CN108838563A - RTCP precision compensation method for five-axis laser processing equipment - Google Patents
RTCP precision compensation method for five-axis laser processing equipment Download PDFInfo
- Publication number
- CN108838563A CN108838563A CN201810699394.2A CN201810699394A CN108838563A CN 108838563 A CN108838563 A CN 108838563A CN 201810699394 A CN201810699394 A CN 201810699394A CN 108838563 A CN108838563 A CN 108838563A
- Authority
- CN
- China
- Prior art keywords
- axis
- laser
- rotary shaft
- vector
- rotation axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000013598 vector Substances 0.000 claims abstract description 75
- 238000006073 displacement reaction Methods 0.000 claims description 16
- 238000003754 machining Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 210000003811 finger Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及五轴激光加工设备领域,具体涉及一种五轴激光加工设备RTCP精度补偿方法。The invention relates to the field of five-axis laser processing equipment, in particular to an RTCP precision compensation method for five-axis laser processing equipment.
背景技术Background technique
随着激光加工技术的广泛应用,激光加工的优势也逐渐得以体现。相对于其它加工技术,其主要特点为:一、非接触加工。激光加工不需要刀具,切边无机械应力,也无刀具磨损、替换和拆装等问题,很大程度的缩短了加工时间;二、对加工材料的热影响小。激光束照射的物体表面是局部区域,其热影响区域很小,对非照射区域几乎没有影响,因此加工工件基本不会产生形变;三、加工具有灵活性。激光束易于聚焦、发散和导向,可方便得到不同尺寸和不同功率大小的光斑,以适应不同的加工要求;四、加工材料广泛。激光加工可面向复合材料、玻璃、金属、木材等材料的加工。基于激光加工的以上特点,目前已广泛将其应用于航空航天、汽车、电子等行业。With the wide application of laser processing technology, the advantages of laser processing are gradually reflected. Compared with other processing technologies, its main features are: 1. Non-contact processing. Laser processing does not require tools, and there is no mechanical stress in edge trimming, and there are no problems such as tool wear, replacement and disassembly, which greatly shortens the processing time; 2. The thermal impact on the processed materials is small. The surface of the object irradiated by the laser beam is a local area, and its heat-affected area is very small, which has almost no effect on the non-irradiated area, so the workpiece will basically not be deformed; 3. The processing is flexible. The laser beam is easy to focus, diverge and guide, and it is convenient to obtain light spots of different sizes and different powers to meet different processing requirements; 4. Wide range of processing materials. Laser processing can be used for the processing of composite materials, glass, metal, wood and other materials. Based on the above characteristics of laser processing, it has been widely used in aerospace, automobile, electronics and other industries.
五轴激光加工设备作为将激光加工与传统五轴联动相结合的典型代表,兼具激光加工和五轴插补的技术优势,目前已在高端加工领域得到了广泛应用。现有五轴加工设备基本是由三个直线轴+两个旋转轴组成,基于各设备旋转轴的结构形式,可分为以下三种类型:a、刀具旋转类型,即双摆头结构,两个旋转轴驱动刀具旋转;b、刀具旋转+工件旋转类型,一个旋转轴驱动刀具旋转,另一个旋转轴驱动工件旋转;c、工件旋转类型,两个旋转轴均驱动工件旋转。As a typical representative of the combination of laser processing and traditional five-axis linkage, five-axis laser processing equipment has both the technical advantages of laser processing and five-axis interpolation, and has been widely used in the field of high-end processing. The existing five-axis processing equipment is basically composed of three linear axes + two rotating axes. Based on the structure of the rotating axes of each equipment, it can be divided into the following three types: a. Tool rotation type, that is, double swing head structure, two Two rotary shafts drive the tool to rotate; b, tool rotation + workpiece rotation type, one rotary shaft drives the tool to rotate, and the other rotary shaft drives the workpiece to rotate; c, workpiece rotation type, both rotary shafts drive the workpiece to rotate.
在激光加工过程中,由于回转运动而产生刀尖点的附加运动,因此控制系统的控制点通常与刀尖点不重合,而控制系统要自动修正控制点,以保证刀尖点按指令既定轨迹运动。在以上三种加工设备类型中,RTCP功能应用于双摆头结构时,应用摆头旋转中心点来进行补偿,其全称为旋转刀具中心(Rotated Tool Center Point),其结构形式如图1所示。In the process of laser processing, the additional movement of the tool tip point is generated due to the rotary motion, so the control point of the control system usually does not coincide with the tool tip point, and the control system must automatically correct the control point to ensure that the tool tip point follows the prescribed trajectory. sports. Among the above three types of processing equipment, when the RTCP function is applied to the double swing head structure, the center point of the swing head rotation is used for compensation. Its full name is Rotated Tool Center Point, and its structure is shown in Figure 1. .
在机械加工领域,五轴联动加工设备的RTCP精度补偿测量通常采用“标准量棒+千分表”的组合工具来检测,采用标准量棒来模拟刀具安装在主轴上,刀具在不同的旋转角度时,使用千分表测量误差以进行补偿。但是五轴激光加工设备的结构形式与普通机械五轴加工设备存在较大差异,首先其不存在主轴,其次由于聚焦光束通常不可见(如红外光及紫外光),因此也没有与聚焦光束外形尺寸相类似的“标准量棒”。综上所述,机械五轴加工设备的RTCP精度补偿方法不适用于五轴激光加工设备,无法保证激光加工设备的加工精度。In the field of mechanical processing, the RTCP accuracy compensation measurement of five-axis linkage processing equipment is usually detected by the combination tool of "standard gauge + dial indicator". , use a dial gauge to measure the error for compensation. However, the structure of five-axis laser processing equipment is quite different from that of ordinary mechanical five-axis processing equipment. First, it does not have a spindle. Secondly, because the focused beam is usually invisible (such as infrared light and ultraviolet light), it does not have the same shape as the focused beam. "Gauge sticks" of similar dimensions. To sum up, the RTCP accuracy compensation method for mechanical five-axis processing equipment is not suitable for five-axis laser processing equipment, and cannot guarantee the processing accuracy of laser processing equipment.
发明内容Contents of the invention
本发明的目的是解决现有机械五轴加工设备的精度补偿方法不适用于五轴激光加工设备,无法保证激光加工设备加工精度的问题,提出了一种五轴激光加工设备的RTCP精度补偿方法。该方法填补了该领域的空白,通过使用该方法保证了激光加工设备五轴联动的加工精度,并且由于该方法具有一定的通用性,可供其他多种形式的激光加工设备借鉴,如激光刻蚀、激光打孔、激光清洗等。The purpose of the present invention is to solve the problem that the accuracy compensation method of existing mechanical five-axis processing equipment is not suitable for five-axis laser processing equipment, and cannot guarantee the processing accuracy of laser processing equipment, and proposes an RTCP accuracy compensation method for five-axis laser processing equipment . This method fills in the gaps in this field. By using this method, the processing accuracy of the five-axis linkage of laser processing equipment is guaranteed, and because this method has certain versatility, it can be used for reference by other forms of laser processing equipment, such as laser engraving etching, laser drilling, laser cleaning, etc.
本发明的技术方案是:Technical scheme of the present invention is:
一种五轴激光加工设备RTCP精度补偿方法,所述五轴激光加工设备包括XYZ三个直线轴、A旋转轴、C旋转轴,所述A旋转轴、C旋转轴分别围绕X轴、Z轴的轴线进行旋转运动,包括以下步骤:A five-axis laser processing equipment RTCP accuracy compensation method, the five-axis laser processing equipment includes three linear axes XYZ, A rotation axis, and C rotation axis, and the A rotation axis and C rotation axis respectively surround the X axis and the Z axis The axis of rotation is performed, including the following steps:
1)分别获取激光加工点到A旋转轴线的Z向矢量、激光束中心轴线到A旋转轴线的矢量、激光束中心轴线到C旋转轴线的矢量;1) Obtain the Z-direction vector from the laser processing point to the A rotation axis, the vector from the laser beam center axis to the A rotation axis, and the vector from the laser beam center axis to the C rotation axis;
2)将各组参数输入控制系统中完成RTCP功能的精度补偿。2) Input each group of parameters into the control system to complete the precision compensation of the RTCP function.
进一步地,步骤1)中获取激光加工点到A旋转轴线的Z向矢量具体包括以下步骤,Further, obtaining the Z-direction vector from the laser processing point to the A rotation axis in step 1) specifically includes the following steps,
1.11)在设备工作台上设置标准平板,所述标准平板的长、宽、高分别平行于加工设备的X轴、Y轴、Z轴;1.11) A standard flat plate is set on the equipment workbench, the length, width and height of the standard flat plate are respectively parallel to the X-axis, Y-axis and Z-axis of the processing equipment;
1.12)将C旋转轴旋转至90°,A旋转轴旋转至90°;1.12) Rotate the C rotation axis to 90°, and the A rotation axis to 90°;
1.13)将激光加工点移动至标准平板右侧面,记录X轴坐标;1.13) Move the laser processing point to the right side of the standard plate, and record the X-axis coordinates;
1.14)将旋转C旋转轴至270°,移动X轴使激光加工点移动至标准平板左侧面,记录此时X轴相对于步骤1.13)的△X值;1.14) Rotate the C rotation axis to 270°, move the X axis to move the laser processing point to the left side of the standard plate, and record the △X value of the X axis relative to step 1.13);
1.15)△X与h差值的一半即为激光加工点到A旋转轴线的Z向矢量,h为标准平板长度。1.15) Half of the difference between △X and h is the Z-direction vector from the laser processing point to the A rotation axis, and h is the length of the standard plate.
进一步地,步骤1.13)中,在激光加工头上设置有位移传感器,通过读取位移传感器的值来获得X轴坐标值。Further, in step 1.13), a displacement sensor is provided on the laser processing head, and the X-axis coordinate value is obtained by reading the value of the displacement sensor.
进一步地,步骤1)中获取激光束中心轴线到A旋转轴线的矢量具体包括以下步骤,Further, obtaining the vector from the central axis of the laser beam to the A rotation axis in step 1) specifically includes the following steps,
1.21)将标准平板固定于设备工作台上;1.21) Fix the standard plate on the equipment table;
1.22)将C旋转轴旋转至0°,A旋转轴旋转至90°位置,通过激光加工点在标准平板的前表面加工第一标记点,记录设备Z轴坐标;1.22) Rotate the C rotation axis to 0°, the A rotation axis to 90° position, process the first marking point on the front surface of the standard plate through the laser processing point, and record the Z-axis coordinates of the equipment;
1.23)将C旋转轴旋转180°,A旋转轴至-90°位置,将激光加工点移动到步骤1.22)的第一标记点处,并记录此时的Z轴坐标;1.23) Rotate the C rotation axis 180°, A rotation axis to -90° position, move the laser processing point to the first mark point in step 1.22), and record the Z-axis coordinate at this time;
1.24)步骤1.22)与步骤1.23)中Z轴坐标差值的一半作为激光束中心轴线到A旋转轴线矢量的Y向分量;1.24) Half of the Z-axis coordinate difference in step 1.22) and step 1.23) is used as the Y-direction component of the laser beam central axis to the A rotation axis vector;
1.25)将C旋转轴旋转至90°,A旋转轴旋转至90°,使用激光加工点在标准平板左侧面加工第二标记点,记录此时Z轴坐标;1.25) Rotate the C rotation axis to 90°, the A rotation axis to 90°, use the laser processing point to process the second marking point on the left side of the standard plate, and record the Z-axis coordinates at this time;
1.26)将C旋转轴旋转至270°,A旋转轴旋转至-90°,将激光加工点移动到步骤1.25)的第二标记点处,并记录此时的Z轴坐标;1.26) Rotate the C rotation axis to 270°, the A rotation axis to -90°, move the laser processing point to the second mark point in step 1.25), and record the Z-axis coordinate at this time;
1.27)步骤1.25)与步骤1.26)中Z轴坐标差值的一半作为激光束中心轴线到A旋转轴线矢量的X向分量;1.27) Half of the Z-axis coordinate difference in step 1.25) and step 1.26) is used as the X-direction component of the laser beam central axis to the A rotation axis vector;
1.28)通过步骤1.24)得到的激光束中心轴线到A旋转轴线矢量的Y向分量以及步骤1.27)得到的激光束中心轴线到A旋转轴线矢量的X向分量,得到激光束中心轴线到A旋转轴线的矢量。1.28) through the Y component of the laser beam central axis obtained in step 1.24) to the A rotation axis vector and the X component of the laser beam central axis obtained in step 1.27) to the A rotation axis vector, obtain the laser beam central axis to the A rotation axis vector.
进一步地,步骤1)中获取激光束中心轴线到C旋转轴线的矢量具体包括以下步骤,Further, obtaining the vector from the central axis of the laser beam to the C rotation axis in step 1) specifically includes the following steps,
1.31)将标准平板固定于设备工作台上;1.31) Fix the standard plate on the equipment table;
1.32)将C旋转轴旋转到0°,A旋转轴旋转到0°位置,使用激光加工点在标准平板上表面加工第三标记点,记录此时设备X轴坐标;1.32) Rotate the C rotation axis to 0°, the A rotation axis to the 0° position, use the laser processing points to process the third marking point on the upper surface of the standard plate, and record the X-axis coordinates of the equipment at this time;
1.33)将C旋转轴旋转到180°,A旋转轴0°位置不变,将激光加工点移动到步骤1.32)的第三标记点处、记录此时设备X轴坐标;1.33) Rotate the C rotation axis to 180°, keep the 0° position of the A rotation axis unchanged, move the laser processing point to the third mark point in step 1.32), and record the X-axis coordinates of the equipment at this time;
1.34)步骤1.32)与步骤1.33)中X轴坐标差值的一半作为激光束中心轴线到C旋转轴线矢量的X向分量;1.34) Half of the X-axis coordinate difference in step 1.32) and step 1.33) is used as the X-direction component of the laser beam central axis to the C rotation axis vector;
1.35)将C旋转轴旋转到90°,A旋转轴0°位置不变,使用激光加工点在标准平板上表面加工第四标记点,记录此时设备Y轴坐标;1.35) Rotate the C rotation axis to 90°, keep the 0° position of the A rotation axis unchanged, use the laser processing point to process the fourth mark point on the upper surface of the standard plate, and record the Y-axis coordinates of the equipment at this time;
1.36)将C旋转轴旋转到270°,A旋转轴0°位置不变,将激光加工点移动到步骤1.35)的第四标记点处,记录此时设备Y轴坐标;1.36) Rotate the C rotation axis to 270°, keep the 0° position of the A rotation axis unchanged, move the laser processing point to the fourth mark point in step 1.35), and record the Y-axis coordinates of the equipment at this time;
1.37)步骤1.35)与步骤1.36)中Y轴坐标差值的一半作为激光束中心轴线到C旋转轴线矢量的Y向分量;1.37) Half of the Y-axis coordinate difference in step 1.35) and step 1.36) is used as the Y-direction component of the laser beam central axis to the C rotation axis vector;
1.38)通过步骤1.34)得到的激光束中心轴线到C旋转轴线矢量的X向分量以及步骤1.37)得到的激光束中心轴线到C旋转轴线矢量的Y向分量,得到激光束中心轴线到C旋转轴线的矢量。1.38) through the X-direction component of the laser beam central axis obtained in step 1.34) to the C rotation axis vector and the Y-direction component of the laser beam central axis obtained in step 1.37) to the C rotation axis vector, obtain the laser beam central axis to the C rotation axis vector.
本发明与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention has the following technical effects:
本发明提出了一种使用五轴联动RTCP功能加工设备的精度补偿方法,通过该方法可提高激光加工设备的五轴插补精度,并且填补了涉及激光加工五轴设备关于RTCP精度补偿的空白。The present invention proposes an accuracy compensation method using five-axis linkage RTCP function processing equipment, through which the five-axis interpolation accuracy of laser processing equipment can be improved, and the blank of RTCP accuracy compensation related to laser processing five-axis equipment is filled.
附图说明Description of drawings
图1为现有双摆头五轴激光加工设备的结构图;Fig. 1 is the structural diagram of existing double-swing head five-axis laser processing equipment;
图2为本发明补偿方法矢量闭环示意图。Fig. 2 is a vector closed-loop schematic diagram of the compensation method of the present invention.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明的内容作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment the content of the present invention is described in further detail:
如图1所示,本发明的五轴激光加工设备为现有刀具旋转类型,即双摆头结构的加工设备,该设备包含XYZAC五个轴,其中A旋转轴、C旋转轴为双摆轴,可驱动激光加工头实现旋转及偏摆运动;XYZ轴为直线轴,可驱动被加工零件实现直线运动。上述XYZ轴所形成的笛卡尔坐标系的正方向符合右手定则,A旋转轴、C旋转轴的运动方向分别为绕着X轴、Z轴的轴线进行旋转运动,旋转的正方向符合右手螺旋定则(大拇指指向轴线的正方向,四指的方向为旋转轴的运动正方向)。As shown in Figure 1, the five-axis laser processing equipment of the present invention is an existing tool rotation type, that is, a processing equipment with a double swing head structure. The equipment includes five axes of XYZAC, wherein the A rotation axis and the C rotation axis are double swing axes , can drive the laser processing head to achieve rotation and yaw motion; XYZ axis is a linear axis, which can drive the processed parts to achieve linear motion. The positive direction of the Cartesian coordinate system formed by the above-mentioned XYZ axes conforms to the right-hand rule, the movement directions of the A rotation axis and the C rotation axis respectively rotate around the axes of the X axis and the Z axis, and the positive direction of rotation conforms to the right-hand spiral Rule (the thumb points to the positive direction of the axis, and the direction of the four fingers is the positive direction of the rotation axis).
如图2所示,本发明提供了一种五轴激光加工设备的RTCP精度补偿方法,该方法主要包含了三组参数的测定,分别是激光加工点到A旋转轴线的Z向矢量、激光束中心轴线到A旋转轴的矢量以及激光束中心轴线到C旋转轴的矢量,各组参数的精度补偿分别包括如下步骤:As shown in Figure 2, the present invention provides an RTCP accuracy compensation method for five-axis laser processing equipment, which mainly includes the measurement of three groups of parameters, namely the Z-direction vector from the laser processing point to the A rotation axis, the laser beam The vector from the central axis to the A rotation axis and the vector from the laser beam center axis to the C rotation axis, the accuracy compensation of each group of parameters includes the following steps:
1)激光加工点P到A旋转轴线的Z向矢量;1) The Z-direction vector of the laser processing point P to the rotation axis of A;
1.1)在设备工作台上固定一厚度已知的标准平板,标准平板长、宽、高分别平行于加工设备的X轴、Y轴、Z轴,标准平板平行于X轴的面为前表面,标准平板平行于Y轴的面为左侧面,标准平板平行于XY平面的面为上表面;定义C旋转轴在负X轴方向为0°,定义A旋转轴在负Z轴方向为0°;1.1) Fix a standard flat plate with known thickness on the equipment workbench. The length, width and height of the standard flat plate are parallel to the X-axis, Y-axis and Z-axis of the processing equipment respectively. The surface of the standard flat plate parallel to the X-axis is the front surface. The surface of the standard plate parallel to the Y axis is the left side, and the surface of the standard plate parallel to the XY plane is the upper surface; define the C rotation axis as 0° in the negative X axis direction, and define the A rotation axis as 0° in the negative Z axis direction ;
1.2)将C旋转轴旋转至90°,A旋转轴旋转至90°;1.2) Rotate the C rotation axis to 90°, and the A rotation axis to 90°;
1.3)将激光加工点移动至标准平板右侧面,记录X轴坐标;1.3) Move the laser processing point to the right side of the standard plate, and record the X-axis coordinates;
1.4)旋转C旋转轴到270°,移动X轴使激光加工点移动至标准平板左侧面,记录此时X轴相对于步骤1.3)的△X值;1.4) Rotate the C rotation axis to 270°, move the X axis to move the laser processing point to the left side of the standard plate, and record the △X value of the X axis relative to step 1.3);
1.5)(△X-标准平板长度)/2即为激光加工点到A旋转轴线的垂直距离;1.5) (△X-standard plate length)/2 is the vertical distance from the laser processing point to the A rotation axis;
2)激光束中心轴线到A旋转轴线的矢量;2) The vector from the central axis of the laser beam to the rotation axis of A;
2.1)将标准平板固定于设备工作台上;2.1) Fix the standard plate on the equipment table;
2.2)将C旋转轴旋转到0°,A旋转轴旋转到90°位置,使用激光加工点在标准平板的前表面加工第一标记点,记录此时设备Z轴坐标;2.2) Rotate the C rotation axis to 0°, the A rotation axis to 90°, use the laser processing point to process the first marking point on the front surface of the standard plate, and record the Z-axis coordinates of the equipment at this time;
2.3)将C旋转轴旋转180°,之后调整A旋转轴到-90°位置,将激光加工点移动到步骤2.2)的第一标记点处,并记录此时的Z轴坐标;2.3) Rotate the C rotation axis by 180°, then adjust the A rotation axis to -90°, move the laser processing point to the first mark point in step 2.2), and record the Z-axis coordinate at this time;
2.4)步骤2.2)与步骤2.3)中Z轴坐标差值的一半作为激光束中心轴线到A旋转轴线矢量的Y向分量;2.4) Half of the Z-axis coordinate difference in step 2.2) and step 2.3) is used as the Y-direction component of the laser beam central axis to the A rotation axis vector;
2.5)将C旋转轴旋转至90°,A旋转轴旋转至90°,使用激光加工点在标准平板左侧面加工第二标记点,记录此时Z轴坐标;2.5) Rotate the C rotation axis to 90°, the A rotation axis to 90°, use the laser processing point to process the second marking point on the left side of the standard plate, and record the Z-axis coordinates at this time;
2.6)将C旋转轴旋转至270°,A旋转轴旋转至-90°,将激光加工点移动到步骤2.5)的第二标记点处,并记录此时的Z轴坐标;2.6) Rotate the C rotation axis to 270°, the A rotation axis to -90°, move the laser processing point to the second mark point in step 2.5), and record the Z-axis coordinate at this time;
2.7)步骤2.5)与步骤2.6)中Z轴坐标差值的一半作为激光束中心轴线到A旋转轴线矢量的X向分量;2.7) Half of the Z-axis coordinate difference in step 2.5) and step 2.6) is used as the X-direction component of the laser beam central axis to the A rotation axis vector;
2.8)通过步骤2.4)得到的激光束中心轴线到A旋转轴线矢量的Y向分量以及步骤2.7)得到的激光束中心轴线到A旋转轴线矢量的X向分量,得到激光束中心轴线到A旋转轴线的矢量;2.8) through the Y-direction component of the laser beam center axis obtained in step 2.4) to the A rotation axis vector and the X-direction component of the laser beam center axis obtained in step 2.7) to the A rotation axis vector, obtain the laser beam center axis to the A rotation axis the vector;
3)激光束中心轴线到C旋转轴的矢量;3) The vector from the central axis of the laser beam to the C rotation axis;
3.1)将标准平板固定于设备工作台上;3.1) Fix the standard plate on the equipment table;
3.2)将C旋转轴旋转到0°,A旋转轴旋转到0°位置,使用激光加工点在标准平板上表面加工第三标记点,记录此时X轴坐标;3.2) Rotate the C rotation axis to 0°, the A rotation axis to the 0° position, use the laser processing points to process the third marking point on the upper surface of the standard plate, and record the X-axis coordinates at this time;
3.3)将C旋转轴旋转到180°,A旋转轴0°位置不变,将激光加工点移动到步骤2的第三标记点处、记录此时X轴坐标;3.3) Rotate the C rotation axis to 180°, keep the 0° position of the A rotation axis unchanged, move the laser processing point to the third mark point in step 2, and record the X-axis coordinates at this time;
3.4)步骤3.2)与步骤3.3)中X轴坐标差值的一半作为激光束中心轴线到C旋转轴线矢量的X向分量;3.4) Half of the X-axis coordinate difference in step 3.2) and step 3.3) is used as the X-direction component of the laser beam central axis to the C rotation axis vector;
3.5)将C旋转轴旋转到90°,A旋转轴0°位置不变,使用激光加工点在标准平板上表面加工第四标记点,记录此时设备Y轴坐标;3.5) Rotate the C rotation axis to 90°, keep the 0° position of the A rotation axis unchanged, use the laser processing point to process the fourth mark point on the upper surface of the standard plate, and record the Y-axis coordinates of the equipment at this time;
3.6)将C旋转轴旋转到270°,A旋转轴0°位置不变,将激光加工点移动到步骤5的第四标记点处,记录此时设备Y轴坐标;3.6) Rotate the C rotation axis to 270°, keep the 0° position of the A rotation axis unchanged, move the laser processing point to the fourth mark point in step 5, and record the Y-axis coordinates of the equipment at this time;
3.7)步骤3.5)与步骤3.6)中Y轴坐标差值的一半作为激光束中心轴线到C旋转轴线矢量的Y向分量;3.7) Half of the Y-axis coordinate difference in step 3.5) and step 3.6) is used as the Y-direction component of the laser beam central axis to the C rotation axis vector;
3.8)通过步骤3.4)得到的激光束中心轴线到C旋转轴线矢量的X向分量以及步骤3.7)得到的激光束中心轴线到C旋转轴线矢量的Y向分量,得到激光束中心轴线到C旋转轴线的矢量;3.8) through the X-direction component of the laser beam center axis obtained in step 3.4) to the C rotation axis vector and the Y-direction component of the laser beam center axis obtained in step 3.7) to the C rotation axis vector, obtain the laser beam center axis to the C rotation axis the vector;
4)通过以上方法将三组参数检测完成后,再将各组参数输入到控制系统中完成RTCP功能的精度补偿;4) After the three groups of parameters are detected by the above method, each group of parameters is input into the control system to complete the precision compensation of the RTCP function;
在数控多轴插补过程中,数控系统首先计算加工路径上每个插补点的位置(包含插补点坐标以及方向矢量),再将插补点位置转换为XYZAC五轴的运动位置坐标,在每个插补周期中AC旋转轴的运动所产生的偏置都必须由XYZ轴补偿过来,因此数控系统在得到上述补偿数据后,根据AC旋转轴之间在XYZ方向上的相对位置关系,计算出机床XYZ轴在AC旋转轴插补过程中的偏置补偿量,从而实现RTCP功能,并以此大幅提高加工效率及加工精度。During the CNC multi-axis interpolation process, the CNC system first calculates the position of each interpolation point on the machining path (including the coordinates of the interpolation point and the direction vector), and then converts the position of the interpolation point into the coordinates of the XYZAC five-axis motion position. In each interpolation cycle, the offset generated by the movement of the AC rotary axis must be compensated by the XYZ axis. Therefore, after the CNC system obtains the above compensation data, according to the relative positional relationship between the AC rotary axes in the XYZ direction, Calculate the offset compensation amount of the XYZ axis of the machine tool during the interpolation process of the AC rotary axis, so as to realize the RTCP function and greatly improve the machining efficiency and machining accuracy.
其中,上述步骤1)、步骤2)和步骤3)的前后顺序本发明不做要求,只要能够得到本发明三组参数即可,即骤1)、步骤2)和步骤3)的前后顺序可互换。Wherein, the sequence of above-mentioned step 1), step 2) and step 3) is not required by the present invention, as long as the three groups of parameters of the present invention can be obtained, that is, the sequence of step 1), step 2) and step 3) can be exchange.
采用本发明方法的具体实施例如下:The specific embodiment that adopts the method of the present invention is as follows:
RTCP的精度补偿参数包含若干个矢量,并且各矢量形成了矢量闭环,本方法针对这些矢量(激光加工点到A旋转轴线的Z向矢量,激光束中心轴线到C旋转轴线的矢量以及激光束中心轴线到第一旋转轴的矢量)提供了标定方法,进而实现了RTCP的精度补偿;The accuracy compensation parameters of RTCP include several vectors, and each vector forms a vector closed loop. This method is aimed at these vectors (the Z-direction vector from the laser processing point to the A rotation axis, the vector from the laser beam center axis to the C rotation axis, and the laser beam center axis to the first rotation axis) provides a calibration method, and then realizes the accuracy compensation of RTCP;
1)激光加工点到A旋转轴线的Z向矢量;1) The Z-direction vector from the laser processing point to the A rotation axis;
1.1)在工作台上固定一长度为10mm的标准平板;1.1) Fix a standard plate with a length of 10mm on the workbench;
1.2)将C旋转轴旋转至90°,A旋转轴旋转至90°;1.2) Rotate the C rotation axis to 90°, and the A rotation axis to 90°;
1.3)在激光加工头上安装一位移传感器,然后将激光加工点移动到标准平板右侧面,读取此时位移传感器示值F(该值表征了激光加工点落在标准平板上时,位移传感器到标准平板的距离),并记录X轴坐标;1.3) Install a displacement sensor on the laser processing head, then move the laser processing point to the right side of the standard plate, and read the value F of the displacement sensor at this time (this value represents the displacement when the laser processing point falls on the standard plate. The distance from the sensor to the standard plate), and record the X-axis coordinates;
1.4)旋转C旋转轴到270°,移动X轴使激光加工点移动至标准平板左侧面(确保此时位移传感器示值为F),记录此时X轴相对于步骤1.3)的△X;1.4) Rotate the C rotation axis to 270°, move the X axis to move the laser processing point to the left side of the standard plate (make sure the displacement sensor indicates F at this time), and record the △X of the X axis relative to step 1.3);
1.5)(△X-10)/2即为激光加工点到A旋转轴线的Z向矢量;1.5) (△X-10)/2 is the Z-direction vector from the laser processing point to the A rotation axis;
2)激光束中心轴线到A旋转轴线的矢量;2) The vector from the central axis of the laser beam to the rotation axis of A;
2.1)将标准平板固定于设备工作台上;2.1) Fix the standard plate on the equipment table;
2.2)将C旋转轴旋转至0°,A旋转轴旋转到90°位置,使用位移传感器确保加工点位于标准平板的前表面上,确保位移传感器示值为F,使用光束质量分析仪读取此时光斑在光束质量分析仪的位置(用光束质量分析仪可更精确的测出激光加工点的位置),记录此时设备Z轴坐标;2.2) Rotate the C rotation axis to 0°, the A rotation axis to 90°, use the displacement sensor to ensure that the processing point is located on the front surface of the standard plate, and ensure that the displacement sensor indicates F, and use the beam quality analyzer to read this The position of the light spot on the beam quality analyzer (the position of the laser processing point can be more accurately measured by the beam quality analyzer), and record the Z-axis coordinates of the equipment at this time;
2.3)将C旋转轴旋转180°,之后调整A旋转轴到-90°位置,通过设备Y轴移动激光加工点直到位移传感器示值为F,然后移动X轴和Z轴使激光加工点平移到步骤2.2)光束质量分析仪测量的位置处,并记录此时的Z轴坐标;2.3) Rotate the C rotation axis 180°, then adjust the A rotation axis to -90° position, move the laser processing point through the Y axis of the equipment until the displacement sensor shows F, then move the X axis and Z axis to translate the laser processing point to Step 2.2) At the position measured by the beam quality analyzer, and record the Z-axis coordinate at this time;
2.4)步骤2.2)与步骤2.3)中Z轴坐标差值的一半作为激光束中心轴线到A旋转轴线矢量的Y向分量;2.4) Half of the Z-axis coordinate difference in step 2.2) and step 2.3) is used as the Y-direction component of the laser beam central axis to the A rotation axis vector;
2.5)将C旋转轴旋转至90°,A旋转轴旋转至90°,使用位移传感器确保加工点位于标准平板的表面上,确保位移传感器示值为F,使用光束质量分析仪读取此时光斑在光束质量分析仪的位置(用光束质量分析仪可更精确的测出激光加工点的位置),记录此时设备Z轴坐标;2.5) Rotate the C rotation axis to 90°, the A rotation axis to 90°, use the displacement sensor to ensure that the processing point is located on the surface of the standard plate, ensure that the displacement sensor shows F, and use the beam quality analyzer to read the spot at this time At the position of the beam quality analyzer (the position of the laser processing point can be measured more accurately with the beam quality analyzer), record the Z-axis coordinates of the equipment at this time;
2.6)将C旋转轴旋转至270°,A旋转轴旋转至-90°,通过设备X轴移动激光加工点直到位移传感器示值为F,然后移动Y轴和Z轴使激光加工点平移到步骤2.5)光束质量分析仪测量的位置处,并记录此时的Z轴坐标;2.6) Rotate the C rotation axis to 270°, the A rotation axis to -90°, move the laser processing point through the X axis of the equipment until the displacement sensor indicates F, and then move the Y axis and Z axis to translate the laser processing point to the step 2.5) At the position measured by the beam quality analyzer, and record the Z-axis coordinates at this time;
2.7)步骤2.5)与步骤2.6)中Z轴坐标差值的一半作为激光束中心轴线到A旋转轴线矢量的X向分量;2.7) Half of the Z-axis coordinate difference in step 2.5) and step 2.6) is used as the X-direction component of the laser beam central axis to the A rotation axis vector;
2.8)将步骤2.4)得到的激光束中心轴线到A旋转轴线矢量的Y向分量和步骤2.7)得到的激光束中心轴线到A旋转轴线矢量的X向分量进行计算,得到激光束中心轴线到A旋转轴线的矢量;2.8) Calculate the Y-direction component of the laser beam central axis to A rotation axis vector obtained in step 2.4) and the X-direction component of the laser beam central axis to A rotation axis vector obtained in step 2.7), and obtain the laser beam central axis to A the vector of the axis of rotation;
3)激光束中心轴线到C旋转轴的矢量;3) The vector from the central axis of the laser beam to the C rotation axis;
3.1)将标准平板固定于设备工作台上;3.1) Fix the standard plate on the equipment table;
3.2)C旋转轴旋转到0°,A旋转轴旋转到0°位置,使用位移传感器确保加工点位于标准平板的上表面上,确保位移传感器示值为F。使用光束质量分析仪读取此时光斑在光束质量分析仪的位置(用光束质量分析仪可更精确的测出激光加工点的位置),记录此时设备X轴坐标;3.2) The C rotation axis is rotated to 0°, the A rotation axis is rotated to the 0° position, and the displacement sensor is used to ensure that the processing point is located on the upper surface of the standard flat plate, and the indication value of the displacement sensor is F. Use the beam quality analyzer to read the position of the spot on the beam quality analyzer at this time (the beam quality analyzer can be used to more accurately measure the position of the laser processing point), and record the X-axis coordinates of the equipment at this time;
3.3)将C旋转轴旋转到180°,A旋转轴0°位置不变,将激光加工点移动到步骤3.2)光束质量分析仪测量的位置处,记录此时设备X轴坐标;3.3) Rotate the C rotation axis to 180°, keep the 0° position of the A rotation axis unchanged, move the laser processing point to the position measured by the beam quality analyzer in step 3.2), and record the X-axis coordinates of the equipment at this time;
3.4)步骤3.2)与步骤3.3)中X轴坐标差值的一半作为激光束中心轴线到C旋转轴线矢量的X向分量;3.4) Half of the X-axis coordinate difference in step 3.2) and step 3.3) is used as the X-direction component of the laser beam central axis to the C rotation axis vector;
3.5)将C旋转轴旋转到90°,A旋转轴0°位置不变,使用光束质量分析仪读取此时光斑在光束质量分析仪的位置(用光束质量分析仪可更精确的测出激光加工点的位置),记录此时设备Y轴坐标;3.5) Rotate the C rotation axis to 90°, and the 0° position of the A rotation axis remains unchanged. Use the beam quality analyzer to read the position of the spot on the beam quality analyzer at this time (the beam quality analyzer can be used to measure the laser beam more accurately. The location of the processing point), record the Y-axis coordinates of the equipment at this time;
3.6)将C旋转轴旋转到270°,A旋转轴0°位置不变,将激光加工点移动到步骤3.5)光束质量分析仪测量的位置处,记录此时设备Y轴坐标;3.6) Rotate the C rotation axis to 270°, keep the 0° position of the A rotation axis unchanged, move the laser processing point to the position measured by the beam quality analyzer in step 3.5), and record the Y-axis coordinates of the equipment at this time;
3.7)步骤3.5)与步骤3.6)中Y轴坐标差值的一半作为激光束中心轴线到C旋转轴线矢量的Y向分量;3.7) Half of the Y-axis coordinate difference in step 3.5) and step 3.6) is used as the Y-direction component of the laser beam central axis to the C rotation axis vector;
3.8)将步骤3.4)得到的激光束中心轴线到C旋转轴线矢量的X向分量和步骤3.7)得到的激光束中心轴线到C旋转轴线矢量的Y向分量进行计算,得到激光束中心轴线到C旋转轴线的矢量;3.8) Calculate the X-direction component of the laser beam central axis to the C rotation axis vector obtained in step 3.4) and the Y-direction component of the laser beam central axis to the C rotation axis vector obtained in step 3.7), and obtain the laser beam central axis to C the vector of the axis of rotation;
4)通过以上方法将三组参数检测完成后,再将各组参数输入到控制系统中完成RTCP功能的精度补偿。4) After the three groups of parameters are detected by the above method, each group of parameters is input into the control system to complete the precision compensation of the RTCP function.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810699394.2A CN108838563B (en) | 2018-06-29 | 2018-06-29 | A five-axis laser processing equipment RTCP precision compensation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810699394.2A CN108838563B (en) | 2018-06-29 | 2018-06-29 | A five-axis laser processing equipment RTCP precision compensation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108838563A true CN108838563A (en) | 2018-11-20 |
CN108838563B CN108838563B (en) | 2019-12-03 |
Family
ID=64200702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810699394.2A Active CN108838563B (en) | 2018-06-29 | 2018-06-29 | A five-axis laser processing equipment RTCP precision compensation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108838563B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111408861A (en) * | 2020-04-27 | 2020-07-14 | 中国科学院西安光学精密机械研究所 | Five-axis laser equipment RTCP calibration equipment and method |
CN111408836A (en) * | 2020-04-23 | 2020-07-14 | 中国科学院西安光学精密机械研究所 | High-precision adjusting method for double-swing-head laser processing light beam pointing and laser processing system |
CN111673292A (en) * | 2020-06-04 | 2020-09-18 | 西安中科微精光子制造科技有限公司 | RTCP error calibration compensation method for five-axis laser processing equipment |
CN112475591A (en) * | 2020-11-26 | 2021-03-12 | 北京航空航天大学 | Double-swing-head five-axis linkage laser processing machine tool and working method |
CN112475592A (en) * | 2020-11-26 | 2021-03-12 | 北京航空航天大学 | Inherent parameter calibration method for double-swing-head five-axis linkage laser processing machine tool |
CN113146068A (en) * | 2021-04-28 | 2021-07-23 | 沧州领创激光科技有限公司 | Groove cutting intelligence laser cutting machine |
CN114193008A (en) * | 2021-11-26 | 2022-03-18 | 中国科学院西安光学精密机械研究所 | RTCP parameter calibration method for five-axis linkage laser processing equipment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6844690B2 (en) * | 2002-05-24 | 2005-01-18 | Honeywell International Inc. | DC offset compensator |
CN101623867A (en) * | 2008-07-11 | 2010-01-13 | 中国科学院沈阳自动化研究所 | A device and method for enabling a robot to track a specified path with high precision |
CN101980091A (en) * | 2010-08-23 | 2011-02-23 | 西安交通大学苏州研究院 | Method for compensating central point of double-turntable five-axis linked numerical control machining rotary tool |
CN102540971A (en) * | 2012-01-05 | 2012-07-04 | 哈尔滨飞机工业集团有限责任公司 | Five-shaft rotating precision compensation method for head-change type multiple five-shaft head numerical control machine tool |
CN102608951A (en) * | 2011-01-25 | 2012-07-25 | 沈阳机床(集团)设计研究院有限公司上海分公司 | Five-axis linkage cutter shaft vector plane interpolation algorithm |
CN105081563A (en) * | 2015-09-18 | 2015-11-25 | 大族激光科技产业集团股份有限公司 | Optical path compensation method for laser processing equipment |
CN107717219A (en) * | 2017-11-28 | 2018-02-23 | 上海航天精密机械研究所 | Five axle three-dimensional laser cutting machine RTCP trueness error compensation methodes |
-
2018
- 2018-06-29 CN CN201810699394.2A patent/CN108838563B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6844690B2 (en) * | 2002-05-24 | 2005-01-18 | Honeywell International Inc. | DC offset compensator |
CN101623867A (en) * | 2008-07-11 | 2010-01-13 | 中国科学院沈阳自动化研究所 | A device and method for enabling a robot to track a specified path with high precision |
CN101980091A (en) * | 2010-08-23 | 2011-02-23 | 西安交通大学苏州研究院 | Method for compensating central point of double-turntable five-axis linked numerical control machining rotary tool |
CN102608951A (en) * | 2011-01-25 | 2012-07-25 | 沈阳机床(集团)设计研究院有限公司上海分公司 | Five-axis linkage cutter shaft vector plane interpolation algorithm |
CN102540971A (en) * | 2012-01-05 | 2012-07-04 | 哈尔滨飞机工业集团有限责任公司 | Five-shaft rotating precision compensation method for head-change type multiple five-shaft head numerical control machine tool |
CN105081563A (en) * | 2015-09-18 | 2015-11-25 | 大族激光科技产业集团股份有限公司 | Optical path compensation method for laser processing equipment |
CN107717219A (en) * | 2017-11-28 | 2018-02-23 | 上海航天精密机械研究所 | Five axle three-dimensional laser cutting machine RTCP trueness error compensation methodes |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111408836A (en) * | 2020-04-23 | 2020-07-14 | 中国科学院西安光学精密机械研究所 | High-precision adjusting method for double-swing-head laser processing light beam pointing and laser processing system |
CN111408836B (en) * | 2020-04-23 | 2021-05-18 | 中国科学院西安光学精密机械研究所 | High-precision adjustment method and laser processing system of double-swing head laser processing beam pointing |
CN111408861A (en) * | 2020-04-27 | 2020-07-14 | 中国科学院西安光学精密机械研究所 | Five-axis laser equipment RTCP calibration equipment and method |
CN111408861B (en) * | 2020-04-27 | 2021-06-22 | 中国科学院西安光学精密机械研究所 | A five-axis laser equipment RTCP calibration device and method |
CN111673292A (en) * | 2020-06-04 | 2020-09-18 | 西安中科微精光子制造科技有限公司 | RTCP error calibration compensation method for five-axis laser processing equipment |
CN112475591A (en) * | 2020-11-26 | 2021-03-12 | 北京航空航天大学 | Double-swing-head five-axis linkage laser processing machine tool and working method |
CN112475592A (en) * | 2020-11-26 | 2021-03-12 | 北京航空航天大学 | Inherent parameter calibration method for double-swing-head five-axis linkage laser processing machine tool |
CN112475591B (en) * | 2020-11-26 | 2021-08-27 | 北京航空航天大学 | Double-swing-head five-axis linkage laser processing machine tool and working method |
CN113146068A (en) * | 2021-04-28 | 2021-07-23 | 沧州领创激光科技有限公司 | Groove cutting intelligence laser cutting machine |
CN114193008A (en) * | 2021-11-26 | 2022-03-18 | 中国科学院西安光学精密机械研究所 | RTCP parameter calibration method for five-axis linkage laser processing equipment |
CN114193008B (en) * | 2021-11-26 | 2022-08-19 | 中国科学院西安光学精密机械研究所 | RTCP parameter calibration method for five-axis linkage laser processing equipment |
Also Published As
Publication number | Publication date |
---|---|
CN108838563B (en) | 2019-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108838563B (en) | A five-axis laser processing equipment RTCP precision compensation method | |
CN111673292B (en) | RTCP error calibration compensation method for five-axis laser processing equipment | |
CN105404238B (en) | A kind of linearisation scaling method of the gauge head pose in machine laser measurement | |
CN111338291B (en) | Abbe error compensation method and system based on machine tool positioning accuracy measurement | |
CN112378345B (en) | Gear angle offset measuring device and method based on laser displacement sensor | |
CN107883871A (en) | A kind of worm measuring method | |
CN107253102A (en) | A kind of precision grinding machining method of special-shaped thin wall labyrinth workpiece | |
CN115562161A (en) | Tool cutting path machining error compensation method based on online monitoring | |
CN103481122A (en) | Contact measurement error compensation method oriented to freeform surface and compensation system | |
WO2002032620A1 (en) | Measuring method and device, machine tool having such device, and work processing method | |
CN109648398A (en) | A kind of part size on-line measuring device and its detection method | |
CN103909473B (en) | In tangential point tracking grinding, crank shaft angle is to locating measurement method and device | |
CN108723414B (en) | The Machining Technology of Guaranteeing the Position Tolerance of the Main Hole System of the Precision Box Parts of the CNC Machine Tool | |
CN114782513B (en) | Point laser sensor mounting pose calibration method based on plane | |
CN110539020A (en) | A precision self-diagnosis method for a dual-five-axis mirror milling machine tool | |
CN111408861B (en) | A five-axis laser equipment RTCP calibration device and method | |
TW202035083A (en) | Method for the correction of axis motions | |
CN104864811A (en) | In-situ measurement method for complex curved surface of blade | |
CN107791521A (en) | A kind of center support system and method for 3 D-printing equipment shower nozzle and numerical control device cutter | |
CN116810483A (en) | Five-axis machine tool rotating shaft geometric error identification method based on machining test | |
CN112355712B (en) | Trigger type on-machine measurement precision calibration method and system | |
CN108614519B (en) | A system and method for online error measurement of CNC machine tools based on laser lattice | |
CN115365941B (en) | Automatic workpiece pose calibration method for optical polishing | |
CN110645935B (en) | Accurate calibration method for installation offset of integrated displacement sensor of numerical control rotating shaft | |
CN207982928U (en) | The caliberating device of contact on-line detecting system for lathe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210527 Address after: Room 301, electronic workshop 1, No.32 Chuanghui Road, Zhangba Street office, high tech Zone, Xi'an City, Shaanxi Province, 710019 Patentee after: XI'AN MICROMACH TECHNOLOGY Co.,Ltd. Address before: 710119, No. 17, information Avenue, new industrial park, hi tech Zone, Shaanxi, Xi'an Patentee before: XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS |
|
TR01 | Transfer of patent right | ||
CP03 | Change of name, title or address |
Address after: 710119 No. 3300, wei26th Road, high tech Zone, Xi'an, Shaanxi Province Patentee after: Xi'an Zhongke Weijing Photon Technology Co.,Ltd. Address before: Room 301, electronic workshop 1, No.32 Chuanghui Road, Zhangba Street office, high tech Zone, Xi'an City, Shaanxi Province, 710019 Patentee before: XI'AN MICROMACH TECHNOLOGY Co.,Ltd. |
|
CP03 | Change of name, title or address |