CN108621831A - 一种车载充电机实现直流快充功能的方法 - Google Patents

一种车载充电机实现直流快充功能的方法 Download PDF

Info

Publication number
CN108621831A
CN108621831A CN201810304440.4A CN201810304440A CN108621831A CN 108621831 A CN108621831 A CN 108621831A CN 201810304440 A CN201810304440 A CN 201810304440A CN 108621831 A CN108621831 A CN 108621831A
Authority
CN
China
Prior art keywords
module
charge
charging
direct current
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810304440.4A
Other languages
English (en)
Inventor
陶敬恒
张红彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiashan Zhongzheng New Energy Technology Co Ltd
Original Assignee
Jiashan Zhongzheng New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiashan Zhongzheng New Energy Technology Co Ltd filed Critical Jiashan Zhongzheng New Energy Technology Co Ltd
Priority to CN201810304440.4A priority Critical patent/CN108621831A/zh
Publication of CN108621831A publication Critical patent/CN108621831A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

本发明公开了一种车载充电机实现直流快充功能的方法,包括充电机、CAN控制器和CAN端口,在充电机上接入直流充电端口,提高充电机的主电路的功率至快充所需的功率等级,CAN端口可用作于CAN控制器软件升级后的通讯端口。本发明针通过简单的技术改进和升级,可以获得快充功能的实现,提升了微型车和锂电低速车的使用方便性。

Description

一种车载充电机实现直流快充功能的方法
技术领域
本发明涉及车载电源领域,特别涉及到一种车载充电机实现直流快充功能的方法。
背景技术
在纯电动汽车中,对动力电池的充电可以归为以下几种分类:
一、标准乘用车:大都使用300V以上高压锂电池,配置3KW以上车载充电机。标配交流和直流充电端口。可以满足AC慢冲和DC快冲的要求。这类汽车因目前成本较高,正处于发展的起步阶段。
二、微型电动车:大都使用72-144V低压锂电池,一般标配2-3KW车载充电机,可以满足市电慢冲的要求。由于没有快冲端口,目前国家在大中城市开始布局的快充电桩无法享用,使得电动微车的使用体验大大受到影响。而当前微车的发展势头非常迅猛,能否解决快充问题非常迫切。
三、低速电动车:目前车厂以使用铅酸电池为主,主要特点是成本低,但能量密度不高。随着国家相关法规的出台,使用锂电是未来的必然趋势,其高端车型目前已开始尝试使用低压锂电,这就具备了使用快充的潜在需求。
发明内容
本发明的目的在于针对现有技术中的不足,提供一种车载充电机实现直流快充功能的方法,以解决上述问题。
本发明所解决的技术问题可以采用以下技术方案来实现:
一种车载充电机实现直流快充功能的方法,包括充电机、CAN控制器和CAN端口,在充电机上接入直流充电端口,提高充电机的主电路的功率至快充所需的功率等级,所述CAN端口可用作于CAN控制器软件升级后的通讯端口。
进一步的,所述充电机的主电路包括输入整流滤波模块、PFC电路模块、DC/DC模块、整流滤波模块、隔离DC/DC模块、AC充电控制模块、CAN控制器和反馈隔离模块,输入整流滤波模块依次与PFC电路模块、DC/DC模块和整流滤波模块相连,隔离DC/DC模块分别与辅助源、CAN控制器、AC充电控制模块以及PFC电路模块的前端相连,PFC电路模块的后端与快充电桩相连,快充电桩接入PFC电路模块的两端还连接有电容,AC充电控制模块分别与PFC电路模块、CAN控制器和反馈隔离模块的一端相连,反馈隔离模块的另一端与整流滤波电路的输出端相连。
进一步的,所述AC充电控制模块为半桥LLC驱动及控制模块或其他PWM驱动控制模块。
进一步的,所述AC充电控制模块为全桥LLC驱动及控制模块,或移相全桥驱动及控制模块。
进一步的,还包括市电接入模块,市电通过EMI滤波模块和整流电路模块分别与PFC电路模块和DC/DC模块相连。
进一步的,所述CAN控制器和快充电桩之间还连接有BOOST升压电路。
进一步的,所述整流滤波模块和PFC电路模块组成AC整流及PFC驱动控制模块,CAN控制器检测来自于AC整流及PFC驱动控制模块的电网信号,当检测到有市电的情况下,CAN控制器进入AC充电模式,通过与BMS的握手通讯,设置充电机的充电电流和电压及时间参数,AC充电控制模块启动主电路开关,慢充开始起动,直至充电过程结束;一旦CAN控制器接受到来自于充电桩的指令时,充电机就进入直流快充模式和流程,启动BOOST升压电路模拟电池接入电桩,向充电桩发充电参数要求及开始命令。
进一步的,所述主电路在开环状态下工作,充电管理由CAN端口与电池包BMS通讯后获得充电参数,然后再与充电桩通讯后设置充电参数要求后进入快充状态。
进一步的,所述充电机的主电路为LLC谐振转换器,则在快充状态工作时工作于谐振状态;若充电机的主电路为全桥ZVS PWM或移相全桥PWM,则在快充状态工作时工作在全占空比开环状态。
与现有技术相比,本发明的有益效果如下:
本发明可广泛使用在中低速或微型电动车领域,通过在普通的车载交流充电机的基础上通过在特定位置接入直流充电端口,对原有充电机的后级DC/DC主电路部分进行功率提升,利用原来的CAN端口,对CAN控制器作软件升级,使之能同时成为快充控制器的通讯端口。从而就能在增加有限成本的基础上实现车载AC充电机和DC快充转换器的功能合并。即在”快充”状态下工作时,充电机的主电路实现把充电桩的高压转换成电动车动力锂电电压。同时转换器的CAN通讯接口可以实现把低压动力锂电的BMS充电需求转译给充电桩,进而完成整个直流充电过程。在AC慢充状态下工作时,CAN端口接受慢充指令,系统按普通车载AC充电机的原理工作。本发明解决了采用低电压动力锂电的电动汽车无法有效使用目前已在大中型城市广泛布点的直流快冲电桩。合并功能的充电机可以在增加有限成本的基础上使得这些社会资源得到有效利用。对中低速电动车的车厂来说增加这个快冲配置,可以大大方便用户日后的出行,从而获得和标准乘用车一样的充电便捷体验。
本发明针对使用低压锂电并配备了AC车载充电机的微型及低速车型,通过简单的技术改进和升级,可以获得快充功能的实现,提升了微型车和锂电低速车的使用方便性,解决了现有小型电动车不能充分利用社会资源解决快充问题的现状。
附图说明
图1为本发明所述的充电机的主电路的示意图。
图2为本发明所述充电机的半桥LLC主电路的示意图。
图3为本发明所述充电机的全桥LLC主电路的示意图。
图4为本发明所述的车载充电机实现直流快充功能的方法示意图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
参见图1,本发明所述的一种车载充电机实现直流快充功能的方法,包括充电机、CAN控制器和CAN端口。在充电机上接入直流充电端口,提高充电机的主电路的功率至快充所需的功率等级。CAN端口可用作于CAN控制器软件升级后的通讯端口。
充电机的主电路包括输入整流滤波模块、PFC电路模块、DC/DC模块、整
流滤波模块、隔离DC/DC模块、AC充电控制模块、CAN控制器和反馈隔离模块。输入整流滤波模块依次与PFC电路模块、DC/DC模块和整流滤波模块相连。隔离DC/DC模块分别与辅助源、CAN控制器、AC充电控制模块以及PFC电路模块的前端相连。PFC电路模块的后端与快充电桩相连,快充电桩接入PFC电路模块的两端还连接有电容。AC充电控制模块分别与PFC电路模块、CAN控制器和反馈隔离模块的一端相连。反馈隔离模块的另一端与整流滤波电路的输出端相连。
如图2所示,AC充电控制模块为半桥LLC驱动及控制模块;或其他PWM驱动控制模块。充电桩输出的直流电直接接入PFC输出的电容C12两端,经变换滤波后连接至动力电池端。
在系统按AC慢充方式工作时,CAN控制器接受BMS通讯指令对LLC控制模块进行慢充管理。此时系统表现为一个普通的车载AC充电机。
CAN控制器在接受到直流充电桩接入的指令后,系统进入快充模式。CAN控制器会根据BMS的充电参数要求给充电桩下达充电命令和充电参数。此时系统表现为一个实现快冲功能的转换器。
为使LLC电路的转换效能达到最佳,工作在快冲状态的LLC主电路必须在谐振频率点工作为佳。同样对于PWM变换器来说,应该在全脉宽占控比条件下工作为佳。
图3为AC充电控制模块为全桥LLC驱动及控制模块;或移相全桥驱动及控制模块。
还包括市电接入模块,市电通过EMI滤波模块和整流电路模块分别与PFC电路模块和DC/DC模块相连。
CAN控制器和快充电桩之间还连接有BOOST升压电路。
为了配合充电桩初始状态对电池电压的检测,需要在电桩充电端口模拟一个高压输出,可以利用充电机的PFC电路实现,也可以另外做一个小功率的BOOST来完成以上功能。
由于主电路在开环状态下工作,充电管理由CAN端口与电池包BMS通讯后获得充电参数,然后再与充电桩通讯后设置充电参数要求后进入快充状态。
为了使其具有固定的传输比并达成最高效变换,如果原充电机的主电路为LLC谐振转换器,则在快充状态工作时应工作于谐振状态。若充电机的主电路为全桥ZVS PWM或移相全桥PWM,则在快充状态工作时应工作在全占空比开环状态。以上工作条件可以使隔离输出级工作在最高效状态。
合并功能的转换器电路通过把快充端口接入充电机的DC/DC主电路前端来实现把充电桩的高压转换成低压锂电需要的相对低电压,以实现快冲目的。原有充电机的DC/DC转换电路需要提高功率等级至快充所需要的功率等级。一般在10KW至20KW。如果充电机的后级主电路功率没有提升,则也可以完成直流桩的充电功能,但不能达到快充目标。
如图3所示,为满足充电桩的初始要求,CAN控制器需要控制BOOST升压电路产生需要的高电压,以模拟高压锂电的输出端电压。充电开始后,可以关闭模拟高压的输出。为了获得尽可能大的快冲功率变换器,一般优选全桥DC/DC为拓扑的主电路结构,当然也可以采用移相全桥。
如图4所示,为采用全桥LLC主电路设计带快充功能的交流充电机,为控制成本,AC慢充的功率可以控制在3KW左右,主要是为了满足家庭车库的夜间充电需要。设置锂电池电压为96V,设计转换器功率为10KW,充电桩为符合国标的标准电桩。
主变压器设计:96V的锂电池最高充电电压在126V左右,考虑到原边PFC输出母线的工作电压一般在400伏左右,原付边的匝数比可以取整数3:1。
考虑到最大快冲功率10KW的要求,全桥环路最大电流会接近30A,采用STW70N60大功率MOS来执行开关功能,输出端采用STTH20004 400V/200A的超快恢复管做全波整流用。LS、CS分别为协振电容和电感。
整流滤波模块和PFC电路模块组成AC整流及PFC驱动控制模块,CAN控制器检测来自于AC整流及PFC驱动控制模块的电网信号。
具体工作流程为:CAN控制器检测来自于AC整流及PFC控制部分的电网信号。在检测到有市电的情况下,CAN控制器进入AC充电模式,通过与BMS的握手通讯,设置充电机的充电电流和电压及时间参数,AC充电控制模块启动主电路开关,慢充开始起动,直至充电过程结束。
一旦CAN控制器接受的来自于充电桩的指令,充电机就进入直流快充模式和流程,启动BOOST升压电路模拟电池接入电桩,向充电桩发充电参数要求及开始命令。经与BMS的通讯接收充电过程的参数变更并转译给电桩。具体为:BMS要求90A充电电流,根据变压器变比3:1的设计,需要通知充电桩输出30A的电流源输出,并最高400V的恒压设置,以保护充电机电路的安全。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种车载充电机实现直流快充功能的方法,包括充电机、CAN控制器和CAN端口,其特征在于:在充电机上接入直流充电端口,提高充电机的主电路的功率至快充所需的功率等级,所述CAN端口可用作于CAN控制器软件升级后的通讯端口。
2.根据权利要求1所述的车载充电机实现直流快充功能的方法,其特征在于:所述充电机的主电路包括输入整流滤波模块、PFC电路模块、DC/DC模块、整流滤波模块、隔离DC/DC辅助源模块、AC充电控制模块、CAN控制器和反馈隔离模块,输入整流滤波模块依次与PFC电路模块、DC/DC模块和整流滤波模块相连,隔离DC/DC模块分别与辅助源、CAN控制器、AC充电控制模块以及PFC电路模块的前端相连,PFC电路模块的后端与快充电桩相连,快充电桩接入PFC电路模块的两端还连接有电容,AC充电控制模块分别与PFC电路模块、CAN控制器和反馈隔离模块的一端相连,反馈隔离模块的另一端与整流滤波电路的输出端相连。
3.根据权利要求2所述的车载充电机实现直流快充功能的方法,其特征在于:所述AC充电控制模块为半桥LLC驱动及控制模块。
4.根据权利要求2所述的车载充电机实现直流快充功能的方法,其特征在于:所述AC充电控制模块为全桥LLC驱动及控制模块。
5.根据权利要求4所述的车载充电机实现直流快充功能的方法,其特征在于:还包括市电接入模块,市电通过EMI滤波模块和整流电路模块分别与PFC电路模块和DC/DC模块相连。
6.根据权利要求5所述的车载充电机实现直流快充功能的方法,其特征在于:所述CAN控制器和快充电桩之间还连接有BOOST升压电路。
7.根据权利要求5所述的车载充电机实现直流快充功能的方法,其特征在于:所述整流滤波模块和PFC电路模块组成AC整流及PFC驱动控制模块,CAN控制器检测来自于AC整流及PFC驱动控制模块的电网信号,当检测到有市电的情况下,CAN控制器进入AC充电模式,通过与BMS的握手通讯,设置充电机的充电电流和电压及时间参数,AC充电控制模块启动主电路开关,慢充开始起动,直至充电过程结束;一旦CAN控制器接受到来自于充电桩的指令时,充电机就进入直流快充模式和流程,启动BOOST升压电路模拟电池接入电桩,向充电桩发充电参数要求及开始命令。
8.根据权利要求7所述的车载充电机实现直流快充功能的方法,其特征在于:所述充电机主电路在开环状态下工作,充电管理由CAN端口与电池包BMS通讯后获得充电参数,然后再与充电桩通讯后设置充电参数要求后进入快充状态。
9.根据权利要求1所述的车载充电机实现直流快充功能的方法,其特征在于:所述充电机的主电路为LLC谐振转换器,则在快充状态工作时工作于谐振状态;若充电机的主电路为全桥ZVS PWM或移相全桥PWM,则在快充状态工作时工作在全占空比开环状态。
CN201810304440.4A 2018-04-08 2018-04-08 一种车载充电机实现直流快充功能的方法 Pending CN108621831A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810304440.4A CN108621831A (zh) 2018-04-08 2018-04-08 一种车载充电机实现直流快充功能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810304440.4A CN108621831A (zh) 2018-04-08 2018-04-08 一种车载充电机实现直流快充功能的方法

Publications (1)

Publication Number Publication Date
CN108621831A true CN108621831A (zh) 2018-10-09

Family

ID=63704713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810304440.4A Pending CN108621831A (zh) 2018-04-08 2018-04-08 一种车载充电机实现直流快充功能的方法

Country Status (1)

Country Link
CN (1) CN108621831A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810494A (zh) * 2021-01-08 2021-05-18 嘉善中正新能源科技有限公司 用于大功率充电桩实现通讯控制的双线充电控制系统
CN113178915A (zh) * 2021-04-30 2021-07-27 成都信息工程大学 一种蓄电池充电的模糊控制系统及控制方法
CN113335095A (zh) * 2021-06-08 2021-09-03 东风汽车集团股份有限公司 一种低电压平台电动车车载快慢充一体式充电系统及方法
CN114228513A (zh) * 2021-11-29 2022-03-25 郑州日产汽车有限公司 一种纯电动车低压电池平台快充方法
CN117277525A (zh) * 2023-09-26 2023-12-22 吉林省艾特网络传媒有限公司 一种用于充电桩的智能功率控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203840004U (zh) * 2014-03-28 2014-09-17 云南电力试验研究院(集团)有限公司电力研究院 一种智能高效快速充电机
US20140361742A1 (en) * 2013-06-07 2014-12-11 Hong Kong Productivity Council Electric vehicle charger
CN105762902A (zh) * 2016-03-25 2016-07-13 嘉善中正新能源科技有限公司 一种可实现dc/dc转换功能的车载充电机电路
CN106004489A (zh) * 2016-06-01 2016-10-12 深圳市科列技术股份有限公司 一种电动汽车用车载充电机、充电方法及电动汽车
CN107623363A (zh) * 2017-09-13 2018-01-23 嘉善中正新能源科技有限公司 一种dc/dc转换器和车载充电机的合并电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140361742A1 (en) * 2013-06-07 2014-12-11 Hong Kong Productivity Council Electric vehicle charger
CN203840004U (zh) * 2014-03-28 2014-09-17 云南电力试验研究院(集团)有限公司电力研究院 一种智能高效快速充电机
CN105762902A (zh) * 2016-03-25 2016-07-13 嘉善中正新能源科技有限公司 一种可实现dc/dc转换功能的车载充电机电路
CN106004489A (zh) * 2016-06-01 2016-10-12 深圳市科列技术股份有限公司 一种电动汽车用车载充电机、充电方法及电动汽车
CN107623363A (zh) * 2017-09-13 2018-01-23 嘉善中正新能源科技有限公司 一种dc/dc转换器和车载充电机的合并电路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112810494A (zh) * 2021-01-08 2021-05-18 嘉善中正新能源科技有限公司 用于大功率充电桩实现通讯控制的双线充电控制系统
CN113178915A (zh) * 2021-04-30 2021-07-27 成都信息工程大学 一种蓄电池充电的模糊控制系统及控制方法
CN113335095A (zh) * 2021-06-08 2021-09-03 东风汽车集团股份有限公司 一种低电压平台电动车车载快慢充一体式充电系统及方法
CN113335095B (zh) * 2021-06-08 2022-03-01 东风汽车集团股份有限公司 一种低电压平台电动车车载快慢充一体式充电系统及方法
CN114228513A (zh) * 2021-11-29 2022-03-25 郑州日产汽车有限公司 一种纯电动车低压电池平台快充方法
CN117277525A (zh) * 2023-09-26 2023-12-22 吉林省艾特网络传媒有限公司 一种用于充电桩的智能功率控制系统
CN117277525B (zh) * 2023-09-26 2024-01-16 吉林省艾特网络传媒有限公司 一种用于充电桩的智能功率控制系统

Similar Documents

Publication Publication Date Title
CN108621831A (zh) 一种车载充电机实现直流快充功能的方法
CN207156960U (zh) 一种集成dc/dc转换器的车载充电机主电路及其控制环路
Chiu et al. A bidirectional DC–DC converter for fuel cell electric vehicle driving system
CN102694409B (zh) 电池充电装置
Channegowda et al. Comprehensive review and comparison of DC fast charging converter topologies: Improving electric vehicle plug-to-wheels efficiency
CN109510453A (zh) 一种基于SiC功率器件的EV车载充电器
CN208452807U (zh) 一种集成双向obc与双向dc/dc转换器的充放电电路
CN109361255B (zh) 一种基于电机绕组开路的充放电电路拓扑
CN107042762A (zh) 一种轨道车辆的车载混合储能系统及其应用
CN107264302A (zh) 用于车辆电池的充电系统
CN102983610A (zh) 电池充电装置
CN106972599B (zh) 一种柔性智能充电站及充电方法
CN203774850U (zh) 具有模式切换功能的多功能一体化电动汽车车载充电机
CN110525247B (zh) 一种充电电路、方法及设备
CN103085676B (zh) 增程式电动汽车发电系统
CN104158240B (zh) 一种用于电动汽车充电的分散式源馈开关磁阻电机系统
CN110492578A (zh) 一种电动汽车用车载充电与驱动一体化装置
CN113400959A (zh) 计及二次功率脉动抑制的电动汽车用电驱重构型充电系统
CN206259854U (zh) 一种车载dcdc变换器
Reddy et al. Novel wide voltage range multi-resonant bidirectional DC-DC converter
CN207134991U (zh) 一种电动汽车驱动与充电集成功率变换器
CN110171323A (zh) 一种基于v2g的电动汽车充放电控制系统及使用方法
CN106314184A (zh) 一种电动汽车车载充电驱动一体化拓扑结构
CN108521164A (zh) 一种实用化的dc/dc转换器和车载充电机的合并电路
Geethanjali et al. Testing and implementation of dual way DC-DC converter for electric vehicle power train system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009