-05-10 重庆邮电大学 一种大口径润滑油路在线金属颗粒监测装置及其检测方法
CN110261268A (zh) * 2019-06-24 2019-09-20 重庆邮电大学 一种金属颗粒的在线监测装置及其装配方法
CN110705369A (zh) * 2019-09-09 2020-01-17 重庆邮电大学 一种基于对数-峭度的磨粒信号特征提取方法及装置
CN111759306A (zh) * 2020-08-04 2020-10-13 重庆邮电大学 一种单边磁粒子成像检测装置
CN112362540A (zh) * 2020-10-26 2021-02-12 重庆邮电大学 一种油液磨粒运动轨迹图像监测系统及检测方法
CN112557260A (zh) * 2020-11-24 2021-03-26 北京信息科技大学 基于高磁导率铁芯的金属磨损颗粒检测传感器及检测方法
CN112697659A (zh) * 2020-12-09 2021-04-23 重庆邮电大学 一种基于平面感应线圈的金属磨粒检测传感器结构及检测方法
CN112881244A (zh) * 2021-01-15 2021-06-01 重庆邮电大学 基于高频高梯度磁场的金属颗粒检测传感器及其检测方法
CN112881392A (zh) * 2021-01-22 2021-06-01 重庆邮电大学 一种新型润滑脂磨粒检测仪及其检测方法
CN113125314A (zh) * 2021-04-08 2021-07-16 北京信息科技大学 一种外包裹高磁导率材料的高灵敏度金属磨损颗粒检测传感器
CN113984600A (zh) * 2021-10-27 2022-01-28 北京信息科技大学 一种基于静磁铁的高灵敏度金属磨损颗粒在线检测传感器

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243059A (en) * 1977-06-10 1981-01-06 Basf Aktiengesellschaft Method and device for determining the homogeneity of magnetic dispersions
US4686469A (en) * 1985-08-12 1987-08-11 Tribometrics, Inc. Method and device for measuring magnetic particles in a fluid
CN2080672U (zh) * 1990-11-11 1991-07-10 西安交通大学 电磁光电在线式铁谱仪
JPH0474949A (ja) * 1990-07-16 1992-03-10 Nobuo Horikawa 粒子測定装置
US5444367A (en) * 1992-04-06 1995-08-22 Minister Of National Defence Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
CN2298517Y (zh) * 1997-01-27 1998-11-25 煤炭科学研究总院太原分院 磨屑监测传感器
CN1673733A (zh) * 2005-04-04 2005-09-28 西安交通大学 在线数字图像型电磁永磁混合励磁铁谱传感器
CN1811402A (zh) * 2006-02-09 2006-08-02 西安交通大学 短沉积距离图像型在线铁谱装置与方法
JP2008190963A (ja) * 2007-02-02 2008-08-21 Mitsui Eng & Shipbuild Co Ltd 内燃機関などの摩耗量検出方法とその装置
CN201867355U (zh) * 2010-11-30 2011-06-15 蒋伟平 流动油液金属颗粒在线监测传感器
CN103217365A (zh) * 2013-03-29 2013-07-24 电子科技大学 一种在线油路磨粒监测装置
CN103983543A (zh) * 2014-05-15 2014-08-13 西安交通大学 一种在线图像可视铁谱成像系统
CN106568695A (zh) * 2016-11-07 2017-04-19 西安交通大学 在线图像可视铁谱反射光成像装置与方法
CN206725388U (zh) * 2017-06-02 2017-12-08 四川新川航空仪器有限责任公司 一种降低流阻的磁性金属屑末检测装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243059A (en) * 1977-06-10 1981-01-06 Basf Aktiengesellschaft Method and device for determining the homogeneity of magnetic dispersions
US4686469A (en) * 1985-08-12 1987-08-11 Tribometrics, Inc. Method and device for measuring magnetic particles in a fluid
JPH0474949A (ja) * 1990-07-16 1992-03-10 Nobuo Horikawa 粒子測定装置
CN2080672U (zh) * 1990-11-11 1991-07-10 西安交通大学 电磁光电在线式铁谱仪
US5444367A (en) * 1992-04-06 1995-08-22 Minister Of National Defence Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
CN2298517Y (zh) * 1997-01-27 1998-11-25 煤炭科学研究总院太原分院 磨屑监测传感器
CN1673733A (zh) * 2005-04-04 2005-09-28 西安交通大学 在线数字图像型电磁永磁混合励磁铁谱传感器
CN1811402A (zh) * 2006-02-09 2006-08-02 西安交通大学 短沉积距离图像型在线铁谱装置与方法
JP2008190963A (ja) * 2007-02-02 2008-08-21 Mitsui Eng & Shipbuild Co Ltd 内燃機関などの摩耗量検出方法とその装置
CN201867355U (zh) * 2010-11-30 2011-06-15 蒋伟平 流动油液金属颗粒在线监测传感器
CN103217365A (zh) * 2013-03-29 2013-07-24 电子科技大学 一种在线油路磨粒监测装置
CN103983543A (zh) * 2014-05-15 2014-08-13 西安交通大学 一种在线图像可视铁谱成像系统
CN106568695A (zh) * 2016-11-07 2017-04-19 西安交通大学 在线图像可视铁谱反射光成像装置与方法
CN206725388U (zh) * 2017-06-02 2017-12-08 四川新川航空仪器有限责任公司 一种降低流阻的磁性金属屑末检测装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738338A (zh) * 2019-02-12 2019-05-10 重庆邮电大学 一种大口径润滑油路在线金属颗粒监测装置及其检测方法
CN110261268B (zh) * 2019-06-24 2022-02-18 重庆邮电大学 一种金属颗粒的在线监测装置及其装配方法
CN110261268A (zh) * 2019-06-24 2019-09-20 重庆邮电大学 一种金属颗粒的在线监测装置及其装配方法
CN110705369A (zh) * 2019-09-09 2020-01-17 重庆邮电大学 一种基于对数-峭度的磨粒信号特征提取方法及装置
CN110705369B (zh) * 2019-09-09 2022-07-01 重庆邮电大学 一种基于对数-峭度的磨粒信号特征提取方法及装置
CN111759306A (zh) * 2020-08-04 2020-10-13 重庆邮电大学 一种单边磁粒子成像检测装置
CN111759306B (zh) * 2020-08-04 2023-11-24 重庆邮电大学 一种单边磁粒子成像检测装置
CN112362540A (zh) * 2020-10-26 2021-02-12 重庆邮电大学 一种油液磨粒运动轨迹图像监测系统及检测方法
CN112557260A (zh) * 2020-11-24 2021-03-26 北京信息科技大学 基于高磁导率铁芯的金属磨损颗粒检测传感器及检测方法
CN112697659A (zh) * 2020-12-09 2021-04-23 重庆邮电大学 一种基于平面感应线圈的金属磨粒检测传感器结构及检测方法
CN112881244B (zh) * 2021-01-15 2022-06-03 重庆邮电大学 基于高频高梯度磁场的金属颗粒检测传感器及其检测方法
CN112881244A (zh) * 2021-01-15 2021-06-01 重庆邮电大学 基于高频高梯度磁场的金属颗粒检测传感器及其检测方法
CN112881392A (zh) * 2021-01-22 2021-06-01 重庆邮电大学 一种新型润滑脂磨粒检测仪及其检测方法
CN113125314A (zh) * 2021-04-08 2021-07-16 北京信息科技大学 一种外包裹高磁导率材料的高灵敏度金属磨损颗粒检测传感器
CN113984600A (zh) * 2021-10-27 2022-01-28 北京信息科技大学 一种基于静磁铁的高灵敏度金属磨损颗粒在线检测传感器

Also Published As

Publication number Publication date
CN108896448B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN108896448A (zh) 基于轴向高梯度磁场在线金属颗粒监测传感器及监测方法
Sun et al. Online oil debris monitoring of rotating machinery: A detailed review of more than three decades
CN102818754B (zh) 一种提高发动机油液金属磨粒在线监测精度的方法及装置
Hong et al. A new debris sensor based on dual excitation sources for online debris monitoring
CN106568691B (zh) 一种油液磨粒在线监测装置
CN102331390B (zh) 流动油液金属颗粒在线监测传感器
Jia et al. Online wear particle detection sensors for wear monitoring of mechanical equipment—A review
Muthuvel et al. Magnetic-capacitive wear debris sensor plug for condition monitoring of hydraulic systems
US5061364A (en) Diagnostic filter for detecting conductive and semiconductive particles in a fluid stream
Feng et al. A ferromagnetic wear particle sensor based on a rotational symmetry high-gradient magnetostatic field
CN110261268B (zh) 一种金属颗粒的在线监测装置及其装配方法
CN109813761B (zh) 一种电感磁塞式油液在线监测装置
Li et al. A direct reflection OLVF debris detector based on dark-field imaging
Liu et al. Review and analysis of three representative electromagnetic NDT methods
Bai et al. A wear particle sensor using multiple inductive coils under a toroidal magnetic field
CN111024574A (zh) 基于永磁体和高频激励的油液金属颗粒检测装置
CN110208167A (zh) 一种能区分气泡的润滑油金属磨粒检测装置及检测方法
CN203838150U (zh) 用于润滑油检测的油路系统
CN201867355U (zh) 流动油液金属颗粒在线监测传感器
CN206479431U (zh) 油液监测传感器及设备
CN202886236U (zh) 一种提高发动机油液金属磨粒在线监测精度的装置
Wang et al. Probe improvement of inductive sensor for online health monitoring of mechanical transmission systems
Muthuvel et al. A planar inductive based oil debris sensor plug
Wu et al. A method for measurement of nonferrous particles sizes in lubricant oil independent of materials using inductive sensor
CN111504857B (zh) 一种基于对称磁激励的磁异介质检测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Feng Song

Inventor after: Su Zuqiang

Inventor after: Luo Jiufei

Inventor after: Xiao Hong

Inventor before: Feng Song

Inventor before: Su Zuqiang

Inventor before: Luo Jiufei

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant