CN108816251A - 一种焦化粗苯深度加氢精制生产芳烃化合物的方法 - Google Patents

一种焦化粗苯深度加氢精制生产芳烃化合物的方法 Download PDF

Info

Publication number
CN108816251A
CN108816251A CN201810694046.6A CN201810694046A CN108816251A CN 108816251 A CN108816251 A CN 108816251A CN 201810694046 A CN201810694046 A CN 201810694046A CN 108816251 A CN108816251 A CN 108816251A
Authority
CN
China
Prior art keywords
crude benzene
coking crude
aromatic compound
nickel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810694046.6A
Other languages
English (en)
Inventor
刘理华
刘杨
林鹏增
刘书群
张雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Tai Tai Chemical Technology Co Ltd
Huaibei Normal University
Original Assignee
Anhui Tai Tai Chemical Technology Co Ltd
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Tai Tai Chemical Technology Co Ltd, Huaibei Normal University filed Critical Anhui Tai Tai Chemical Technology Co Ltd
Priority to CN201810694046.6A priority Critical patent/CN108816251A/zh
Publication of CN108816251A publication Critical patent/CN108816251A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0341Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0358Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种焦化粗苯深度加氢精制生产芳烃化合物的方法,该方法首先将焦化粗苯除杂、分馏和预加氢等处理,在预硫化型Co(Ni)Mo(W)催化剂的作用下,经加氢脱硫、加氢脱氮等反应和萃取精馏得到精制苯、甲苯和二甲苯。本发明充分利用可溶性硫代钼(钨)酸盐活性成分和钴(镍)盐为助剂前驱体,制备拥有高加氢活性的硫化态Co(Ni)Mo(W)催化剂,从而实现焦化粗苯中总硫含量的进一步降低(0.2mg/kg),提高芳烃化合物的品质。

Description

一种焦化粗苯深度加氢精制生产芳烃化合物的方法
技术领域
本发明属于煤化工和芳烃化合物生产技术领域,具体涉及一种焦化粗苯深度加氢精制生产芳烃化合物的方法。
背景技术
焦化粗苯是从炼焦过程中产生的粗煤气中回收得到的一种轻质馏分油,其中苯、甲苯、二甲苯芳烃化合物含量可达90%以上,焦化粗苯的产量与炼焦煤中挥发分组成,炼焦工艺、洗苯吸收剂等因素有密切关系,一般为装炉煤的1%左右,据统计2017年焦化粗苯达428万吨,因此焦化粗苯是有机化工原料苯、甲苯和二甲苯的重要来源之一。但是焦化粗苯含有多种杂质,特别是硫化合物的含量较高(3000~8500mg/Kg),容易导致其利用过程中催化剂中毒和影响下游产品质量,为此焦化粗苯在作为化工原料使用前必须精制。
目前焦化粗苯精制技术主要包括H2SO4酸洗、萃取精馏和加氢精制工艺。酸洗法具有能耗低和脱硫度较高等优点,但是该过程芳烃化合物损失率较大(8-10%),产生大量的酸焦油和残渣,造成严重的环境污染,已经被国家环保部门列入限制和淘汰范围;萃取精馏法能够将噻吩从焦化粗苯中分离,对环境友好,但是由于其深度脱硫能力有限,而且能耗高,一般配合其他深度脱硫方法使用。加氢精制法不仅拥有产品品质和收率高的特点,而有利于环境和劳动保护,具有较好的经济效益和社会效益,是当前最先进的粗苯加工方法,其核心技术是加氢精制催化剂。
焦化粗苯加氢精制工艺依据反应温度分为高温加氢(600-630℃)和低温加氢(320-380℃)。高温加氢产品只有纯苯,同时由于反应温度和操作压力较高对反应设备要求高,限制了其在工业生产中的广泛应用;而低温加氢能够生产“三苯”,经济效益好,并且催化剂和关键设备能够完全国产化,因此成为该类技术的主流发展方向。焦化粗苯低温加氢精制催化剂通常为负载型过渡金属硫化物,采用VIB族Mo或W硫化物为主活性组分和VIII族Co或Ni硫化物为助活性组分。ZL201410148412.X公开了一种焦化粗苯加氢精制的催化剂及其制备方法,以球形γ-Al2O3为载体,采用共浸渍法浸渍钼酸铵和硝酸钴,然后再浸渍Al(OH)3溶液,经干燥焙烧制得CoMo/Al2O3催化剂,其加氢脱硫活性高于同类催化剂。由于在浸渍过程中载体氧化铝与杂多酸盐浸渍液可能发生反应生成铝酸钴类化合物和(NH4)3[Al(OH)6Mo6O18]类杂多酸盐,导致活性组分与载体形成强相互作用(Mo-O-Al、Co-O-Al键),在硫化过程中,这些化学键很难断裂,形成具有催化活性的硫化态金属。CN201610872326.2公开了一种焦化粗苯加氢脱硫工艺,以Mo2N、W2N、Mo2C、WC为活性组分,以Cr2O3、ZrO2、CeO2等为助剂,反应温度为320-380℃,该工艺可以将焦化粗苯中的总硫含量降低到0.1ppm以下,但是由于焦化粗苯中的硫含量高(>4000ppm),在此工艺条件下Mo(W)氮化物和碳化物容易被硫化而失去活性。
综上所述,开发对噻吩类化合物具有高加氢脱硫活性、选择性和稳定性的催化剂对推广该技术的应用具有重要意义。
发明内容
本发明的目的正是为了解决上述问题,而提出一种焦化粗苯深度加氢精制生产芳烃化合物的方法,采用硫化态前驱体,催化剂使用时无需硫化,减化硫化工艺,缩短开工时间。
本发明提供了一种焦化粗苯深度加氢精制生产芳烃化合物的方法,具体方法步骤如下:
1)原料预处理:将焦化粗苯进行过滤、液相加氢和预加氢处理;
2)加氢精制:将步骤1)预处理的焦化粗苯进行加热,加热到反应温度后再导入到高压固定床反应器,在高压固定床反应器内加有硫化型催化剂并进行加氢精制反应,产物气液分离;
3)产品分离:从步骤2)液体产物中分离不凝气体H2、H2S、NH3,然后进行萃取精馏以及精馏操作,实现苯、甲苯和二甲苯分离。
作为优选手段,所述步骤2)中高压固定床反应器内反应条件为:氢气压力为2.0-6.0MPa,反应温度为280-350℃,液时空速为0.6-2.0h-1,氢油体积比为300-600。
作为进一步地优选手段,所述硫化型催化剂组成如下:活性组分为硫代钼酸盐或硫代钨酸盐,助剂为钴盐或镍盐,其中活性组分按重量百分比以MoO3或WO3计算为5-18%,助剂组分按重量百分比以CoO或NiO计算为1-4%,载体余量。
作为进一步地优选手段,所述硫代钼酸盐为烷基取代的硫代钼酸盐或四硫代钼酸铵,所述硫代钨酸盐为四硫代钨酸铵或烷基取代的硫代钨酸盐。
作为进一步地优选手段,所述钴盐为硝酸钴、醋酸钴、硫酸钴、氯化钴、碱式碳酸钴中的任意一种或任意几种的混合物,所述镍盐为硝酸镍、醋酸镍、硫酸镍、氯化镍、碱式碳酸镍中的任意一种或任意几种的混合物。
硫化型催化剂的制备方法,具体步骤如下:
1)催化剂载体制备:将载体粉料与粘结剂、扩孔剂、助挤剂混合,然后采用压片、挤条的方法制成一定形状和大小的颗粒,经干燥和焙烧,制得颗粒状载体;
2)活性组分的负载:将硫代钼酸盐或硫代钨酸盐溶解于碱性溶液,得澄清溶液,将澄清溶液浸渍于步骤1)中的颗粒状载体中,经静置、干燥后,将其放置于管式炉中,在惰性气氛中加热处理,处理温度200-500℃,处理时间1-6h,得负载型活性组分;
3)助剂的负载:配置钴盐或镍盐溶液,将钴盐或镍盐溶液浸渍于负载型活性组分中,室温静置、真空干燥,将其放置于管式炉中,在惰性气氛中加热处理,处理温度300-500℃,处理时间1-6h,得加氢精制催化剂。
步骤1)中载体粉料为氧化铝、二氧化硅、二氧化钛、分子筛、氧化镁中的一种或几种的混合物;步骤2)中碱性溶液为氨水、乙二胺、乙醇胺、二乙醇胺、三乙醇胺中的一种或几种的混合物;步骤2)和步骤3)中的惰性气氛均为氢气、氮气、氩气、氦气中的一种或几种的混合物。
催化活性评价:将预分馏和预加氢处理的焦化粗苯导入高压反应器,在硫化态Co(Ni)Mo(W)催化剂作用下进行加氢精制,反应条件:反应温度280-350℃,反应压力2.0-6.0MPa,氢油体积比300-600,加氢精制产物经萃取精馏等分离得到苯、甲苯和二甲苯等芳烃化合物。
本发明有益效果:1、采用硫化态Co(Ni)Mo(W)催化剂,加氢精制后的焦化粗苯总硫含量0.1-1.0mg/kg,芳烃化合物损失率0.3-1.2%,与传统催化剂相比,具有较大的优势。
2、本发明采用硫化态前驱体,催化剂使用时无需硫化,减化硫化工艺,缩短开工时间。
附图说明
图1是本发明硫化型催化剂的XRD谱图。
具体实施方式
下面结合附图对本发明作进一步详细描述:
本发明的一种焦化粗苯深度加氢精制生产芳烃化合物的方法,具体方法步骤如下:
1)原料预处理:将焦化粗苯进行过滤、分馏和预加氢处理;
2)加氢精制:将步骤1)预处理的焦化粗苯进行加热,加热到反应温度后再导入到高压固定床反应器,在高压固定床反应器内加有硫化型催化剂并进行加氢精制反应,产物气液分离,高压固定床反应器内反应条件为:氢气压力为2.0-6.0MPa,反应温度为280-350℃,液时空速为0.6-2.0h-1,氢油体积比为300-600;
3)产品分离:将步骤2)中分离出的液体经萃取精馏进行产品分离,实现苯、甲苯和二甲苯分离。
催化剂制备的六个实施例:
实施例1
称取含水量为30.5%的拟薄水铝石(烟台恒辉化工有限公司)200g,田菁粉6g,充分混合后加入1.5%的硝酸水溶液193ml,经充分混捏后在挤条机上挤成直径为1.6mm的圆柱形条,并在烘箱中于110℃下烘12小时,得到干燥的载体。然后置于马弗炉中,在温度为550℃的空气中焙烧4小时,得到催化剂载体A1。
称取四硫代钼酸铵9.0加入9ml三乙醇胺和62ml蒸馏水,搅拌溶解,得到血红色的澄清溶液,将该溶液等体积浸渍到94g载体A1,在室温下静置2小时,然后60℃烘箱中干燥12小时,然后将其置于管式炉中,在氮气气氛中焙烧3小时(200℃),得到负载型硫化钼B1。
称取3.9g硝酸镍溶解于47ml蒸馏水中,用该溶液等体积浸渍到负载型硫化钼B1,在室温下放置2小时,然后60℃真空干燥箱中4小时。将其置于管式炉中,在氮气气氛中焙烧3小时(300℃),得到硫化态Ni1Mo5加氢精制催化剂C1。
实施例2:
称取四硫代钨酸铵15.0g加入13ml乙醇胺和45ml蒸馏水,搅拌溶解,得到血红色的澄清溶液。将该溶液等体积浸渍到87.5g载体A1,在室温下静置2小时,然后60℃烘箱中干燥12小时,然后将其置于管式炉中,在氮气气氛中焙烧3小时(200℃),得到负载型硫化钨B2。
称取9.7g硝酸钴溶解于44ml蒸馏水中,用该溶液等体积浸渍到上述负载型硫化钨B2,在室温下放置2小时,然后60℃真空干燥箱中4小时。将其置于管式炉中,在氮气气氛中焙烧2小时(500℃),得到硫化态Co2W10加氢精制催化剂C2。
实施例3:
称取四硫代钼酸铵36.1g加入24ml二乙醇胺和32ml蒸馏水,搅拌溶解,得到血红色的澄清溶液。将该溶液等体积浸渍到76.0g载体A1,在室温下静置2小时,然后60℃烘箱中干燥12小时,然后将其置于管式炉中,在氮气气氛中焙烧3小时(200℃),得到负载型硫化钼B3。
称取15.6g硝酸镍溶解于39ml蒸馏水中,用该溶液等体积浸渍到上述负载型硫化钼B3,在室温下放置2小时,然后60℃真空干燥箱中4小时。将其置于管式炉中,在氮气气氛中焙烧3小时(400℃),得到硫化态Ni4Mo20加氢精制催化剂C3。
实施例4:
称取含水量为30.5%的拟薄水铝石(烟台恒辉化工有限公司)170g,50g硅溶胶(青岛海洋化工有限公司),田菁粉6g,充分混合后加入2%的硝酸水溶液160ml,经充分混捏后在挤条机上挤成直径为1.6mm的圆柱形条,并在烘箱中于120℃下烘12小时,得到干燥的载体。然后置于马弗炉中,在温度为500℃的空气中焙烧4小时,得到催化剂载体A2。
称取四硫代钼酸铵27.1g加入31ml乙醇胺和22ml蒸馏水,搅拌溶解,得到血红色的澄清溶液。将该溶液等体积浸渍到82g载体A2,在室温下静置2小时,然后60℃烘箱中干燥12小时,然后将其置于管式炉中,在氮气气氛中焙烧3小时(250℃),得到负载型硫化钼B4。
称取11.7g硝酸钴溶解于32ml蒸馏水中,用该溶液等体积浸渍到上述负载型硫化钼B2,在室温下放置2小时,然后60℃真空干燥箱中4小时。将其置于管式炉中,在氮气气氛中焙烧3小时(350℃),得到硫化态Co3Mo15加氢精制催化剂C4。
实施例5:
称取含水量为30.5%的拟薄水铝石(烟台恒辉化工有限公司)150g,50gSBA-15分子筛,田菁粉6g,充分混合后加入1.8%的硝酸水溶液190ml,经充分混捏后在挤条机上挤成直径为1.6mm的圆柱形条,并在烘箱中于120℃下烘12小时,得到干燥的载体。然后置于马弗炉中,在温度为500℃的空气中焙烧3小时,得到催化剂载体A3。
称取四硫代钼酸铵15.0g加入31ml乙醇胺和38ml蒸馏水,搅拌溶解,得到血红色的澄清溶液。将该溶液等体积浸渍到87g载体A3,在室温下静置2小时,然后60℃烘箱中干燥12小时,然后将其置于管式炉中,在氮气气氛中焙烧3小时(250℃),得到负载型硫化钼B5。
称取11.7g硝酸镍溶解于32ml蒸馏水中,用该溶液等体积浸渍到上述负载型硫化钼B5,在室温下放置2小时,然后60℃真空干燥箱中4小时。将其置于管式炉中,在氮气气氛中焙烧3小时(300℃),得到硫化态Ni3Mo10加氢精制催化剂C5。
实施例6:
催化剂C1的活性评价
在拓川100ml小型连续加氢反应装置上进行催化剂的柴油加氢活性评价,反应器为24×800mm的不锈钢管,催化剂的装填量100ml,评价所用原料油为焦化粗苯(临涣焦化股份有限公司),其密度为0.786,含硫量为4258mg/kg,含氮量为187mg/kg。
将100ml催化剂C1装入加氢反应器中,反应条件:氢气压力2.5MPa,反应温度330℃,空速2.0h-1,氢油比300。具体开工条件如下:以40℃/h的升温速率将反应温度升至120℃,保持该温度3小时使催化剂脱水,然后以40℃/h的升温速率将反应温度升至350℃,保持该温度3小时使催化剂活化。活化完成后将反应器温度降至250℃,原料进料,流速为200ml/h,然后以40℃/h的升温速率将反应温度升至330℃,保持该温度稳定24小时后取样分析,评价结果见表1。
催化剂C2、C3、C4、C5的活性评价所用的评价装置、装填量、原料、实验条件完全同实例6。评价结果见表1。
表1焦化粗苯加氢精制评价结果
从表1可以看出,本发明焦化粗苯深度加氢精制催化剂具有较高的活性,能够满足工业化生产的需求,同时经实验验证具有较高的稳定性。
与传统加氢精制催化剂相比,本发明充分利用可溶性硫代钼(钨)酸盐在惰性气氛(尤其氢气气氛)中加热容易分解为Mo(W)S3,并进一步分解成低价态的Mo(W)S2,使催化剂表面具有较多的type II Co(Ni)Mo(W)S活性相,制备的硫化态Co(Ni)Mo(W)催化剂拥有高加氢脱硫活性。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
本发明不限于以上对实施例的描述,本领域技术人员根据本发明揭示的内容,在本发明基础上不必经过创造性劳动所进行的改进和修改,都应该在本发明的保护范围之内。

Claims (5)

1.一种焦化粗苯深度加氢精制生产芳烃化合物的方法,其特征在于:具体方法步骤如下:
1)原料预处理:将焦化粗苯进行过滤、液相加氢和预加氢处理;
2)加氢精制:将步骤1)预处理的焦化粗苯进行加热,加热到反应温度后再导入到高压固定床反应器,在高压固定床反应器内加有硫化型催化剂并进行加氢精制反应,产物气液分离;
3)产品分离:从步骤2)液体产物中分离不凝气体H2、H2S、NH3,然后进行萃取精馏以及精馏操作,实现苯、甲苯和二甲苯分离。
2.根据权利要求1所述的一种焦化粗苯深度加氢精制生产芳烃化合物的方法,其特征在于:所述步骤2)中高压固定床反应器内反应条件为:氢气压力为2.0-6.0MPa,反应温度为280-350℃,液时空速为0.6-2.0h-1,氢油体积比为300-600。
3.根据权利要求1所述的一种焦化粗苯深度加氢精制生产芳烃化合物的方法,其特征在于:所述硫化型催化剂组成如下:活性组分为硫代钼酸盐或硫代钨酸盐,助剂为钴盐或镍盐,其中活性组分按重量百分比以MoO3或WO3计算为5-18%,助剂组分按重量百分比以CoO或NiO计算为1-4%,载体余量。
4.根据权利要求3所述的一种焦化粗苯深度加氢精制生产芳烃化合物的方法,其特征在于:所述硫代钼酸盐为烷基取代的硫代钼酸盐或四硫代钼酸铵,所述硫代钨酸盐为四硫代钨酸铵或烷基取代的硫代钨酸盐。
5.根据权利要求3所述的一种焦化粗苯深度加氢精制生产芳烃化合物的方法,其特征在于:所述钴盐为硝酸钴、醋酸钴、硫酸钴、氯化钴、碱式碳酸钴中的任意一种或任意几种的混合物,所述镍盐为硝酸镍、醋酸镍、硫酸镍、氯化镍、碱式碳酸镍中的任意一种或任意几种的混合物。
CN201810694046.6A 2018-06-29 2018-06-29 一种焦化粗苯深度加氢精制生产芳烃化合物的方法 Pending CN108816251A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810694046.6A CN108816251A (zh) 2018-06-29 2018-06-29 一种焦化粗苯深度加氢精制生产芳烃化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810694046.6A CN108816251A (zh) 2018-06-29 2018-06-29 一种焦化粗苯深度加氢精制生产芳烃化合物的方法

Publications (1)

Publication Number Publication Date
CN108816251A true CN108816251A (zh) 2018-11-16

Family

ID=64135017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810694046.6A Pending CN108816251A (zh) 2018-06-29 2018-06-29 一种焦化粗苯深度加氢精制生产芳烃化合物的方法

Country Status (1)

Country Link
CN (1) CN108816251A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926071A (zh) * 2019-03-22 2019-06-25 安徽卓泰化工科技有限公司 一种焦化粗苯预加氢处理方法
CN114225942A (zh) * 2021-12-24 2022-03-25 西安元创化工科技股份有限公司 一种焦化粗苯加氢精制级配催化剂的制备方法及应用
CN115505425A (zh) * 2022-09-19 2022-12-23 连云港鹏辰特种新材料有限公司 一种双氧水生产用高沸点高纯度溶剂油的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557917A (zh) * 2004-02-13 2004-12-29 中国石油天然气集团公司 一种硫化型加氢催化剂及其制备方法
CN103274885A (zh) * 2013-06-08 2013-09-04 四川省煤焦化集团有限公司 粗苯加氢精制工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557917A (zh) * 2004-02-13 2004-12-29 中国石油天然气集团公司 一种硫化型加氢催化剂及其制备方法
CN103274885A (zh) * 2013-06-08 2013-09-04 四川省煤焦化集团有限公司 粗苯加氢精制工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926071A (zh) * 2019-03-22 2019-06-25 安徽卓泰化工科技有限公司 一种焦化粗苯预加氢处理方法
CN114225942A (zh) * 2021-12-24 2022-03-25 西安元创化工科技股份有限公司 一种焦化粗苯加氢精制级配催化剂的制备方法及应用
CN114225942B (zh) * 2021-12-24 2024-01-19 西安元创化工科技股份有限公司 一种焦化粗苯加氢精制级配催化剂的制备方法及应用
CN115505425A (zh) * 2022-09-19 2022-12-23 连云港鹏辰特种新材料有限公司 一种双氧水生产用高沸点高纯度溶剂油的制备方法

Similar Documents

Publication Publication Date Title
CA2620656C (en) Process for preparing a catalytic composition for the hydroconversion ofpetroleum fractions
CN102125846B (zh) 一种硫醇醚化催化剂
CN101590414B (zh) 一种原位分解法制备加氢精制催化剂的方法
Liu et al. Synthesis, characterization and hydrodesulfurization properties of nickel–copper–molybdenum catalysts for the production of ultra-low sulfur diesel
CN101914387B (zh) 一种裂解乙烯副产碳九催化提质方法
CN104437518B (zh) 一种选择性加氢脱硫催化剂及其制备和应用
CN104117362B (zh) 一种提高NiMo柴油加氢精制催化剂加氢活性的催化剂及制备方法
CN101157056A (zh) 含镍或钴的加氢催化剂载体、加氢催化剂及其制备方法
CN102784656A (zh) 一种低温焙烧的加氢精制催化剂及其制备方法
US20060060509A1 (en) Process for the hydroprocessing of heavy hydrocarbon feeds using at least two reactors
CN108816251A (zh) 一种焦化粗苯深度加氢精制生产芳烃化合物的方法
CN105772034B (zh) 一种多环芳烃加氢催化剂的制备方法、催化剂及其应用
CN102989493B (zh) 一种重油加氢处理复合催化剂的制备方法
KR20140079304A (ko) 바나듐을 포함하는 잔사 수소처리 촉매 및 잔사 수소전환 공정에서의 그의 용도
CN102553567B (zh) 以氧化铝为载体的含vb金属组分的加氢催化剂、制备及其应用
CN103386327B (zh) 一种选择性加氢脱硫催化剂及其制备和应用
CN102626635B (zh) 一种煤焦油脱氮催化剂及其制备和应用
CN102423712B (zh) 一种高活性劣质柴油加氢精制催化剂的制备方法
CN109468144A (zh) 一种fcc汽油轻馏分脱二烯烃的方法
CN100478423C (zh) 催化裂化汽油选择性加氢脱硫催化剂及其制备方法
CN102211029B (zh) 一种柴油加氢脱硫硫化物催化剂的制备方法
CN104511287A (zh) 一种硫醇醚化催化剂的制备方法
CN112691681B (zh) 富芳轻质馏分油选择性加氢催化剂及其制备方法和应用
CN102397790A (zh) 一种重油加氢处理催化剂、制备及其应用
CN106914260A (zh) 油品加氢精制催化剂、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181116