CN108714422A - 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用 - Google Patents

一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN108714422A
CN108714422A CN201810345855.6A CN201810345855A CN108714422A CN 108714422 A CN108714422 A CN 108714422A CN 201810345855 A CN201810345855 A CN 201810345855A CN 108714422 A CN108714422 A CN 108714422A
Authority
CN
China
Prior art keywords
mixed
mtiox
titanium silicate
preparation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810345855.6A
Other languages
English (en)
Other versions
CN108714422B (zh
Inventor
许效红
何淑仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201810345855.6A priority Critical patent/CN108714422B/zh
Publication of CN108714422A publication Critical patent/CN108714422A/zh
Application granted granted Critical
Publication of CN108714422B publication Critical patent/CN108714422B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Abstract

本发明涉及一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用,该方法首先通过水热法合成钛酸钠纳米带,然后通过离子交换法制得混合钛酸盐纳米带,并以此为载体表面负载金属钯纳米颗粒形成Pd/MTiOx一维纳米结构,然后将其过滤压制成多孔纸状整体催化剂。本发明制得的催化剂活性金属颗粒高分散于载体表面、粒径较小且尺寸均匀,具有高催化活性和高稳定性;而纸状多孔结构赋予整体催化剂高孔隙率和高比表面积、良好的渗透性和优异的流体力学性能。该催化剂制备工艺简单,易于回收和重复利用,适用于大规模产业化应用。

Description

一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及 其制备方法与应用
技术领域:
本发明涉及一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用,属于化学催化技术领域。
背景技术:
甲醛是一种对人体健康具有严重威胁的室内有机污染物。在建筑物内或密封的车体内,各种装修、装饰材料以及生活用品,都会不断地散发出甲醛。因此,高效消除甲醛技术的研究一直广受关注。其中室温催化氧化降解甲醛被证明是一条有效的途径。
甲醛室温催化氧化消除法相对于吸附法、吸收法、负离子氧化法、臭氧催化氧化法、生物过滤植物净化法、低温等离子体法及光催化氧化法等消除甲醛具有优异特点,在室温下即可将甲醛氧化成二氧化碳和水,效率高,持续运行时间长。
已有的研究发现,负载纳米金属钯催化剂,对甲醛的氧化分解反应具有很高的活性[ACSCatal.,2011,1,348-354]。研究还发现,氢氧化钠处理过的负载Pd催化剂,由于Na+的加入,其活性大大提高,可以在室温下高效催化氧化分解甲醛[Environ.Sci.Technol.,2014,48,5816-5822]。
如中国发明专利CN200410047973.7、CN200410102837.3和CN200610011663.9分别报道了含贵金属铂、钯、铑、金或银的甲醛催化氧化材料,均表现出了良好的室温甲醛催化氧化活性。但这些催化剂仍存在催化活性不高等缺陷。
目前,钛酸盐负载金属催化剂应用于甲醛氧化降解尚未见任何报道。
发明内容:
针对现有技术的不足,本发明提供一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用。该催化剂可用于甲醛室温催化氧化降解等过程,催化活性高,选择性好,制备简单,并且可回收重复利用,适用于大规模工业生产。
发明概述:
本发明首先采用水热法合成钛酸钠纳米带,钛酸钠纳米带通过离子交换反应得到混合钛酸盐MTiOx纳米带。然后采用沉积沉淀法在其表面负载金属钯纳米颗粒,合成Pd/MTiOx一维纳米结构。该一维纳米结构具有可集成性,可采用简单过滤压膜技术将其组装为Pd/MTiOx多孔纸状整体催化剂。该纸状催化剂具有均匀的孔结构和高孔隙率,具有高比表面积和良好的渗透性,具有优异的流体力学和传递性能,对甲醛的室温氧化降解具有优异的催化活性。
发明详述:
本发明是通过如下技术方案实现的:
一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂,所述催化剂的微观结构为金属Pd纳米颗粒高分散负载在混合钛酸盐纳米带表面,形成Pd/MTiOx一维纳米结构;其中,混合钛酸盐纳米带带长5-10μm,宽50-200nm,厚10-50nm;金属Pd负载量为0.1-5wt.%,Pd纳米颗粒尺寸1-2.5nm。
根据本发明优选的,所述催化剂的宏观结构为直径为7.5-24mm,厚度为0.5-1.5mm的纸片状,孔径为100-200nm。
根据本发明,混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,包括步骤如下:
(1)混合钛酸盐纳米带制备
将二氧化钛(P25)粉末均匀分散到氢氧化钠溶液中碱热反应,得到钛酸钠纳米带;然后将钛酸钠纳米带进行离子交换反应,得到混合钛酸盐MTiOx一维纳米结构;
(2)将步骤(1)的混合钛酸盐MTiOx,超声分散于超纯水中,制得钛酸盐悬浮液;
(3)Pd/MTiOx催化剂的制备
按照金属Pd与混合钛酸盐MTiOx质量比(0.1-1):100的比例将氯化钯前驱液加入到钛酸盐悬浮液中搅拌吸附,得混合悬浮液;
调节混合悬浮液pH为9-10,在65-85℃恒温水浴下老化4-8h,并抽滤成纸,水洗、干燥,即制得直径为7.5-24mm,厚度为0.5-1.5mm的Pd/MTiOx纸状多孔整体催化剂。
根据本发明优选的,步骤(1)氢氧化钠溶液的浓度为5-15mol/L,二氧化钛与氢氧化钠溶液的质量体积比为(1-10):500,单位g/mL,进一步优选的,二氧化钛与氢氧化钠溶液的质量体积比为(1-5):500,单位g/mL。
根据本发明优选的,步骤(1)碱热反应温度为150-250℃,反应时间为12-72h。
根据本发明优选的,步骤(1)所述离子交换反应为将钛酸钠纳米带加入碱溶液中反应24-72h,碱溶液的浓度为2-8mol/L。
根据本发明优选的,碱溶液的浓度为5mol/L。
根据本发明优选的,步骤(2)中混合钛酸盐MTiOx与去离子水的质量体积比为0.1:(100-200),单位g/mL;优选的,混合钛酸盐MTiOx与去离子水的质量体积比为0.1:(100-150),单位g/mL;超声分散时间为:30-40min。
根据本发明优选的,步骤(3)中,金属Pd与混合钛酸盐MTiOx质量比(0.1-0.5):100,搅拌吸附时间为20-40min。
根据本发明优选的,步骤(3)中,氯化钯前驱液的质量浓度为5-16g/L,优选的,氯化钯前驱液的质量浓度为8-12g/L;最为优选的,氯化钯前驱液的质量浓度为10g/L。
根据本发明优选的,步骤(3)中,调节混合悬浮液pH为向混合悬浮液中加入尿素,通过尿素水解调节混合悬浮液pH,尿素与混合悬浮液的质量体积比(0.5-2):1000,单位g/mL。
进一步优选的,尿素与混合悬浮液的质量体积比(0.5-1):1000,单位g/mL。
根据本发明优选的,步骤(3)中,老化温度为70-80℃,老化时间为4-6h。
根据本发明优选的,步骤(3)中水洗为用超纯水洗4-6遍。
本发明还提供一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的应用。
一种负载金属Pd/MTiOx催化剂的制备方法制得的Pd/MTiOx催化剂的应用,用于催化甲醛的室温氧化降解。
根据本发明优选的,具体应用方法:将催化剂直接置于室内或结合空气发生器使用。
本发明采用水热法合成钛酸钠纳米带,并通过离子交换制得混合钛酸盐MTiOx纳米带。利用沉积沉淀法将金属Pd纳米颗粒沉积到钛酸盐表面,制备得到Pd/MTiOx一维纳米结构,将其抽滤压膜得到多孔纸状整体催化剂。该催化剂应用于催化甲醛室温氧化反应,表现出了高催化活性、高选择性和高稳定性。
本发明具有以下优点:
(1)本发明采用水热-离子交换法合成的钛酸盐钠纳米带具有高比表面积、表面微结构均匀,这使得金属纳米颗粒可在其表面高度均匀分散;其内部本征存在的碱金属离子为有效的助催化活性物种;其一维纳米结构赋予其可集成性的优点;
(2)本发明通过简单的沉积-沉淀法制备得到的钛酸盐负载金属Pd/MTiOx纳米结构,金属Pd纳米颗粒在纳米带表面分布均匀,无大面积空白及大量团聚现象;颗粒尺寸小且分布均匀,负载量易调控;
(3)本发明所述通过抽滤压膜制备得到的Pd/MTiOx多孔纸状整体催化剂,工艺简单,操作方便。催化剂能够宏观独立存在,可重复性好,易于回收循环利用。
(4)本发明采用简单的水热法合成钛酸钠纳米带,然后通过离子交换反应,可制得混合钛酸盐纳米带。负载金属纳米颗粒后形成的一维纳米结构具有可集成性,可采用简单过滤压模技术将其组装为多孔纸状整体催化剂。这种整体催化剂具有交叉的三维多孔结构,该结构赋予其高孔隙率和高比表面积、良好的渗透性和优异的流体力学性能,以及形状和尺寸可调控性。
附图说明:
图1为实施例1制得的Pd/MTiOx纸状多孔整体催化剂不同放大倍率的扫描电子显微镜(SEM)照片;
图2为实施例1制得的Pd/MTiOx一维纳米结构的高分辨透射电子显微镜(HRTEM)照片;
图3为实施例1制得的Pd/MTiOx纸状多孔整体催化剂的X射线光电子能谱(XPS)图;
图4为实施例1制得的Pd/MTiOx纸状多孔整体催化剂的光学照片;
图5为实施例1制得的Pd/MTiOx多孔纸状整体催化剂在立式石英管反应器中的照片。
图6为实施例1制得的Pd/MTiOx多孔纸状催化剂催化室温甲醛氧化反应性能曲线。
具体实施方式:
下面结合实施例和附图对本发明的技术方案做进一步说明,但本发明所保护范围不限于此。
实施例中的二氧化钛均购自德国德固萨公司。
实施例1
一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,包括步骤如下:
(1)钛酸盐一维纳米结构载体的制备
将1g二氧化钛(P25)均匀分散于200mL浓度为10mol/L的氢氧化钠溶液中,在200℃恒温干燥箱中碱热反应72h,得到钛酸钠纳米带,然后将其置于1000mL氢氧化钾溶液中离子交换36h,得到混合钛酸盐MTiOx一维纳米结构。
(2)取步骤(1)制得的钛酸盐纳米带0.1g置于含有100mL超纯水的循环水套玻璃容器中,超声分散10min,得到分散均匀的钛酸盐悬浮液,然后在搅拌下加入80μL 10g/L的氯化钯溶液和0.15g尿素,在80℃恒温水浴中老化4h,之后用超纯水洗涤4遍,并抽滤压膜成纸,在50℃烘箱中干燥12h,得到Pd/MTiOx多孔纸状整体催化剂。
该实施例得到Pd/MTiOx多孔纸状整体催化剂的扫描电子显微镜(SEM)照片如图1所示,透射电子显微镜(HRTEM)照片如图2所示,通过图1、图2可以看出,催化剂的微观结构为纳米带互相交叠形成的三维交叉均匀多孔结构,金属Pd纳米颗粒高分散负载在混合钛酸盐纳米带表面。混合钛酸盐纳米带带长5-10μm,宽50-200nm,厚10-50nm;纳米带交叉形成的孔径为100-200nm;金属Pd纳米颗粒的尺寸为1.5-2.5nm。
X射线光电子能谱(XPS)如图3所示,通过图3可以看出,该催化剂中活性催化组分Pd的存在。
Pd/MTiOx多孔纸状整体催化剂的宏观图如图4、图5所示,通过图4、图5可以看出,本发明的催化剂为纸片状,可重复性好,易于回收循环利用。
实施例2
一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,包括步骤如下:
(1)钛酸盐一维纳米结构载体的制备
将1g二氧化钛(P25)均匀分散于160mL浓度为8mol/L的氢氧化钠溶液中,与180℃恒温干燥箱中碱热反应48h,得到钛酸钠纳米带,然后将其置于1000mL氢氧化钾溶液离子交换24h,得到混合钛酸盐MTiOx一维纳米结构。
(2)取步骤(1)制得的钛酸盐纳米带0.1g于含有100mL超纯水的循环水套玻璃容器中,超声分散10min,得到分散均匀的钛酸盐纳米材料悬浮液,然后在搅拌下加入40μL 10g/L的氯化钯溶液和0.10g尿素,在70℃恒温水浴条件下老化5h,之后用超纯水洗涤4遍,并抽滤压膜成纸,在100℃烘箱中干燥24h,得到Pd/MTiOx多孔纸状整体催化剂。
实施例3
一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,包括步骤如下:
(1)钛酸盐一维纳米结构载体的制备
将1g二氧化钛(P25)均匀分散于240mL浓度为12mol/L的氢氧化钠溶液中,与220℃恒温干燥箱中碱热反应120h,得到钛酸钠纳米带,然后置于1000mL浓度为12mol/L的氢氧化钾溶液中离子交换48h,得到混合钛酸盐MTiOx一维纳米结构。
(2)取步骤(1)制得的钛酸盐纳米带0.1g于含有100mL超纯水的循环水套玻璃容器中,超声分散10min,得到分散均匀的钛酸盐纳米材料悬浮液,然后在搅拌下加入120μL10g/L的氯化钯溶液和0.20g尿素,在80℃恒温水浴条件下老化6h,之后用超纯水洗涤4遍,并抽滤压膜成纸,在150℃烘箱中干燥36h,得到Pd/MTiOx多孔纸状整体催化剂。
对比例1
钛酸钠负载金属钯纳米颗粒整体式催化剂的制备
(1)钛酸钠纳米带载体的制备
将1g二氧化钛(P25)均匀分散于200mL浓度为10mol/L的氢氧化钠溶液中,与200℃恒温干燥箱中碱热反应72h,得到钛酸钠Na2Ti3O7纳米带。
(2)取步骤(1)制得的钛酸钠纳米带0.1g于含有100mL超纯水的循环水套玻璃容器中,超声分散10min,得到分散均匀的钛酸钠纳米带悬浊液,然后在搅拌下加入80μL 10g/L的氯化钯溶液和0.15g尿素,在80℃恒温水浴条件下老化4h,之后用超纯水洗涤4遍,并抽滤成纸,在50℃烘箱中干燥12h得到Pd/Na2Ti3O7多孔纸状整体催化剂。
对比例2
钛酸钠负载双金属铜钯纳米颗粒整体式催化剂的制备
(1)钛酸钠纳米带载体的制备
将1g二氧化钛(P25)均匀分散于200mL浓度为10mol/L的氢氧化钠溶液中,与200℃恒温干燥箱中碱热反应72h,得到钛酸钠Na2Ti3O7纳米带。
(2)取步骤(1)制得的钛酸钠纳米带0.1g于含有100mL超纯水的循环水套玻璃容器中,超声分散10min,得到分散均匀的钛酸钠纳米带悬浊液,然后在搅拌下加入78μL 20g/L的醋酸铜溶液和80μL 10g/L的氯化钯溶液以及0.15g尿素,在80℃恒温水浴条件下老化4h,之后用超纯水洗涤4遍,并抽滤成纸,在50℃烘箱中干燥12h得到Cu-Pd/Na2Ti3O7多孔纸状整体催化剂。
催化性能测试
将实施例1、对比例1、对比例2制得的催化剂以及空白钛酸钠纳米带的催化活性通过甲醛在室温常压下的氧化降解反应进行评估。
测试方法:
气相催化反应在固定床催化反应评价装置中进行。在室温、常压反应条件下,氧气和气态甲醛通过氮气携带进入石英管反应器,与50mg纸状整体式催化剂接触发生氧化反应,未反应的甲醛通过气体接收器与酚试剂溶液反应,加入少量硫酸铁铵后,用紫外-可见分光光度计检测,反应产物(CO2)通过气相色谱检测。
催化性能评价结果如附图6所示。图6为实施例1、对比例1、对比例2、空白钛酸盐纳米材料的催化性能比较,负载量均为0.5wt.%。由图中数据可以看出:与其他催化剂相比,混合钛酸盐负载Pd纳米颗粒催化剂Pd/MTiOx表现出了更优异的催化性能。其催化活性高,稳定好,对甲醛的氧化转化率维持在95%以上。

Claims (10)

1.一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂,所述催化剂的微观结构为金属Pd纳米颗粒高分散负载在混合钛酸盐纳米带表面,形成Pd/MTiOx一维纳米结构;其中,混合钛酸盐纳米带带长5-10μm,宽50-200nm,厚10-50nm;金属Pd负载量为0.1-5wt.%,Pd纳米颗粒尺寸1-2.5nm。
2.根据权利要求1所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂,其特征在于,所述催化剂的宏观结构为直径为7.5-24mm,厚度为0.5-1.5mm的纸片状,孔径为100-200nm。
3.混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,包括步骤如下:
(1)混合钛酸盐纳米带制备
将二氧化钛(P25)粉末均匀分散到氢氧化钠溶液中碱热反应,得到钛酸钠纳米带;然后将钛酸钠纳米带进行离子交换反应,得到混合钛酸盐MTiOx一维纳米结构;
(2)将步骤(1)的混合钛酸盐MTiOx,超声分散于超纯水中,制得钛酸盐悬浮液;
(3)Pd/MTiOx催化剂的制备
按照金属Pd与混合钛酸盐MTiOx质量比(0.1-1):100的比例将氯化钯前驱液加入到钛酸盐悬浮液中搅拌吸附,得混合悬浮液;
调节混合悬浮液pH为9-10,在65-85℃恒温水浴下老化4-8h,并抽滤成纸,水洗、干燥,即制得直径为7.5-24mm,厚度为0.5-1.5mm的Pd/MTiOx纸状多孔整体催化剂。
4.根据权利要求3所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,其特征在于,步骤(1)氢氧化钠溶液的浓度为5-15mol/L,二氧化钛与氢氧化钠溶液的质量体积比为(1-10):500,单位g/mL,优选的,二氧化钛与氢氧化钠溶液的质量体积比为(1-5):500,单位g/mL;碱热反应温度为150-250℃,反应时间为12-72h。
5.根据权利要求3所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,其特征在于,步骤(1)所述离子交换反应为将钛酸钠纳米带加入碱溶液中反应24-72h,碱溶液的浓度为2-8mol/L;优选的,碱溶液的浓度为5mol/L。
6.根据权利要求3所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,其特征在于,步骤(2)中混合钛酸盐MTiOx与去离子水的质量体积比为0.1:(100-200),单位g/mL;优选的,混合钛酸盐MTiOx与去离子水的质量体积比为0.1:(100-150),单位g/mL;超声分散时间为:30-40min。
7.根据权利要求3所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,其特征在于,步骤(3)中,金属Pd与混合钛酸盐MTiOx质量比(0.1-0.5):100,搅拌吸附时间为20-40min。
8.根据权利要求3所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,其特征在于,步骤(3)中,氯化钯前驱液的质量浓度为5-16g/L,优选的,氯化钯前驱液的质量浓度为8-12g/L;最为优选的,氯化钯前驱液的质量浓度为10g/L。
9.根据权利要求3所述的混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂的制备方法,其特征在于,步骤(3)中,调节混合悬浮液pH为向混合悬浮液中加入尿素,通过尿素水解调节混合悬浮液pH,尿素与混合悬浮液的质量体积比(0.5-2):1000,单位g/mL;优选的,尿素与混合悬浮液的质量体积比(0.5-1):1000,单位g/mL;老化温度为70-80℃,老化时间为4-6h;水洗为用超纯水洗4-6遍。
10.一种负载金属Pd/MTiOx催化剂的制备方法制得的Pd/MTiOx催化剂的应用,用于催化甲醛的室温氧化降解;具体应用方法:将催化剂直接置于室内或结合空气发生器使用。
CN201810345855.6A 2018-04-18 2018-04-18 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用 Expired - Fee Related CN108714422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810345855.6A CN108714422B (zh) 2018-04-18 2018-04-18 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810345855.6A CN108714422B (zh) 2018-04-18 2018-04-18 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN108714422A true CN108714422A (zh) 2018-10-30
CN108714422B CN108714422B (zh) 2021-04-13

Family

ID=63899118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810345855.6A Expired - Fee Related CN108714422B (zh) 2018-04-18 2018-04-18 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN108714422B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605118A (zh) * 2019-09-23 2019-12-24 山东大学 一种用于室温降解甲醛的整体式Pd/K2Ti6O13-NWs催化剂及制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795970A (zh) * 2004-12-28 2006-07-05 中国科学院生态环境研究中心 一种高效的室温条件下催化完全氧化甲醛的催化剂
WO2011112020A9 (ko) * 2010-03-11 2012-01-12 주식회사 엘지화학 벨트 형상의 금속 나노 구조체 및 이의 제조 방법
CN102511953A (zh) * 2011-11-29 2012-06-27 华北电力大学 一种改进的具有光催化效果的人工花卉的制备方法
CN103007932A (zh) * 2012-12-11 2013-04-03 山东大学 一种二氧化钛纳米带负载双金属整体式催化剂的制备方法
CN103433058A (zh) * 2013-09-02 2013-12-11 山东大学 Au-Cu/TiO2-NBs 双金属纳米结构整体式催化剂、制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795970A (zh) * 2004-12-28 2006-07-05 中国科学院生态环境研究中心 一种高效的室温条件下催化完全氧化甲醛的催化剂
WO2011112020A9 (ko) * 2010-03-11 2012-01-12 주식회사 엘지화학 벨트 형상의 금속 나노 구조체 및 이의 제조 방법
CN102511953A (zh) * 2011-11-29 2012-06-27 华北电力大学 一种改进的具有光催化效果的人工花卉的制备方法
CN103007932A (zh) * 2012-12-11 2013-04-03 山东大学 一种二氧化钛纳米带负载双金属整体式催化剂的制备方法
CN103433058A (zh) * 2013-09-02 2013-12-11 山东大学 Au-Cu/TiO2-NBs 双金属纳米结构整体式催化剂、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONG-MING LU ET AL.: "Palladium Nanoparticles Supported on Titanate Nanobelts for Solvent-Free Aerobic Oxidation of Alcohols", 《CHEMCATCHEM》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605118A (zh) * 2019-09-23 2019-12-24 山东大学 一种用于室温降解甲醛的整体式Pd/K2Ti6O13-NWs催化剂及制备方法与应用

Also Published As

Publication number Publication date
CN108714422B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Nie et al. Room-temperature catalytic oxidation of formaldehyde on catalysts
Shchukin et al. Photocatalytic processes in spatially confined micro-and nanoreactors
Xiao et al. Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction
Zhao et al. Controlled synthesis and wastewater treatment of Ag 2 O/TiO 2 modified chitosan-based photocatalytic film
Chen et al. Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal
CN101952040A (zh) 共掺杂的二氧化钛泡沫和水消毒设备
Zhu et al. Preparation of flexible Pt/TiO2/γ-Al2O3 nanofiber paper for room-temperature HCHO oxidation and particulate filtration
Ma et al. Hierarchically structured squama-like cerium-doped titania: synthesis, photoactivity, and catalytic CO oxidation
CN106964348A (zh) 一种甲醛污染物室温催化氧化催化剂及其制备方法和应用
CN109248680B (zh) 一种低能耗化学场驱动的有机污染物降解催化剂及其应用
US5676845A (en) Process for catalytic treatment of effluents containing organic and inorganic compounds, preferably from epichlorohydrin production
CN106881110B (zh) 一种适用于水汽共存一氧化碳氧化的钯催化剂的制备方法
Zong et al. Promoting Ni-MOF with metallic Ni for highly-efficient p-nitrophenol hydrogenation
CN109331817A (zh) 一种用于分解空气中有机物的光催化材料及制备方法
Pham et al. Synthesis of Al-MCM-41@ Ag/TiO2 nanocomposite and its photocatalytic activity for degradation of dibenzothiophene
JP3987289B2 (ja) 光触媒及びその製造方法並びにそれを用いた光触媒体
Lidia et al. TiO 2/Fly Ash nanocomposite for photodegradation of organic pollutant
CN108993593A (zh) 一种高效分解甲醛的催化剂及其制备方法与应用
da Silva et al. Synthesis of TiO2 microspheres by ultrasonic spray pyrolysis and photocatalytic activity evaluation
CN110605118B (zh) 一种用于室温降解甲醛的整体式Pd/K2Ti6O13-NWs催化剂及制备方法与应用
CN108714422A (zh) 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用
CN1990102B (zh) 光催化消除臭氧的Au/TiO2催化剂
CN100584744C (zh) 通过光热协同作用高选择性氧化富氢气中一氧化碳的方法
Yu et al. Preparation of Au 0.5 Pt 0.5/MnO 2/cotton catalysts for decomposition of formaldehyde
Gong et al. Facile Synthesis of Gold Nanoparticles Decorated Core–Shell Fe3O4@ Carbon: Control of Surface Charge and Comparison in Catalytic Reduction for Methyl Orange

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210413

CF01 Termination of patent right due to non-payment of annual fee