CN108623194A - 一种内置气凝胶复合玻璃及其制备方法 - Google Patents

一种内置气凝胶复合玻璃及其制备方法 Download PDF

Info

Publication number
CN108623194A
CN108623194A CN201710161774.6A CN201710161774A CN108623194A CN 108623194 A CN108623194 A CN 108623194A CN 201710161774 A CN201710161774 A CN 201710161774A CN 108623194 A CN108623194 A CN 108623194A
Authority
CN
China
Prior art keywords
glass
aeroge
supporter
built
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710161774.6A
Other languages
English (en)
Other versions
CN108623194B (zh
Inventor
卢梦言
卢军
卢孟磊
张丁日
卢斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Xingna Aerogel Co Ltd
Original Assignee
Changsha Xingna Aerogel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Xingna Aerogel Co Ltd filed Critical Changsha Xingna Aerogel Co Ltd
Priority to CN201710161774.6A priority Critical patent/CN108623194B/zh
Publication of CN108623194A publication Critical patent/CN108623194A/zh
Application granted granted Critical
Publication of CN108623194B publication Critical patent/CN108623194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/064
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/068Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/08Joining glass to glass by processes other than fusing with the aid of intervening metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Abstract

本发明提出了一种内置气凝胶复合玻璃,由两片玻璃、两片玻璃之间的间隔支撑体和玻璃腔内设置的气凝胶支撑体组成,所述两片玻璃与所述间隔支撑体之间形成的U型封接处通过低温封接材料连接。其制造方法包括铺放支撑体步骤和封接步骤。本发明公开的内置气凝胶复合玻璃具有优异的隔热保温性能和透光性以及安全性,适用于绿色建筑和超低能耗建筑以及近零能耗建筑的门窗、幕墙玻璃和采光屋顶等领域。

Description

一种内置气凝胶复合玻璃及其制备方法
技术领域
本发明涉及玻璃制备技术领域,特别涉及一种内置气凝胶复合玻璃及其制备方法。
背景技术
现有技术中用于建筑物的玻璃,主要是用来封闭、采光、保温。但在寒冷地区的冬季,玻璃的保温效果并不理想,而在夏热冬冷地区或夏热冬暖地区的夏季,玻璃的隔热效果也不理想。随着我国经济的高速发展,人们对生活质量的要求越来越高,建筑门窗、玻璃幕墙面积越来越大,导致通过门窗、玻璃幕墙的热量交换在建筑与外部热量交换中的比重越来越大。为了减少通过玻璃门窗、幕墙的热量交换,近年来国内外开发了不少隔热保温玻璃,按结构分主要有三种,(1)由两层或多层普通玻璃组成的中空玻璃;(2)由镀有低辐射膜玻璃构成的中空玻璃;(3)由双层玻璃中间设置点支撑体抽成负压组成的真空玻璃。中空玻璃传热系数大,且密封质量决定于其寿命;低辐射镀膜玻璃在夏季可以最大限度的阻止太阳光进入室内,并最大限度阻挡来自室外的远红外辐射,但在需要取暖的冬季,阻隔室外热能进入室内显然不合时宜,而且影响可见光的透过率。真空玻璃以其优异的保温性能以及薄、轻等特性,是理想的节能玻璃之一。但是因其真空腔体内部设置点支撑体的缘故,容易导致局部应力集中,至使抗冲击性能下降,存在安全隐患,而且点支撑体构成热桥,还制约了真空玻璃传热系数的进一步降低,无法达到理论极限值。此外,提高真空层厚度有利于进一步降低传热系数的极限水平,但受现有真空玻璃封接技术的限制,腔体封接厚度很难突破1mm。因此,亟待开发节能效果可与真空玻璃相媲美、安全性更高的节能玻璃。
发明内容
本发明要解决的技术问题是:提供一种节能效果可与真空玻璃相媲美、安全性更高的内置气凝胶复合玻璃及其制备方法,该制备方法生产出的内置气凝胶复合玻璃不但具有较好的隔热保温性能和透光性,而且还具有优异的安全性能,可以广泛适用于绿色建筑和超低能耗绿色建筑以及近零能耗绿色建筑的门窗、幕墙玻璃和采光屋顶等领域。
本发明的解决方案是:(1)采用预置间隔支撑体低温封接技术。研究发现,现有真空玻璃腔体封接厚度很难突破1mm,主要受缝隙毛细管力的制约,毛细管力无法满足使熔化的封接材料约束于两块玻璃构成的缝隙内,无法获得满意的封接质量,产品合格率低。为了实现大间隙真空玻璃的封接,通过预先在焊缝内放置间隔支撑体,再将封接材料放置于玻璃与间隔体之间,以此解决大间隙真空玻璃的封接密封问题。此外,通过设置间隔支撑体,还能通过复合强化提高真空玻璃的力学性能。(2)采用透明绝热面支撑体技术。用本身具有超级隔热保温性能的透明气凝胶作为真空玻璃的支撑体,代替传统的点支撑体,即将传统的点支撑转换成面支撑,从根源上消除了因点支撑体产生的局部应力集中问题,从而显著提高腔内负压玻璃的安全性能。此外,用超低导热系数的气凝胶支撑体代替传统支撑体,还可减少因导热系数较高的传统支撑体导致的热桥效应,进一步降低真空玻璃的传热系数极限。(3)采用气凝胶与负压的协同效应技术。通常,常压下的气凝胶导热系数在0.010~0.015W/m·k范围内。研究发现,通过实施负压技术与气凝胶的纳米尺寸产生协同作用,可完全阻隔腔内气凝胶孔隙中气体的对流传热,可使气凝胶导热系数降低至0.004 W/m·k以下,气凝胶厚度小于5mm,即能达到真空玻璃保温水平(传热系数约为0.5W/m2·k),解决节能玻璃的轻薄化问题。
本发明的解决方案是这样实现的:一种内置气凝胶复合玻璃的制备方法,包括以下步骤:
(1)铺放支撑体,将气凝胶支撑体铺放于玻璃上,将间隔支撑体铺设于玻璃的四周边缘,再将另一片玻璃放置于气凝胶支撑体和间隔支撑体上;
(2)封接,真空环境中,在两片玻璃与间隔支撑体形成的U型封接处,连续地边铺放低温封接材料,同时快速地将低温封接材料加热熔封,得到内置气凝胶复合玻璃。
如此,通过上述步骤,可得到一种由至少两块玻璃作为壳体、具有至少一个真空抽气装置的密封空腔且空腔内设置有气凝胶支撑体的气凝胶复合玻璃。这种内置气凝胶支撑体的气凝胶复合玻璃的节能效果可与真空玻璃相媲美,由于其中设置的透明气凝胶具有优异的隔热保温性能,加之空腔内真空带来的几无气体分子对流热现象,因此,使得到的内置气凝胶复合玻璃具有非常优异的隔热保温性能。而且内置气凝胶支撑体与玻璃的连接将现有真空玻璃的点支撑替换为面支撑,安全性更高,此外,由于气凝胶具有较好的抗压缩变形特性,可以有效地支撑因空腔内真空而产生的压应力作用,同时避免应力集中现象,是一种安全型的超节能玻璃。因此,该制备方法生产出的内置气凝胶复合玻璃不但具有较好的隔热保温性能,还具有优异的安全性能,并且还解决了气凝胶支撑体超过现有真空玻璃支撑体厚度时采用低温封接材料进行加固封边等问题。
本发明的另一技术方案在于在上述基础之上,所述玻璃空腔体制作步骤之前进行玻璃封接处表面的预处理和润湿处理,具体为:先用酸性或碱性溶液清洗玻璃封接处表面,再在玻璃封接处表面涂布一层润湿剂;所述润湿剂为十二烷基磺酸钠、硫酸月桂酯、二烷基磺基琥珀酸盐、蓖麻油硫酸化物、烷基吡啶盐氯化物、烷基苯酚聚乙烯醚、聚氧乙烯烷基醚、聚氧乙烯乙二醇烷基酯、乙炔乙二醇中的一种或多种。如此,通常酸性溶液为H2SO4和HNO3的混合溶液等,碱性溶液为NaOH、Na2CO3等,玻璃1封接处表面先通过酸性溶液或碱性溶液的清洗,以达到除去油污和杂质的目的,便于下一步更好地进行润湿处理;然后再在预处理后的玻璃封接处表面涂布一层润湿剂,降低玻璃1封接处的表面张力,以达到增加玻璃表面与低温封接材料之间的界面结合强度的目的,进一步保证了玻璃封接处的密封性。
本发明的另一技术方案在于在上述基础之上,所述铺放支撑体步骤还包括在真空环境中进行。如此,将整个玻璃置于密封的真空室内进行铺放支撑体步骤,以达到合片时排除玻璃空腔体内空气的目的。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体的形状为平板状、颗粒状、柱体、异形体中的一种或一种以上。其中,异形体为柱体与平板状的一体化成型结构。如此,当气凝胶支撑体为颗粒状时,经密实处理填满空腔以起到支撑作用,当气凝胶支撑体为其他的形状时,将气凝胶支撑体布满或阵列分布于玻璃空腔中,且厚度与空腔高度适宜以起到支撑作用,由此在内置气凝胶复合玻璃内腔中用本身具有超级隔热保温性能、大尺寸的透明气凝胶做支撑体,实现面支撑、块支撑、柱支撑、多元化支撑等多种方式,一方面避免了因传热系数较高的传统点支撑体导致的热桥现象,进一步提高了内置气凝胶复合玻璃的隔热保温性能,另一方面从根源上彻底地消除了产生应力集中的条件,从而显著提高内置气凝胶复合玻璃的安全性能。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体材料还包括表层低密度且芯部高密度的气凝胶支撑体或气凝胶复合支撑体。如此,通常气凝胶的导热系数不低于0.010W/m·k,为了使其传热系数达到真空玻璃的传热系数k值水平(k值约0.5W/m2·k),传统气凝胶的厚度至少需15mm,采用气凝胶协同负压技术,通过实施负压技术与气凝胶的纳米尺寸产生协同效应,完全阻隔腔内气凝胶孔隙中气体的对流传热,使气凝胶导热系数低至0.004 W/m·k以下,从而极大地减少气凝胶厚度,优化厚度在1mm~5mm。当气凝胶支撑体为表层低密度且芯部高密度时,可得到内部强度较高且表层具有弹性的气凝胶支撑体,可以满足玻璃在使用过程中由于环境温度造成玻璃空腔的细微膨胀或收缩,避免了气凝胶支撑体的过度应力集中;当气凝胶支撑体为气凝胶复合支撑体时,不仅使气凝胶支撑体具有良好的隔热保温性能,而且还增强了气凝胶支撑体的抗压强度。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体中的所述气凝胶复合支撑体还包括气凝胶/玻璃复合支撑体和气凝胶/树脂复合支撑体中的一种或两种。如此,采用气凝胶与玻璃或树脂复合技术,由质轻、本身具有优异的隔热保温性能、隔声降噪性能、吸能特性的透明气凝胶作为功能组元,用玻璃或树脂作粘结相,制造出的气凝胶与玻璃或树脂的复合支撑体,兼具气凝胶的优异特性和玻璃或树脂的良好力学性能,一方面既具有良好的隔热保温性能,另一方面又可获得良好的安全性能和隔声降噪性能,此外还具有良好的力学性能。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体中的所述气凝胶复合支撑体中的所述气凝胶/玻璃复合支撑体的制备方法为:
(1)混料,将玻璃粉体与气凝胶混合均匀;
(2)熔化,将步骤(1)得到的混合料中的玻璃粉体加热至熔化,得到半固态的混合玻璃熔液;
(3)成型,将步骤(2)得到的混合玻璃熔液浇注于模具中,冷却凝固。
如此,通过上述步骤,可得到一种由气凝胶及粘结所述气凝胶的玻璃相构成的具有隔热保温性能的气凝胶/玻璃复合支撑体。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体中的所述气凝胶/树脂复合支撑体的制备方法为:
(1)混料,将气凝胶与树脂粉末混合均匀;
(2)铺料,在模具基板上铺一层步骤(1)得到的混合料;
(3)熔化,用激光器以步进扫描方式将步骤(2)得到的混合料中的树脂粉末快速加热至熔化;
(4)交替铺料与熔化,在前一沉积层上交替重复进行步骤(2)和步骤(3),固化。
如此,通过上述混料、铺料、激光器加热等步骤,可得到一种由气凝胶及粘结所述气凝胶的树脂相构成的具有隔热保温性能的气凝胶/树脂复合支撑体。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体与玻璃的接触面之间设置有透明胶黏剂。如此,使用透明胶黏剂可以将气凝胶支撑体与玻璃内表面连接固定,以起到更好的支撑作用。
本发明的另一技术方案在于在上述基础之上,所述低温封接材料为低温玻璃粉或低温金属封边材料。如此,采用低温封接材料进行封接可以避免由于封接温度过高引起钢化玻璃或半钢化玻璃的退火现象,使得钢化玻璃或半钢化玻璃的物理性能降低;通过低温玻璃粉或低温金属封边材料进行熔封,实现玻璃与间隔体的封焊,满足高真空度的要求,从而有效延长内置气凝胶复合玻璃的使用寿命。
本发明的另一技术方案在于在上述基础之上,所述低温封接材料中的所述低温金属封边材料为铟、铟合金、锡、锡合金中的一种。如此,铟、铟合金、锡、锡合金等低温金属的熔点一般不超过玻璃的退火温度。
本发明的另一技术方案在于在上述基础之上,所述低温封接材料内部设置金属条、金属网或金属丝中的一种或多种。如此,通过在封接边内部设置金属条、金属网或金属丝,一方面,该金属条、金属网或金属丝的熔点高于低温封接材料,通过直接对金属条、金属网或金属丝进行加热,并熔化低温封接材料,进而实现边铺低温封接材料边熔化边连续封接;另一方面,金属条、金属网或金属丝作为低温封接材料中的固体增强相,在两块玻璃板之间起到支撑作用。
本发明的另一技术方案在于在上述基础之上,所述间隔支撑体为陶瓷间隔支撑体、金属间隔支撑体和复合材料间隔支撑体中的一种或多种。此外,间隔支撑体还可以为断热型间隔支撑体,其中,陶瓷间隔支撑体主要包括玻璃间隔支撑体、传统陶瓷间隔支撑体等,金属间隔支撑体主要包括铝间隔支撑体、铝合金间隔支撑体、不锈钢间隔支撑体等,复合材料间隔支撑体主要包括塑钢间隔支撑体、铝塑间隔支撑体、复合胶条、玻璃纤维增强复合间隔支撑体等。如此,由于气凝胶支撑体厚度较传统支撑体厚,若使用低温封接材料直接对两片玻璃1进行封接,由于低温封接材料扩展过度,导致封接边部出现缝隙或缺漏现象,影响真空玻璃的密封性,因此,在两片玻璃之间预置间隔支撑体后再进行熔封,一方面可以解决由于低温封接材料扩展过度引起的封接问题,另一方面还可以起到主要支撑作用,减少气凝胶支撑体的应力过度集中,进一步提高了负压玻璃的抗弯、抗压强度。
本发明的另一技术方案在于在上述基础之上,所述封接的加热方式为激光加热、电子束加热、微波加热中的一种。如此,封接过程中可以采用激光加热、电子束加热、微波加热等方式直接对低温封接材料进行快速加热,边熔化边连续封接;也可以采用激光加热、电子束加热、微波加热等方式对低温封接材料内部设置的金属条、金属网或金属丝直接快速加热并熔化低温封接材料,实现玻璃的连续封接。
本发明的另一技术方案在于在上述基础之上,所述玻璃空腔体制作步骤之前进行玻璃封接处表面的预处理和润湿处理,所述气凝胶支撑体与玻璃的接触面之间设置有透明胶黏剂,如此,增加玻璃表面与低温封接材料之间的界面结合强度的同时,又增加气凝胶支撑体与玻璃内表面连接固定,以达到更好的效果。
本发明的另一技术方案,一种内置气凝胶复合玻璃,包含所述玻璃密封体以及所述玻璃密封体上设置的真空抽气装置,所述玻璃密封体由两片玻璃、两片玻璃之间的间隔支撑体和玻璃腔内设置的气凝胶支撑体组成,所述两片玻璃与所述间隔支撑体之间形成的U型封接处通过低温封接材料连接。
本发明的另一技术方案在于在上述基础之上,在所述真空抽气装置位于玻璃正面上的一角或间隔支撑体端部的一角上。如此,真空抽气装置通常设置于玻璃正面上,也可以将其设置于间隔支撑体端部的一角上,以达到不影响间隔支撑体的力学性能及玻璃外观的目的。
本发明的另一技术方案在于在上述基础之上,所述气凝胶支撑体与玻璃之间通过透明胶黏剂连接。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1—图5为本发明实施例涉及的内置气凝胶复合玻璃的剖面图。
其中:
1-玻璃; 2-气凝胶支撑体; 21-胶黏剂; 3-间隔支撑体; 4-低温封接材料; 41-金属条; 42-金属网; 43-金属丝; 5-真空抽气装置。
具体实施方式
下面结合附图对本发明进行详细描述,本部分的描述仅是示范性和解释性,不应对本发明的保护范围有任何的限制作用。此外,本领域技术人员根据本文件的描述,可以对本文件中实施例中以及不同实施例中的特征进行相应组合。
本发明实施例如下,一种内置气凝胶复合玻璃的制备方法,包括以下步骤:
(1)将气凝胶支撑体2铺放于玻璃1的中心表面上,将间隔支撑体3铺设于玻璃1的四周边缘上,再将另一片玻璃1平行放置于气凝胶支撑体2和间隔支撑体3上;
(2)真空环境中,在两片玻璃1与间隔支撑体3之间形成的U型封接处,连续地边铺放相应形状的低温封接材料4,同时快速地将低温封接材料4加热熔化,使两片玻璃1与间隔支撑体3完全密封,得到内置气凝胶复合玻璃。
如此,通过上述步骤,可得到一种由至少两块玻璃1作为壳体、具有至少一个真空抽气装置5的密封空腔且空腔内设置有气凝胶支撑体2的气凝胶复合玻璃,如图1所示。这种内置气凝胶支撑体2的气凝胶复合玻璃的节能效果可与真空玻璃相媲美,由于其中设置的透明气凝胶具有优异的隔热保温性能,加之空腔内真空带来的几无气体分子对流热现象,因此,使得到的内置气凝胶复合玻璃具有非常优异的隔热保温性能。而且内置气凝胶支撑体2与玻璃1的连接将现有真空玻璃的点支撑替换为面支撑,安全性更高,此外,由于气凝胶具有较好的抗压缩变形特性,可以有效地支撑因空腔内真空而产生的压应力作用,同时避免应力集中现象,是一种安全型的超节能玻璃。因此,该制备方法生产出的内置气凝胶复合玻璃不但具有较好的隔热保温性能,还具有优异的安全性能,并且还解决了气凝胶支撑体超过现有真空玻璃支撑体厚度时采用低温封接材料进行加固封边等问题。
在上述实施例的基础上,本发明另一实施例中,所述铺放支撑体步骤之前还包括玻璃1封接处表面的预处理和润湿处理,具体为:先用酸性或碱性溶液清洗玻璃1封接处表面,再在玻璃1封接处表面涂布一层润湿剂;所述润湿剂为十二烷基磺酸钠、硫酸月桂酯、二烷基磺基琥珀酸盐、蓖麻油硫酸化物、烷基吡啶盐氯化物、烷基苯酚聚乙烯醚、聚氧乙烯烷基醚、聚氧乙烯乙二醇烷基酯、乙炔乙二醇中的一种或多种。如此,通常酸性溶液为H2SO4和HNO3的混合溶液等,碱性溶液为NaOH、Na2CO3等,玻璃1封接处表面先通过酸性溶液或碱性溶液的清洗,以达到除去油污和杂质的目的,便于下一步更好地进行润湿处理;然后再在预处理后的玻璃1封接处表面涂布一层润湿剂,降低玻璃1封接处的表面张力,以达到增加玻璃1表面与低温封接材料4之间的界面结合强度的目的,进一步保证了玻璃1封接处的密封性。
在上述实施例的基础上,本发明另一实施例中,所述铺放支撑体步骤还包括在真空环境中进行。如此,将整个玻璃置于密封的真空室内进行铺放支撑体步骤,以达到合片时排除玻璃空腔体内空气的目的。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶支撑体2的形状为平板状、颗粒状、柱体、异形体中的一种或一种以上。其中,异形体为柱体与平板状的一体化成型结构。如此,当气凝胶支撑体2为颗粒状时,经密实处理填滿空腔以起到支撑作用,当气凝胶支撑体2为其他的形状时,将气凝胶支撑体2布满或阵列分布于玻璃空腔中,且厚度与空腔高度适宜以起到支撑作用,由此在内置气凝胶复合玻璃内腔中用本身具有超级隔热保温性能、大尺寸的透明气凝胶做支撑体,实现面支撑、块支撑、柱支撑、多元化支撑等多种方式,一方面避免了因传热系数较高的传统点支撑体导致的热桥现象,进一步提高了内置气凝胶复合玻璃的隔热保温性能,另一方面从根源上彻底地消除了产生应力集中的条件,从而显著提高内置气凝胶复合玻璃的安全性能。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶支撑体2还包括表层低密度且芯部高密度的气凝胶支撑体或气凝胶复合支撑体。如此,通常气凝胶的导热系数不低于0.010W/m·k,为了使其传热系数达到真空玻璃的传热系数k值水平(k值约0.5W/m2·k),传统气凝胶的厚度至少需15mm,采用气凝胶协同负压技术,通过实施负压技术与气凝胶的纳米尺寸产生协同效应,完全阻隔腔内气凝胶孔隙中气体的对流传热,使气凝胶导热系数低至0.004 W/m·k以下,从而极大地减少气凝胶厚度,优化厚度在1mm~5mm。当气凝胶支撑体为表层低密度且芯部高密度时,可得到内部强度较高且表层具有弹性的气凝胶支撑体,可以满足玻璃在使用过程中由于环境温度造成玻璃空腔的细微膨胀或收缩,避免了气凝胶支撑体的过度应力集中;当气凝胶支撑体为气凝胶复合支撑体时,不仅使气凝胶支撑体具有良好的隔热保温性能,而且还增强了气凝胶支撑体的抗压强度。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶复合支撑体包括气凝胶/玻璃复合支撑体和气凝胶/树脂复合支撑体中的一种或两种。如此,采用气凝胶与玻璃或树脂复合技术,由质轻、本身具有优异的隔热保温性能、隔声降噪性能、吸能特性的透明气凝胶作为功能组元,用玻璃或树脂作粘结相,制造出的气凝胶与玻璃或树脂的复合支撑体,兼具气凝胶的优异特性和玻璃或树脂的良好力学性能,一方面既具有良好的隔热保温性能,另一方面又可获得良好的安全性能和隔声降噪性能,此外还具有良好的力学性能。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶复合支撑体中的所述气凝胶/玻璃复合支撑体的制备方法为:
(1)混料,将玻璃粉体与气凝胶混合均匀;
(2)熔化,将步骤(1)得到的混合料中的玻璃粉体加热至熔化,得到半固态的混合玻璃熔液;
(3)成型,将步骤(2)得到的混合玻璃熔液浇注于模具中,冷却凝固。
如此,通过上述步骤,可得到一种由气凝胶和玻璃粘结相构成的具有隔热保温性能的气凝胶/玻璃复合支撑体。其中,所述制备方法中的步骤(2)可以为铺料,即将所述步骤(1)得到的混合料置于模具中;然后步骤(3)为熔料,即将混合料中的玻璃粉体加热至熔化,得到半固态的混合玻璃熔液,冷却凝固;所述熔化步骤之后和所述成型步骤之前还包括澄清工艺;所述气凝胶与玻璃粘结相的体积比为0.1-9:1;所述气凝胶具有内部疏水、表面亲水特性;所述气凝胶的形状为块状、颗粒状、粉末中的一种。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶复合支撑体中的所述气凝胶/树脂复合支撑体的制备方法为:
(1)混料,将气凝胶与树脂粉末混合均匀;
(2)铺料,在模具基板上铺一层步骤(1)得到的混合料;
(3)熔化,用激光器以步进扫描方式将步骤(2)得到的混合料中的树脂粉末快速加热至熔化;
(4)交替铺料与熔化,在前一沉积层上交替重复进行步骤(2)和步骤(3),固化。
如此,通过上述混料、铺料、激光器加热等步骤,可得到一种由气凝胶和树脂粘结相构成的具有隔热保温性能的气凝胶/树脂复合支撑体。其中,所述交替铺料与熔化步骤是在熔化步骤中的树脂固化前进行;所述交替铺料与熔化步骤是在熔化步骤中的树脂固化后进行;所述气凝胶与树脂粉末的体积比为0.1-9:1;所述气凝胶具有内部疏水、表面亲水特性;所述气凝胶的形状为块状、颗粒状、粉末中的一种;所述树脂为热固性树脂或热塑性树脂。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶支撑体2与玻璃1的接触面之间设置有透明胶黏剂21。如此,使用透明胶黏剂21可以将气凝胶支撑体2与玻璃1内表面连接固定,以起到更好的支撑作用。
在上述实施例的基础上,本发明另一实施例中,所述低温封接材料4为低温玻璃粉和低温金属封边材料中的一种。如此,采用低温封接材料4进行封接可以避免由于封接温度过高引起钢化玻璃或半钢化玻璃的退火现象,使得钢化玻璃或半钢化玻璃的物理性能降低;通过低温玻璃粉或低温金属封边材料进行熔封,实现玻璃1与间隔支撑体3的封焊,满足高真空度的要求,从而有效延长内置气凝胶复合玻璃的使用寿命。
在上述实施例的基础上,本发明另一实施例中,所述低温封接材料中的所述低温金属封边材料为铟、铟合金、锡、锡合金中的一种。如此,铟、铟合金、锡、锡合金等低温金属的熔点一般不超过玻璃的退火温度。
在上述实施例的基础上,本发明另一实施例中,所述低温封接材料4内部设置金属条41、金属网42或金属丝43中的一种或多种。如此,通过在封接边内部设置金属条41、金属网42或金属丝43,一方面,该金属条41、金属网42或金属丝43的熔点高于低温封接材料4,通过直接对金属条41、金属网42或金属丝43进行加热,并熔化低温封接材料4,进而实现边铺低温封接材料4边熔化边连续封接;另一方面,金属条41、金属网42或金属丝43作为低温封接材料4中的固体增强相,在两块玻璃板1之间起到支撑作用。
在上述实施例的基础上,本发明另一实施例中,所述间隔支撑体3为陶瓷间隔支撑体、金属间隔支撑体和复合材料间隔支撑体中的一种或多种。此外,间隔支撑体3还可以为断热型间隔支撑体,其中,陶瓷间隔支撑体主要包括玻璃间隔支撑体、传统陶瓷间隔支撑体等,金属间隔支撑体主要包括铝间隔支撑体、铝合金间隔支撑体、不锈钢间隔支撑体等,复合材料间隔支撑体主要包括塑钢间隔支撑体、铝塑间隔支撑体、复合胶条、玻璃纤维增强复合间隔支撑体等。如此,由于气凝胶支撑体2厚度较传统支撑体厚,若使用低温封接材料4直接对两片玻璃1进行封接,由于低温封接材料4扩展过度,导致封接边部出现缝隙或缺漏现象,影响真空玻璃的密封性,因此,在两片玻璃1之间预置间隔支撑体3后再进行熔封,一方面可以解决由于低温封接材料4扩展过度引起的封接问题,另一方面还可以起到主要支撑作用,减少气凝胶支撑体2的应力过度集中,进一步提高了负压玻璃的抗弯、抗压强度。
在上述实施例的基础上,本发明另一实施例中,所述熔封的加热方式为激光加热、电子束加热、微波加热中的一种。如此,熔封过程中可以对低温封接材料4内部设置的金属条41、金属网42或金属丝43直接快速加热并熔化低温封接材料4,实现玻璃的封接;也可以采用激光加热、电子束加热、微波加热等方式直接对低温封接材料4进行快速加热熔化,实现玻璃的封接。
本发明另一实施例,一种气凝胶节能玻璃,由两片玻璃1、两片玻璃1之间的间隔支撑体3和玻璃腔内设置的气凝胶支撑体2组成,所述两片玻璃1与所述间隔支撑体3之间形成的U型封接处通过低温封接材料4连接。
在上述实施例的基础上,本发明另一实施例中,所述气凝胶支撑体与玻璃之间通过透明胶黏剂连接。
在上述实施例的基础上,本发明另一实施例中,内置气凝胶复合玻璃采用以下步骤制备:
(1)在玻璃1边缘的封接处表面进行预处理和润湿处理,即先用酸性溶液进行清洗,再涂布一层润滑剂;
(2)在真空环境中,将平板状的气凝胶支撑体2铺放于玻璃1的中心表面上,将陶瓷间隔支撑体3紧靠平板状气凝胶支撑体2铺设于玻璃1的四周边缘上,再将另一片玻璃1平行放置于平板状的气凝胶支撑体2和陶瓷间隔支撑体3上;
(3)真空环境中,在两片玻璃1与陶瓷间隔支撑体3之间形成的U型封接处,连续地边铺放相应形状的低温玻璃粉4,同时快速地将低温玻璃粉4加热熔化,使两片玻璃1与陶瓷间隔支撑体3完全密封,得到气凝胶节能玻璃。
通过上述步骤得到的内置气凝胶复合玻璃的结构剖面图如图1所示。
在上述实施例的基础上,本发明另一实施例中,内置气凝胶复合玻璃采用以下步骤制备:
(1)制作气凝胶/玻璃复合支撑体,其制备方法如下:(a)将玻璃粉体与气凝胶均匀混合;(b)将混合料中的玻璃粉体加热至熔化,得到半固态的混合熔液;(c)将得到的混合熔液倒入柱体的模具中,冷却凝固;(d)退火,得到柱体的气凝胶/玻璃复合支撑体2;
(2)在玻璃1边缘的封接处表面进行预处理和润湿处理,即先用碱性溶液进行清洗,再涂布一层润滑剂;
(3)在真空环境中,先将透明胶黏剂21分别铺置在若干个柱体的气凝胶/玻璃基支撑体2的底部和顶部,将其阵列排布并紧固于玻璃1表面上,然后将复合材料间隔支撑体3铺设于玻璃1的四周边缘上,再将另一片玻璃1平行放置于若干个柱体的气凝胶/玻璃基支撑体2和复合材料间隔支撑体3上;
(4)在真空环境中,在两片玻璃1与复合材料间隔支撑体3之间形成的U型封接处,连续地边铺放相应形状的低温金属铟4,同时快速地将低温金属铟4加热熔化,使两片玻璃1与复合材料间隔支撑体3完全密封,得到内置气凝胶复合玻璃。
通过上述步骤得到的内置气凝胶复合玻璃的结构剖面图如图2所示。
在上述实施例的基础上,本发明另一实施例中,内置气凝胶复合玻璃采用以下步骤制备:
(1)制作气凝胶/树脂复合支撑体,其制备方法如下:(a)将气凝胶与树脂粉末混合均匀;(b)在模具基板上铺一层混合料;(c)用激光器以步进扫描方式将铺好的混合料中的树脂粉末快速加热至熔化;(d)按照所输入的异形体气凝胶支撑体的形状,在前一沉积层上交替重复进行步骤(b)和步骤(c),固化,即得异形体的气凝胶/树脂复合支撑体;
(2)在玻璃1边缘的封接处表面进行预处理和润湿处理,即先用酸性溶液进行清洗,再涂布一层润滑剂十二烷基磺酸钠;
(3)先将透明胶黏剂21分别铺置在异形体的气凝胶/树脂基支撑体2的底部和顶部,将其紧固于玻璃1的中心表面上,然后将金属间隔支撑体3铺设于玻璃1的四周边缘上,将另一片玻璃1平行放置于异形体的气凝胶/玻璃基支撑体2和金属间隔支撑体3上;
(4)在真空环境中,在两片玻璃1与金属间隔支撑体3之间形成的U型封接处,连续地边铺放相应形状的内部预先埋入金属条41的低温金属铟合金4,同时通过激光加热快速地将低温金属铟合金4熔化,使两片玻璃1与金属间隔支撑体3完全密封,得到内置气凝胶复合玻璃。
通过上述步骤得到的内置气凝胶复合玻璃的结构剖面图如图3所示。
在上述实施例的基础上,本发明另一实施例中,内置气凝胶复合玻璃采用以下步骤制备:
(1)在玻璃1边缘的封接处表面进行预处理和润湿处理,即先用碱性溶液进行清洗,再涂布一层润滑剂烷基苯酚聚乙烯醚;
(2)在真空环境中,先将颗粒状的气凝胶支撑体2铺置在玻璃1的中心表面上,然后将陶瓷间隔支撑体3铺设于玻璃1的四周边缘上,将另一片玻璃1平行放置于颗粒状的气凝胶支撑体2和陶瓷间隔支撑体3上;
(3)在真空环境中,在两片玻璃1与陶瓷间隔支撑体3之间形成的U型封接处,连续地边铺放相应形状的内部预先埋入金属网42的低温金属锡4,同时通过电子束加热快速地将低温金属锡4熔化,使两片玻璃1与陶瓷间隔支撑体3完全密封,得到内置气凝胶复合玻璃。
通过上述步骤得到的内置气凝胶复合玻璃的结构剖面图如图4所示。
在上述实施例的基础上,本发明另一实施例中,内置气凝胶复合玻璃采用以下步骤制备:
(1)在玻璃1边缘的封接处表面进行预处理和润湿处理,即先用酸性溶液进行清洗,再涂布一层润滑剂乙炔乙二醇;
(2)在真空环境中,先将透明胶黏剂21分别铺置在平板状的气凝胶支撑体2的底部和顶部,将其紧固于玻璃1的中心表面上,然后将复合材料间隔支撑体3紧靠平板状气凝胶支撑体2铺设于玻璃1的四周边缘上,将另一片玻璃1平行放置于平板状的气凝胶支撑体2和复合材料间隔支撑体3上,其中平板状的气凝胶支撑体2为表层低密度且芯部高密度的气凝胶支撑体2;
(3)在真空环境中,在两片玻璃1与复合材料间隔支撑体3之间形成的U型封接处,连续地边铺放相应形状的内部预先埋入若干条平行设置的金属丝43的低温玻璃粉4,同时通过微波加热快速地将低温玻璃粉4熔化,使两片玻璃1与复合材料间隔支撑体3完全密封,得到内置气凝胶复合玻璃。
通过上述步骤得到的内置气凝胶复合玻璃的结构剖面图如图5所示。
本发明另一实施例,一种内置气凝胶复合玻璃,由两片玻璃1、两片玻璃1之间的间隔支撑体3和玻璃腔内设置的气凝胶支撑体2组成,所述两片玻璃1与所述间隔支撑体3之间形成的U型封接处通过低温封接材料4连接,如图1所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

1.一种内置气凝胶复合玻璃的制备方法,其特征在于,包括以下步骤:
(1)铺放支撑体,将气凝胶支撑体铺放于玻璃上,将间隔支撑体铺设于玻璃的四周边缘上,再将另一片玻璃放置于气凝胶支撑体和间隔支撑体上;
(2)封接,真空环境中,在两片玻璃与间隔支撑体之间形成的U型封接处,连续地边铺放低温封接材料,同时快速地将低温封接材料加热熔封,得到气凝胶复合玻璃。
2.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述步骤(1)之前还包括玻璃封接处表面的预处理和润湿处理,具体为:先用酸性或碱性溶液清洗玻璃封接处表面,再在玻璃封接处表面涂布一层润湿剂,所述润湿剂为十二烷基磺酸钠、硫酸月桂酯、二烷基磺基琥珀酸盐、蓖麻油硫酸化物、烷基吡啶盐氯化物、烷基苯酚聚乙烯醚、聚氧乙烯烷基醚、聚氧乙烯乙二醇烷基酯、乙炔乙二醇中的一种或多种。
3.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述步骤(1)还包括在真空环境中进行。
4.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述气凝胶支撑体的形状为平板状、颗粒状、柱体、异形体中的一种或一种以上。
5.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述气凝胶支撑体还包括表层低密度且芯部高密度的气凝胶支撑体或气凝胶复合支撑体中的一种,所述气凝胶复合支撑体包括气凝胶/玻璃复合支撑体和气凝胶/树脂复合支撑体中的一种或两种。
6.根据权利要求5所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述气凝胶/玻璃复合支撑体的制备方法为:
(1)混料,将玻璃粉体与气凝胶混合均匀;
(2)熔化,将步骤(1)得到的混合料中的玻璃粉体加热至熔化,得到半固态的混合玻璃熔液;
(3)成型,将步骤(2)得到的混合玻璃熔液浇注于模具中,冷却凝固。
7.根据权利要求5所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述气凝胶/树脂复合支撑体的制备方法为:
(1)混料,将气凝胶与树脂粉末混合均匀;
(2)铺料,在模具基板上铺一层步骤(1)得到的混合料;
(3)熔化,用激光器以步进扫描方式将步骤(2)得到的混合料中的树脂粉末快速加热至熔化;
(4)交替铺料与熔化,在前一沉积层上交替重复进行步骤(2)和步骤(3),固化。
8.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述气凝胶支撑体与玻璃的接触面之间设置有透明胶黏剂。
9.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述低温封接材料为低温玻璃粉或低温金属封边材料,所述低温金属封边材料为铟、铟合金、锡、锡合金中的一种;所述封接的加热方式为激光加热、电子束加热以及微波加热方式中的一种;所述间隔支撑体为陶瓷间隔支撑体、金属间隔支撑体和复合材料间隔支撑体中的一种。
10.根据权利要求1所述的一种内置气凝胶复合玻璃的制备方法,其特征在于,所述低温封接材料内部设置金属条、金属网或金属丝中的一种或多种。
11.根据前述任一权利要求所述的制备方法得到的一种内置气凝胶复合玻璃,其特征在于,由两片玻璃、两片玻璃之间的间隔支撑体和玻璃腔内设置的气凝胶支撑体组成,所述两片玻璃与所述间隔支撑体之间形成的U型封接处通过低温封接材料连接。
CN201710161774.6A 2017-03-17 2017-03-17 一种内置气凝胶复合玻璃及其制备方法 Active CN108623194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710161774.6A CN108623194B (zh) 2017-03-17 2017-03-17 一种内置气凝胶复合玻璃及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710161774.6A CN108623194B (zh) 2017-03-17 2017-03-17 一种内置气凝胶复合玻璃及其制备方法

Publications (2)

Publication Number Publication Date
CN108623194A true CN108623194A (zh) 2018-10-09
CN108623194B CN108623194B (zh) 2021-04-27

Family

ID=63687436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710161774.6A Active CN108623194B (zh) 2017-03-17 2017-03-17 一种内置气凝胶复合玻璃及其制备方法

Country Status (1)

Country Link
CN (1) CN108623194B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113400745A (zh) * 2021-07-14 2021-09-17 上海耀江建设工程有限公司 一种用有机硅树脂气凝胶填充的防火玻璃及其制作方法
US20220042369A1 (en) * 2020-08-07 2022-02-10 Cardinal Cg Company Optical Device with Aerogel Tiling Technology

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886566A (zh) * 2003-10-03 2006-12-27 卡伯特公司 隔热板以及包括其的装配玻璃体系
CN102180603A (zh) * 2011-02-25 2011-09-14 东莞市创一新材料科技有限公司 一体化透明绝热SiO2气凝胶复合玻璃及其制备方法
CN202645325U (zh) * 2012-05-30 2013-01-02 洛阳兰迪玻璃机器股份有限公司 一种多层复合玻璃
CN104291598A (zh) * 2013-07-17 2015-01-21 戴长虹 一种真空玻璃抽气口的密封结构及制备方法
DE202013010599U1 (de) * 2013-11-27 2015-03-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sandwichstruktur mit einem Aerogel enthaltenden Kernwerkstoff
CN104478202A (zh) * 2014-12-19 2015-04-01 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃的封接方法及真空玻璃产品
CN105297943A (zh) * 2014-07-29 2016-02-03 金承黎 复合气凝胶的承重保温装饰一体化装配式墙体及制备方法
CN106032310A (zh) * 2014-10-27 2016-10-19 金承黎 一种真空玻璃及其制造方法
US10633915B2 (en) * 2013-12-19 2020-04-28 Cabot Corporation Self supporting areogel insulation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886566A (zh) * 2003-10-03 2006-12-27 卡伯特公司 隔热板以及包括其的装配玻璃体系
CN102180603A (zh) * 2011-02-25 2011-09-14 东莞市创一新材料科技有限公司 一体化透明绝热SiO2气凝胶复合玻璃及其制备方法
CN202645325U (zh) * 2012-05-30 2013-01-02 洛阳兰迪玻璃机器股份有限公司 一种多层复合玻璃
CN104291598A (zh) * 2013-07-17 2015-01-21 戴长虹 一种真空玻璃抽气口的密封结构及制备方法
DE202013010599U1 (de) * 2013-11-27 2015-03-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sandwichstruktur mit einem Aerogel enthaltenden Kernwerkstoff
US10633915B2 (en) * 2013-12-19 2020-04-28 Cabot Corporation Self supporting areogel insulation
CN105297943A (zh) * 2014-07-29 2016-02-03 金承黎 复合气凝胶的承重保温装饰一体化装配式墙体及制备方法
CN106032310A (zh) * 2014-10-27 2016-10-19 金承黎 一种真空玻璃及其制造方法
CN104478202A (zh) * 2014-12-19 2015-04-01 洛阳兰迪玻璃机器股份有限公司 一种真空玻璃的封接方法及真空玻璃产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
谢华清等: "《低维材料热物理》", 30 September 2008, 上海科学技术文献出版社 *
陶艳平等: "改性SiO_2气凝胶微球凝胶注模法制备块体材料", 《粉末冶金技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220042369A1 (en) * 2020-08-07 2022-02-10 Cardinal Cg Company Optical Device with Aerogel Tiling Technology
CN113400745A (zh) * 2021-07-14 2021-09-17 上海耀江建设工程有限公司 一种用有机硅树脂气凝胶填充的防火玻璃及其制作方法

Also Published As

Publication number Publication date
CN108623194B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2013139281A1 (zh) 条框沟槽封边低空、真空玻璃
CN108623194A (zh) 一种内置气凝胶复合玻璃及其制备方法
CN206581822U (zh) 一种内置气凝胶复合玻璃
CN108625737A (zh) 一种内置气凝胶复合玻璃及其制备方法
CN108625740A (zh) 一种内置气凝胶复合玻璃及其制备方法
CN206581820U (zh) 一种内置气凝胶复合玻璃
CN108625741A (zh) 一种内置气凝胶复合玻璃及其制备方法
CN108625742A (zh) 一种内置气凝胶复合玻璃及其制备方法
CN207348705U (zh) 一种高折射率压花玻璃结构
CN204491991U (zh) 铠装一体化墙体
CN108625743A (zh) 一种内置遮阳装置的中空玻璃
CN108621505B (zh) 一种内置气凝胶复合板的节能玻璃及其制备方法
CN108621506B (zh) 一种内置气凝胶复合板的节能玻璃及其制备方法
CN207277668U (zh) 一种建筑用带有防火隔热板的保温砌块
CN207190441U (zh) 一种内置气凝胶复合板的节能玻璃
CN205036236U (zh) 一种隔热保温玻璃
CN106930656A (zh) 一种被动式利用光能的多功能中空玻璃
CN211641219U (zh) 一种新型防火耐高温型钢化玻璃
CN104746736A (zh) 密封条封边双真空层玻璃复合真空隔热板及其制备方法
CN206337995U (zh) 一种节能防火防弹中空玻璃
CN205117116U (zh) 一种隔热保温玻璃
CN104746711A (zh) 密封条封边双真空层玻璃复合真空板及其制备方法
CN104746669A (zh) 密封条封边的玻璃复合真空隔热板及其制备方法
CN104746694A (zh) 有密封条和吸气剂的双真空层石材复合真空板及制备方法
CN104746697A (zh) 密封条封边双真空层陶瓷复合真空隔热板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant