CN108629279A - 一种基于卷积神经网络的车辆目标检测的方法 - Google Patents

一种基于卷积神经网络的车辆目标检测的方法 Download PDF

Info

Publication number
CN108629279A
CN108629279A CN201810257027.7A CN201810257027A CN108629279A CN 108629279 A CN108629279 A CN 108629279A CN 201810257027 A CN201810257027 A CN 201810257027A CN 108629279 A CN108629279 A CN 108629279A
Authority
CN
China
Prior art keywords
rpn
network
vehicle
cnn
target detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810257027.7A
Other languages
English (en)
Inventor
李东洁
彭怀宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201810257027.7A priority Critical patent/CN108629279A/zh
Publication of CN108629279A publication Critical patent/CN108629279A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00785Recognising traffic patterns acquired by static cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6256Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2209/00Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K2209/21Target detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2209/00Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K2209/23Detecting or categorising vehicles

Abstract

一种基于卷积神经网络的车辆目标检测的方法。传统车辆目标检测需要结合图像场景选择合适的特征。为此提出一种基于卷积神经网络的车辆目标检测的方法,此方法利用Faster R‑CNN算法进行车辆目标检测,避免了传统车辆目标检测中需要设计手工特征的问题,同时提高了准确性和鲁棒性。所述车辆目标检测方法包括以下步骤:A、定义车辆视觉任务;B、制作车辆图像训练集;C、确定共享卷积网络结构;D、改进Faster R‑CNN模型里的RPN网络结构;E、训练Faster R‑CNN模型,得到最终的车辆检测模型。F、利用新样本对车辆目标检测模型测试,得到新样本的检测结果。

Description

一种基于卷积神经网络的车辆目标检测的方法
技术领域
[0001] 本发明主要涉及人工智能应用领域,尤其是基于卷积神经网络的车辆目标检测的 方法。
背景技术
[0002]车辆目标检测是一种在场景图像中指出车辆目标的研宄问题。它是人工智能应用 领域中一个很重 要的组成模块。近些年,在道路场景监控系统,无人车系统,智能停车缴费系统中有着 广泛的应用。所以,优化车辆目标检测问题有着重要的意义。
[0003]最近,有很多关于在静态场景中进行车辆目标检测的研宄工作。他们用不同的方 式试图更好地解决问题。通常,会提取手工特征,组合特征,分类。或者将车辆目标拆分成局 部再进一步提取特征,以便得到更精确的检测结果。但是,手工设计特征进行提取,依赖于 研宄人员的经验,缺乏对问题的泛化能力,存储这些手工特征也需要一定的存储空间,再 者,对分类器的选择也十分影响最后的检测效果。当问题变换检测目标,或者延伸到复杂场 景中,传统方式将面临更加严峻的挑战。为了达到更好的检测效果,整个系统框架将变得更 加复杂。
[GO04] 任何的场景目标发现问题,都可以看作是一个和该目标相关的视觉任务。提出一 种不依赖手工特征,在静态场景中进行车辆目标检测的方法。本发明的视觉任务是:检测在 城市道路背景下的正面车辆。通过对视觉任务学习得到一种稳定的,与任务强相关的目标 检测模型。将新的样本图像输入目标检测模型便可以得到检测结果。本发明将利用卷积神 经网络的思想解决视觉任务的训练过程,利用Faster R-CNN算法解决车辆目标检测问题, 为此后的车辆目标检测提供了高效、简洁的解决思路。
发明内容
[0005]本发明要解决的技术问题是提供一种基于卷积神经网络的车辆目标检测的方法, 其特点在于,所述车辆目标检测方法包括以下步骤。
[OG06] A、定义车辆视觉任务; B、 制作车辆图像训练集; C、 确定共享卷积网络结构; D、 改进Faster R-CNN模型里的RPN网络结构; E、 训练Faster R-CNN模型,得到最终的车辆检测模型; F、 利用新样本对车辆目标检测模型测试,得到新样本的检测结果。
[0007] 优选的,所述步骤D中改进RPN网络结构包括以下步骤。
[0008] A、采用级联RPN网络的方式,即使用两个标准的RPN网络组合成的网络; B、 第一个RPN用滑动窗口得到的候选区作为Anchor; C、 第二个RPN用第一个RPN输出的候选区作为新的Anchor位置。
[0009] 优选的,所述步骤E中训练Faster R-CNN模型包括以下步骤。
[0010] A、训练RPN网络,采用ImageNet模型进行初始化,训练只是采用标记好类别的样 本,采用标准差〇_〇1、均值为0的高斯分布随机初始化新增的层; B、 训练一个Fast R-CNN网络,仍然采用ImageNet模型进行初始化,但训练样本来自A中 RPN网络产生的候选区域,训练样本中既有目标类别标签也有目标位置标签。此时,两个网 络每一层的参数完全没有共享,都是各自独立训练的; C、 训练一个新的RPN网络,初始化数据来自B步中Fast R-CNN的网络参数,但把RPN、 Fast R-CNN共享的卷积层的参数学习速率设置为〇,也就是不更新这些共享卷积层,仅更新 RPN网络中自身特有的网络层,此时,两个网络已经共享了所有共享的卷积层; ^ D、把Fast R-CNN特有的网络层加入进来一起训练,形成一个联合网络,但仍然固定共 享的网络层,即微调Fast R-CNN特有的网络层,最终得到基于Faster R-C丽的车辆检测模 型。
[0011]本发明的有益效果是。
[0012]能够快速的完成车辆目标检测,并且由于改进了 RPN网络结构,使得所提取到的候 选区位置的精准度明显提升,最终使车辆定位更精准。
[0013] 本发明中采用Faster R-CNN网络模型进行车辆目标检测,并利用改进的RPN网络 提取目标建议区域,不仅获得了较高的准确率,而且在不同的测试样本中展现了良好的泛 化能力。 ⑽14]附图说明: 图1为本发明车辆目标检测的流程图。
具体实施方式
[0015] 为使本发明的目的、技术方案和优点更加清楚明白,参照附图,对本发明进一步详 细说明。
[0016] 步骤S1:将城市道路背景下的正面车辆检测作为视觉任务。
[0017] 步骤S2:选择合适的场景车辆图像样本,并对其作预处理,然后制作车辆训练集。
[0018] 步骤S3:根据车辆训练集的图像数量以及图像的分辨率确定共享卷积网络结构。 [0019]步骤S4:采用网络级联的方式改进Faster R-CNN模型的RPN网络结构。
[0020] 步骤S5:对Faster R-CNN模型进行训练,分为两步训练,RPN网络的训练和Fast R-CNN网络的训练。rpn网络得到目标区域的候选区域,Fast R-CNN网络用于目标检测。将经过 车辆训练集和通过RPN网络得到目标区域的候选区域图像输入到Fast R-CNN检测器中,进 行模型的二次训练,最终得到车辆目标检测模型。
[0021] 步骤S6:利用不同场景的新样本对车辆目标检测模型进行测试,得到新样本的检 测结果。

Claims (3)

1.基于卷积神经网络的车辆目标检测的方法,其特征在于所述车辆目标检测方法包括 以下步骤: A. 定义车辆视觉任务; B. 制作车辆图像训练集; C. 确定共享卷积网络结构; D•改进Faster R-CNN模型里的RPN网络结构; E.训练Faster R-CNN模型,得到最终的车辆检测模型; F •利用新样本对车辆目标检测模型测试,得到新样本的检测结果。
2.根据权利要求书1所述的基于卷积神经网络的车辆目标检测的方法,其特征在于,步 骤D中改进RPN网络结构包括以下步骤: A •采用级联RPN网络的方式,即使用两个标准的RPN网络组合成的网络; B. 第一个RPN用滑动窗口得到的候选区作为Anchor; C. 第二个RPN用第一个RPN输出的候选区作为新的Anchor位置。
3.根据权利要求书1所述的基于卷积神经网络的车辆目标检测的方法,其特征在于,所 述的步骤E中训练Faster R-CNN模型包括以下步骤: A.训练RP綱络,采用lraageNet模型进行初始化,训练只是采用标记好类别的样本,采 用标准差0 • 01、均值为0的高斯分布随机初始化新增的层; B•训练一个Fast R-CNN网络,仍然采用IraageNet模型进行初始化,但训练样本来自A中 RPN网络产生的候选区域,训练样本中既有目标类别标签也有目标位置标签; 此时,两个网络每一层的参数完全没有共享,都是各自独立训练的; C •训练一个新的RPN网络,初始化数据来自B步中Fast R-CNN的网络参数,但把RPN、 Fast R-CNN共享的卷积层的参数学习速率设置为〇,也就是不更新这些共享卷积层,仅更新 RPN网络中自身特有的网络层,此时,两个网络已经共享了所有共享的卷积层; ^ D•把Fast R-CNN特有的网络层加入进来一起训练,形成一个联合网络,但仍然固定共 享的网络层,即微调Fast R-CNN特有的网络层,得到最终的车辆检测模型。
CN201810257027.7A 2018-03-27 2018-03-27 一种基于卷积神经网络的车辆目标检测的方法 Pending CN108629279A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810257027.7A CN108629279A (zh) 2018-03-27 2018-03-27 一种基于卷积神经网络的车辆目标检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810257027.7A CN108629279A (zh) 2018-03-27 2018-03-27 一种基于卷积神经网络的车辆目标检测的方法

Publications (1)

Publication Number Publication Date
CN108629279A true CN108629279A (zh) 2018-10-09

Family

ID=63696435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810257027.7A Pending CN108629279A (zh) 2018-03-27 2018-03-27 一种基于卷积神经网络的车辆目标检测的方法

Country Status (1)

Country Link
CN (1) CN108629279A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549901A (zh) * 2018-03-12 2018-09-18 佛山市顺德区中山大学研究院 一种基于深度学习的快速迭代目标检测方法
CN109902572A (zh) * 2019-01-24 2019-06-18 哈尔滨理工大学 一种基于深度学习的车辆检测方法
CN110263719A (zh) * 2019-06-21 2019-09-20 大庆安瑞达科技开发有限公司 基于大数据监控的人工智能油气田防范判别系统与方法
CN110263730A (zh) * 2019-06-24 2019-09-20 北京达佳互联信息技术有限公司 图像识别方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446150A (zh) * 2016-09-21 2017-02-22 北京数字智通科技有限公司 一种车辆精确检索的方法及装置
CN106874913A (zh) * 2016-12-29 2017-06-20 南京江南博睿高新技术研究院有限公司 一种菜品检测方法
CN107229929A (zh) * 2017-04-12 2017-10-03 西安电子科技大学 一种基于r‑cnn的车牌定位方法
CN107506792A (zh) * 2017-08-16 2017-12-22 上海荷福人工智能科技(集团)有限公司 一种半监督的显著对象检测方法
CN107730881A (zh) * 2017-06-13 2018-02-23 银江股份有限公司 基于深度卷积神经网络的交通拥堵视觉检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446150A (zh) * 2016-09-21 2017-02-22 北京数字智通科技有限公司 一种车辆精确检索的方法及装置
CN106874913A (zh) * 2016-12-29 2017-06-20 南京江南博睿高新技术研究院有限公司 一种菜品检测方法
CN107229929A (zh) * 2017-04-12 2017-10-03 西安电子科技大学 一种基于r‑cnn的车牌定位方法
CN107730881A (zh) * 2017-06-13 2018-02-23 银江股份有限公司 基于深度卷积神经网络的交通拥堵视觉检测系统
CN107506792A (zh) * 2017-08-16 2017-12-22 上海荷福人工智能科技(集团)有限公司 一种半监督的显著对象检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱明明等: ""改进基于区域的卷积神经网络的机场检测方法"", 《光学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549901A (zh) * 2018-03-12 2018-09-18 佛山市顺德区中山大学研究院 一种基于深度学习的快速迭代目标检测方法
CN109902572A (zh) * 2019-01-24 2019-06-18 哈尔滨理工大学 一种基于深度学习的车辆检测方法
CN110263719A (zh) * 2019-06-21 2019-09-20 大庆安瑞达科技开发有限公司 基于大数据监控的人工智能油气田防范判别系统与方法
CN110263719B (zh) * 2019-06-21 2020-12-08 大庆安瑞达科技开发有限公司 基于大数据监控的人工智能油气田防范判别系统与方法
CN110263730A (zh) * 2019-06-24 2019-09-20 北京达佳互联信息技术有限公司 图像识别方法、装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN108629279A (zh) 一种基于卷积神经网络的车辆目标检测的方法
CN103810699B (zh) 基于无监督深度神经网络的sar图像变化检测方法
CN105788142B (zh) 一种基于视频图像处理的火灾检测系统及检测方法
CN105139395B (zh) 基于小波池化卷积神经网络的sar图像分割方法
CN106228125B (zh) 基于集成学习级联分类器的车道线检测方法
CN107481188A (zh) 一种图像超分辨率重构方法
CN106295714A (zh) 一种基于深度学习的多源遥感图像融合方法
CN104182985B (zh) 遥感图像变化检测方法
CN108009509A (zh) 车辆目标检测方法
CN103761526B (zh) 一种基于特征位置优选整合的城区检测方法
CN104954741B (zh) 深层次自我学习网络实现矿车空满状态的检测方法和系统
CN108830285B (zh) 一种基于Faster-RCNN的加强学习的目标检测方法
CN110705457A (zh) 一种遥感影像建筑物变化检测方法
CN105955708A (zh) 一种基于深度卷积神经网络的体育视频镜头分类方法
CN107862261A (zh) 基于多尺度卷积神经网络的图像人群计数方法
CN106204509A (zh) 基于区域特性的红外与可见光图像融合方法
CN107220949A (zh) 公路监控视频中运动车辆阴影的自适应消除方法
CN105046701A (zh) 一种基于构图线的多尺度显著目标检测方法
CN109086668B (zh) 基于多尺度生成对抗网络的无人机遥感影像道路信息提取方法
CN106228150A (zh) 基于视频图像的烟雾检测方法
CN107194924A (zh) 基于暗通道先验和深度学习的高速公路雾天能见度检测方法
CN109285139A (zh) 一种基于深度学习的x射线成像焊缝检测方法
CN107085723A (zh) 一种基于深度学习模型的车牌字符整体识别方法
CN107038442A (zh) 一种基于深度学习的车牌检测和整体识别方法
CN107315095A (zh) 基于视频处理的具有光照适应性的多车辆自动测速方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination