CN108614290A - A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies - Google Patents

A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies Download PDF

Info

Publication number
CN108614290A
CN108614290A CN201810458036.2A CN201810458036A CN108614290A CN 108614290 A CN108614290 A CN 108614290A CN 201810458036 A CN201810458036 A CN 201810458036A CN 108614290 A CN108614290 A CN 108614290A
Authority
CN
China
Prior art keywords
data acquisition
seismic
seismic data
analog
lora
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810458036.2A
Other languages
Chinese (zh)
Inventor
李志华
高培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201810458036.2A priority Critical patent/CN108614290A/en
Publication of CN108614290A publication Critical patent/CN108614290A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/181Geophones
    • G01V1/184Multi-component geophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/223Radioseismic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供了一种基于LoRa技术的无线分布式三分量地震数据采集系统,包括上位机监控系统和地震数据采集单元,上位机监控系统,为地震数据采集系统提供友好的人机交互界面,完成对地震数据采集系统的参数配置,采集数据的接收、存储及显示和地震波形实时显示及回放;地震数据采集单元,用于对地震信号的采集、采集数据的本地存储以及采集数据的无线发送。本发明的有益效果是:通过本发明提供的技术方案,有效地降低了施工成本和节约人力资源等,降低了噪声干扰和通信故障的发生概率,提高了地震仪器的便携性和适应性,使地震数据的采集更方便。

The present invention provides a wireless distributed three-component seismic data acquisition system based on LoRa technology, including a host computer monitoring system and a seismic data acquisition unit, and the host computer monitoring system provides a friendly human-computer interaction interface for the seismic data acquisition system. The parameter configuration of the seismic data acquisition system, the reception, storage and display of the acquired data and the real-time display and playback of the seismic waveform; the seismic data acquisition unit is used for the acquisition of seismic signals, the local storage of the acquired data and the wireless transmission of the acquired data. The beneficial effects of the present invention are: through the technical solution provided by the present invention, the construction cost and human resources are effectively reduced, the probability of noise interference and communication failure is reduced, the portability and adaptability of the seismic instrument are improved, and the The acquisition of seismic data is more convenient.

Description

一种基于LoRa技术的无线分布式三分量地震数据采集系统A wireless distributed three-component seismic data acquisition system based on LoRa technology

技术领域technical field

本发明涉及地震数据采集领域,尤其涉及一种基于LoRa技术的无线分布式三分量地震数据采集系统。The invention relates to the field of seismic data acquisition, in particular to a wireless distributed three-component seismic data acquisition system based on LoRa technology.

背景技术Background technique

近年来,随着我国能源、交通以及城市化建设的巨资投入,各类工程勘察项目日益增多,促使工程物探成为当今地质行业中的热门。地震数据采集系统作为地震数据采集的专用设备,由于其解决问题的直观性和有效性而成为工程物探中的主要工具,在地震勘探和工程建设中发挥着至关重要的作用。In recent years, with the huge investment in my country's energy, transportation and urbanization construction, various engineering survey projects are increasing, making engineering geophysical prospecting a hot topic in today's geological industry. As a special equipment for seismic data acquisition, the seismic data acquisition system has become the main tool in engineering geophysical prospecting because of its intuition and effectiveness in solving problems, and plays a vital role in seismic exploration and engineering construction.

有线地震仪由于存在着电缆笨重不易布线、相邻传输线之间存在串扰噪声以及容易出现电缆接口故障等缺点,给工程勘探和地质勘察带来很多不便,逐渐满足不了市场的需求,无线通讯方式正好弥补了这些不足,提高了地震仪器的便携性和适应性。Due to the disadvantages of heavy cables, difficult wiring, crosstalk noise between adjacent transmission lines, and cable interface failures, wired seismographs bring a lot of inconvenience to engineering exploration and geological surveys, and gradually cannot meet the needs of the market. The wireless communication method is just right These deficiencies are made up, and the portability and adaptability of seismic instruments are improved.

发明内容Contents of the invention

本发明提供了一种基于LoRa技术的无线分布式三分量地震数据采集系统,包括上位机监控系统和一个或者多个地震数据采集单元;The present invention provides a wireless distributed three-component seismic data acquisition system based on LoRa technology, including a host computer monitoring system and one or more seismic data acquisition units;

所述上位机监控系统是地震数据采集系统的控制平台,采用基于虚拟仪器技术的LabVIEW进行开发,所述上位机监控系统包括LoRa无线模块和PC机主控平台;所述PC机主控平台为所述一种基于LoRa技术的无线分布式三分量地震数据采集系统提供有人机交互界面,所述人机交互界面包括参数设置模块、数据通信及预处理模块和地震波形显示模块;所述参数设置模块用于对地震信号放大倍数、采样率参数的配置;所述数据通信及预处理模块用于对所述上位机监控系统与所述地震数据采集单元的无线通讯和采集数据的接收、存储及显示;所述地震波形显示模块用于地震波形的显示;通过所述人机交互界面,所述主控台控制所述地震数据采集单元的参数配置、采集数据的接收、存储及显示和地震波形的实时显示及回放;Described upper computer monitoring system is the control platform of seismic data acquisition system, adopts the LabVIEW based on virtual instrument technology to develop, and described upper computer monitoring system comprises LoRa wireless module and PC main control platform; Described PC main control platform is Described a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology provides man-machine interface, and described man-machine interface comprises parameter setting module, data communication and preprocessing module and seismic waveform display module; Said parameter setting The module is used to configure the seismic signal amplification factor and sampling rate parameters; the data communication and preprocessing module is used to receive, store and monitor the wireless communication between the host computer monitoring system and the seismic data acquisition unit and the collected data. display; the seismic waveform display module is used for the display of seismic waveforms; through the human-computer interaction interface, the main console controls the parameter configuration of the seismic data acquisition unit, the reception, storage and display of collected data and the seismic waveform real-time display and playback;

所述地震数据采集单元包括地震检波器、信号处理电路、模数转换电路、ARM处理器、GPS模块、SD卡、LoRa无线模块、12V锂电池、模拟电源和数字电源;所述地震数据采集单元用于对地震信号的采集、采集数据的本地存储以及采集数据的无线发送,采集数据的无线发送是以LoRa技术无线通信的方式,将采集的数据发送给所述上位机监控系统;所述地震检波器检测地震信号,地震信号首先通过所述信号处理电路进行放大,然后通过所述模数转换电路进行数字滤波处理和模拟信号与数字信号的转换,然后存储到所述SD卡中,进行本地存储;最后通过所述LoRa无线模块将采集数据发送给所述上位机监控系统,同时所述LoRa无线模块接收所述上位机监控系统发送的地震信号放大倍数和采样率参数配置的指令,所述ARM处理器对接收到的所述指令进行处理,所述地震数据采集单元做出响应;所述模拟电源和所述数字电源为所述地震数据采集单元供电。The seismic data acquisition unit includes a geophone, signal processing circuit, analog-to-digital conversion circuit, ARM processor, GPS module, SD card, LoRa wireless module, 12V lithium battery, analog power supply and digital power supply; the seismic data acquisition unit It is used for the acquisition of seismic signals, the local storage of the collected data and the wireless transmission of the collected data. The wireless transmission of the collected data is in the form of LoRa technology wireless communication, and the collected data is sent to the upper computer monitoring system; the earthquake The seismic signal is detected by the geophone, and the seismic signal is first amplified by the signal processing circuit, then digitally filtered and converted by the analog-to-digital conversion circuit, and then stored in the SD card for local processing. Storage; finally, the collected data is sent to the host computer monitoring system by the LoRa wireless module, and the LoRa wireless module receives the seismic signal amplification factor and the sampling rate parameter configuration instructions sent by the host computer monitoring system, and the The ARM processor processes the received instructions, and the seismic data acquisition unit responds; the analog power supply and the digital power supply supply power to the seismic data acquisition unit.

进一步地,所述上位机监控系统是由便携式电脑和LabVIEW软件平台搭建的应用软件,用于对交互界面的设计、参数的配置、采集数据的处理、存储及显示和以及地震波形的显示。Further, the host computer monitoring system is an application software built by a portable computer and a LabVIEW software platform, and is used for the design of the interactive interface, the configuration of parameters, the processing, storage and display of collected data, and the display of seismic waveforms.

进一步地,所述LoRa无线模块采用LoRa通信协议,实现地震信号采集数据的接收以及参数配置指令的发送。Further, the LoRa wireless module adopts the LoRa communication protocol to realize the reception of seismic signal acquisition data and the transmission of parameter configuration instructions.

进一步地,所述地震检波器采用三分量地震检波器,完成地震信号的检测,并输出三路差分信号。Further, the geophone adopts a three-component geophone to complete the detection of seismic signals and output three-way differential signals.

进一步地,所述信号处理电路采用程控放大器PGA281及其外围电路组成,所述信号处理电路的放大倍数有1倍、2倍、4倍、8倍、16倍和32倍,可通过程序对所述信号处理电路的放大倍数进行调节,所述信号处理电路的输入输出均为差分信号。Further, the signal processing circuit is composed of a program-controlled amplifier PGA281 and its peripheral circuits. The amplification factors of the signal processing circuit are 1, 2, 4, 8, 16 and 32 times. The amplification factor of the signal processing circuit is adjusted, and the input and output of the signal processing circuit are all differential signals.

进一步地,所述模数转换电路实现了数字滤波和模数转换,所述模数转换电路中的AD采样率包括200Hz、600Hz、1000Hz和2000Hz,根据程序可对所述AD采样率进行调节;此外,所述模数转换电路中采用多通道Σ-Δ型ADC,对采集的三路差分信号同时处理。Further, the analog-to-digital conversion circuit realizes digital filtering and analog-to-digital conversion, and the AD sampling rate in the analog-to-digital conversion circuit includes 200Hz, 600Hz, 1000Hz and 2000Hz, and the AD sampling rate can be adjusted according to the program; In addition, a multi-channel Σ-Δ ADC is used in the analog-to-digital conversion circuit to simultaneously process the collected three differential signals.

进一步地,所述GPS模块为所述地震数据采集系统提供了经纬度信息以及系统时间信息;采用所述SD卡用于在本地存储地震信号采集数据。Further, the GPS module provides latitude and longitude information and system time information for the seismic data acquisition system; the SD card is used to store seismic signal acquisition data locally.

进一步地,所述12V锂电池选用的是无磁性的磷酸铁锂电池;所述模拟电源和所述数字电源均由线性稳压芯片构成,所述数字电源的通断由按钮控制,所述模拟电源的通断由所述ARM处理器发出的使能信号控制;所述模拟电源和所述数字电源分别对所述地震数据采集单元的模拟部分和数字部分单独供电,避免了数字信号和模拟信号相互干扰。Further, the 12V lithium battery is a non-magnetic lithium iron phosphate battery; both the analog power supply and the digital power supply are composed of a linear voltage regulator chip, and the on-off of the digital power supply is controlled by a button, and the analog power supply is controlled by a button. The on-off of the power supply is controlled by the enable signal sent by the ARM processor; the analog power supply and the digital power supply supply power to the analog part and the digital part of the seismic data acquisition unit separately, avoiding the digital signal and the analog signal interfere with each other.

进一步地,所述地震数据采集单元中的所述LoRa无线模块收到所述上位机监控系统发送的地震信号放大倍数、所述AD采样率参数配置信息后,所述ARM处理器响应指令,配置参数。Further, after the LoRa wireless module in the seismic data acquisition unit receives the seismic signal amplification factor and the AD sampling rate parameter configuration information sent by the host computer monitoring system, the ARM processor responds to instructions and configures parameter.

本发明提供的技术方案带来的有益效果是:The beneficial effects brought by the technical scheme provided by the invention are:

1、地震数据采集系统采用无线通信的方式,使仪器的移动性和适应性更好,避免了深山、丛林等不易布置电缆的恶劣环境中有线模式带来的不便;1. The seismic data acquisition system adopts wireless communication, which makes the instrument more mobile and adaptable, and avoids the inconvenience caused by the wired mode in harsh environments such as deep mountains and jungles where it is difficult to arrange cables;

2、地震数据采集系统采用无线通信的方式,施工更加容易,有效地降低了施工成本,节省人力、时间等资源;2. The seismic data acquisition system adopts wireless communication, which makes construction easier, effectively reduces construction costs, and saves manpower, time and other resources;

3、地震数据采集系统采用无线通信的方式,避免了有线式地震仪多芯电缆及任意相邻传输线之间串扰噪声、反射噪声等噪声干扰;3. The seismic data acquisition system adopts wireless communication, which avoids noise interference such as crosstalk noise and reflection noise between wired seismograph multi-core cables and any adjacent transmission lines;

4、地震数据采集系统采用无线通信的方式,避免了潜在电缆接头接线故障问题,减少了通信故障的发生。同时,无线模式不需要大量的电缆作为传输介质,从而大大减少了由于动物的践踏、碰撞,人为破坏等原因导致设备损坏的概率;4. The seismic data acquisition system adopts wireless communication, which avoids potential cable joint wiring faults and reduces the occurrence of communication faults. At the same time, the wireless mode does not require a large number of cables as a transmission medium, thereby greatly reducing the probability of equipment damage due to animal trampling, collision, and man-made damage;

5、无线模式在通讯过程中不需要电缆连接,布局组网更加便捷,可扩展性强;5. The wireless mode does not require cable connection during the communication process, the layout and networking are more convenient, and the scalability is strong;

6、地震数据采集系统采用了LoRa技术,与其他无线通讯技术相比具有通讯距离远、系统功耗低等优点;6. The seismic data acquisition system adopts LoRa technology, which has the advantages of long communication distance and low system power consumption compared with other wireless communication technologies;

7、模数转换电路采用了Σ-Δ型模数转换芯片ADS1274,用数字滤波代替传统的大量模拟滤波电路,数字化设计方法有效避免了模拟器件的温漂和噪声影响,大幅度提高了信噪比和系统动态范围;7. The analog-to-digital conversion circuit adopts the Σ-Δ type analog-to-digital conversion chip ADS1274, and replaces a large number of traditional analog filter circuits with digital filtering. The digital design method effectively avoids the influence of temperature drift and noise of analog devices, and greatly improves the signal-to-noise Ratio and system dynamic range;

8、设计友好的上位机人机交互界面,完成系统参数配置、采集数据和地震波形显示,操作更加便捷。8. Design a friendly human-computer interaction interface for the upper computer to complete system parameter configuration, data acquisition and seismic waveform display, making the operation more convenient.

附图说明Description of drawings

下面将结合附图及实施例对本发明作进一步说明,附图中:The present invention will be further described below in conjunction with accompanying drawing and embodiment, in the accompanying drawing:

图1是本发明实施例中一种基于LoRa技术的无线分布式三分量地震数据采集系统的结构图;Fig. 1 is the structural diagram of a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology in the embodiment of the present invention;

图2是本发明实施例中基于LoRa技术的无线分布式三分量地震数据采集系统的地震数据采集单元工作流程图;Fig. 2 is the working flow diagram of the seismic data acquisition unit of the wireless distributed three-component seismic data acquisition system based on LoRa technology in an embodiment of the present invention;

图3是本发明实施例中基于LoRa技术的无线分式三分量地震布数据采集系统的系统工作流程图。Fig. 3 is a system working flow chart of the wireless fractional three-component seismic distribution data acquisition system based on LoRa technology in an embodiment of the present invention.

具体实施方式Detailed ways

为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。In order to have a clearer understanding of the technical features, purposes and effects of the present invention, the specific implementation manners of the present invention will now be described in detail with reference to the accompanying drawings.

本发明的实施例提供了一种基于LoRa技术的无线分布式三分量地震数据采集系统。The embodiment of the present invention provides a wireless distributed three-component seismic data acquisition system based on LoRa technology.

请参考图1,图1是本发明实施例中一种基于LoRa技术的无线分布式三分量地震数据采集系统的结构图,一种基于LoRa技术的无线分布式三分量地震数据采集系统,包括上位机监控系统1和地震数据采集单元2;下面对几个组成部件进行详细说明:Please refer to Fig. 1, Fig. 1 is a structural diagram of a wireless distributed three-component seismic data acquisition system based on LoRa technology in an embodiment of the present invention, a wireless distributed three-component seismic data acquisition system based on LoRa technology, including a host Machine monitoring system 1 and seismic data acquisition unit 2; several components are described in detail below:

(1)上位机监控系统1(1) Host computer monitoring system 1

所述上位机监控系统1是无线分布式三分量地震数据采集系统的控制平台,主要完成对地震数据采集单元2的参数配置,对采集数据的处理、存储、显示,地震波形显示;所述上位机监控系统1包括LoRa无线模块101和PC机主控平台102;The host computer monitoring system 1 is the control platform of the wireless distributed three-component seismic data acquisition system, which mainly completes the parameter configuration of the seismic data acquisition unit 2, the processing, storage, and display of the collected data, and the seismic waveform display; Machine monitoring system 1 comprises LoRa wireless module 101 and PC main control platform 102;

本实施例中,所述PC机主控平台102采用基于虚拟仪器技术LabVIEW来基于LoRa技术的无线分布式三分量地震数据采集系统的上位机监控软件,为所述上位机监控系统1提供友好的人机交互界面,便于操作人员对系统进行操作;所述人机交互界面包括:参数设置、数据通信及预处理和地震波形显示三个功能模块,用于对地震数据采集单元2进行控制,控制地震数据采集单元2的参数配置,采集数据的接收、分析处理及存储,采集数据和地震波形实时显示。这四个功能详细介绍如下:In this embodiment, the PC main control platform 102 adopts the upper computer monitoring software based on the virtual instrument technology LabVIEW to the wireless distributed three-component seismic data acquisition system based on LoRa technology, and provides friendly monitoring software for the upper computer monitoring system 1. The human-computer interaction interface is convenient for operators to operate the system; the human-computer interaction interface includes: parameter setting, data communication and preprocessing, and seismic waveform display three functional modules, which are used to control the seismic data acquisition unit 2, control The parameter configuration of the seismic data acquisition unit 2, the reception, analysis, processing and storage of the collected data, and the real-time display of the collected data and seismic waveform. These four functions are described in detail as follows:

(a)对地震数据采集单元2进行控制(a) Controlling the seismic data acquisition unit 2

所述上位机监控系统1与所述地震数据采集单元2制定相应的通讯协议,所述上位机监控系统1通过发送控制指令来实现对所述地震数据采集单元2的控制,如:设置地震信号采集参数等功能。The upper computer monitoring system 1 and the seismic data acquisition unit 2 formulate a corresponding communication protocol, and the upper computer monitoring system 1 realizes the control of the seismic data acquisition unit 2 by sending control instructions, such as: setting the seismic signal Collect parameters and other functions.

(b)对地震数据采集单元2进行参数配置(b) Configure the parameters of the seismic data acquisition unit 2

在人机交互界面设置地震信号放大倍数和AD采样率,通过LoRa无线模块101发送至所述地震数据采集单元2。The seismic signal amplification factor and AD sampling rate are set on the man-machine interface, and sent to the seismic data acquisition unit 2 through the LoRa wireless module 101.

(c)采集数据的接收、分析处理及存储(c) Reception, analysis, processing and storage of collected data

所述上位机监控系统1通过LoRa无线模块101以无线的方式接收所述地震数据采集单元2发送的采集数据,并对采集的数据进行数据分析处理后以文本形式保存在本地。The host computer monitoring system 1 wirelessly receives the acquisition data sent by the seismic data acquisition unit 2 through the LoRa wireless module 101, and performs data analysis and processing on the acquired data and saves them locally in text form.

(d)采集数据和地震波形实时显示(d) Real-time display of collected data and seismic waveform

实时显示地震信号采集数据、地震波形以及当前时间,地震波形可以回放。Real-time display of seismic signal acquisition data, seismic waveform and current time, and seismic waveform can be played back.

(2)地震数据采集单元2(2) Seismic data acquisition unit 2

所述地震数据采集单元2包括地震检波器201、信号处理电路202、模数转换电路203、ARM处理器204、GPS模块205、SD卡206、LoRa无线模块207、12V锂电池208、电源模块中的模拟电源209、数字电源210、地震检波器211、信号处理电路212、模数转换电路213、ARM处理器214、GPS模块215、SD卡216、LoRa无线模块217、12V锂电池218、模拟电源219、数字电源220。其中,地震数据采集单元2由多个采集子站组成,采集子站2_1包括地震检波器201、信号处理电路202、模数转换电路203、ARM处理器204、GPS模块205、SD卡206、LoRa无线模块207、12V锂电池208、模拟电源209和数字电源210;采集子站2_2包括地震检波器211、信号处理电路212、模数转换电路213、ARM处理器214、GPS模块215、SD卡216、LoRa无线模块217、12V锂电池218、模拟电源219和数字电源220。Described seismic data acquisition unit 2 comprises geophone 201, signal processing circuit 202, analog-to-digital conversion circuit 203, ARM processor 204, GPS module 205, SD card 206, LoRa wireless module 207, 12V lithium battery 208, power supply module Analog power supply 209, digital power supply 210, geophone 211, signal processing circuit 212, analog-to-digital conversion circuit 213, ARM processor 214, GPS module 215, SD card 216, LoRa wireless module 217, 12V lithium battery 218, analog power supply 219. Digital power supply 220. Wherein, seismic data acquisition unit 2 is made up of a plurality of acquisition sub-stations, and acquisition sub-station 2-1 comprises geophone 201, signal processing circuit 202, analog-to-digital conversion circuit 203, ARM processor 204, GPS module 205, SD card 206, LoRa Wireless module 207, 12V lithium battery 208, analog power supply 209 and digital power supply 210; Acquisition substation 2_2 comprises geophone 211, signal processing circuit 212, analog-to-digital conversion circuit 213, ARM processor 214, GPS module 215, SD card 216 , LoRa wireless module 217, 12V lithium battery 218, analog power supply 219 and digital power supply 220.

在采集子站2_1中,地震检波器201有三个信号输出,分别与三个信号处理电路202相连,用于检测地震信号;信号处理电路202与地震检波器201、模数转换电路203、模拟电源209相连,用于地震信号放大,其地震信号的放大倍数大小可以根据程序调整,放大倍数有1倍、2倍、4倍、8倍、16倍、32倍;模数转换电路203与信号处理电路202、ARM处理器204、模拟电源209相连,将模拟信号转换为数字信号,其AD采样率大小可调,采样率有200Hz、600Hz、1000Hz、2000Hz;ARM处理器204与模数转换电路203、GPS模块205、SD卡206、LoRa无线模块207、数字电源210相连,用于控制地震数据采集单元正常运行;GPS模块205与ARM处理器204、数字电源210相连,为地震数据采集系统提供经纬度信息以及系统时间信息;SD卡206与ARM处理器204、数字电源210相连,存储采集数据;LoRa无线模块207与ARM处理器204、数字电源210相连,用于向上位机监控系统无线发送采集数据,并接收上位机监控系统下发的参数配置指令;12V锂电池208与模拟电源209、数字电源相连210,为模拟电源209和数字电源210供电;模拟电源209与12V锂电池208、信号处理电路202相连,为地震数据采集单元模拟电路部分提供电能;数字电源210与12V锂电池208、ARM处理器204、GPS模块205、SD卡206、LoRa无线模块207相连,为地震数据采集单元数字电路部分提供电能。In the acquisition substation 2_1, the geophone 201 has three signal outputs, which are respectively connected with three signal processing circuits 202 for detecting seismic signals; 209 are connected, used for seismic signal amplification, the magnification of the seismic signal can be adjusted according to the program, the magnification has 1 times, 2 times, 4 times, 8 times, 16 times, 32 times; The circuit 202, the ARM processor 204, and the analog power supply 209 are connected to convert the analog signal into a digital signal. The AD sampling rate is adjustable, and the sampling rate is 200Hz, 600Hz, 1000Hz, 2000Hz; the ARM processor 204 and the analog-to-digital conversion circuit 203 , GPS module 205, SD card 206, LoRa wireless module 207, and digital power supply 210 are connected to each other to control the normal operation of the seismic data acquisition unit; GPS module 205 is connected to ARM processor 204 and digital power supply 210 to provide latitude and longitude for the seismic data acquisition system Information and system time information; SD card 206 is connected with ARM processor 204 and digital power supply 210 to store and collect data; LoRa wireless module 207 is connected with ARM processor 204 and digital power supply 210 for wirelessly sending collected data to the upper computer monitoring system , and receive the parameter configuration command issued by the host computer monitoring system; 12V lithium battery 208 is connected to analog power supply 209 and digital power supply 210, and supplies power for analog power supply 209 and digital power supply 210; analog power supply 209 is connected to 12V lithium battery 208, and signal processing circuit 202 is connected to provide electric energy for the analog circuit part of the seismic data acquisition unit; the digital power supply 210 is connected to the 12V lithium battery 208, the ARM processor 204, the GPS module 205, the SD card 206, and the LoRa wireless module 207 to be the digital circuit part of the seismic data acquisition unit Provide electrical energy.

在采集子站2_2中,地震检波器211有三个信号输出,分别与三个信号处理电路212相连,用于检测地震信号;信号处理电路212与地震检波器211、模数转换电路213、模拟电源219相连,用于地震信号放大和滤波;模数转换电路213与信号处理电路212、ARM处理器214、模拟电源219相连,用于将模拟信号转换为数字信号;ARM处理器214与模数转换电路213、GPS模块215、SD卡216、LoRa无线模块217、数字电源220相连,用于控制地震数据采集单元正常运行;GPS模块215与ARM处理器214、数字电源220相连,为地震数据采集系统提供经纬度信息以及系统时间信息;SD卡216与ARM处理器214、数字电源220相连,存储采集数据;LoRa无线模块217与ARM处理器214、数字电源220相连,用于向上位机监控系统无线发送采集数据,并接收上位机监控系统下发的参数配置指令;12V锂电池218与模拟电源219、数字电源相连220,为模拟电源219和数字电源220提供电能;模拟电源219与12V锂电池218、信号处理电路212相连,为地震数据采集单元模拟电路部分提供电能;数字电源220与12V锂电池218、ARM处理器214、GPS模块215、SD卡216、LoRa无线模块217相连,为地震数据采集单元数字电路部分提供电能。In the acquisition substation 2_2, the geophone 211 has three signal outputs, which are respectively connected with three signal processing circuits 212 for detecting seismic signals; 219 for seismic signal amplification and filtering; analog-to-digital conversion circuit 213 is connected with signal processing circuit 212, ARM processor 214, and analog power supply 219 for converting analog signals into digital signals; ARM processor 214 is connected with analog-to-digital conversion The circuit 213, the GPS module 215, the SD card 216, the LoRa wireless module 217, and the digital power supply 220 are connected to each other to control the normal operation of the seismic data acquisition unit; the GPS module 215 is connected to the ARM processor 214 and the digital power supply 220 to form a seismic data acquisition system Provide latitude and longitude information and system time information; SD card 216 is connected with ARM processor 214 and digital power supply 220 to store and collect data; LoRa wireless module 217 is connected with ARM processor 214 and digital power supply 220 for wireless transmission to the host computer monitoring system Collect data and receive parameter configuration instructions from the host computer monitoring system; 12V lithium battery 218 is connected to analog power supply 219 and digital power supply 220 to provide electrical energy for analog power supply 219 and digital power supply 220; analog power supply 219 is connected to 12V lithium battery 218, The signal processing circuit 212 is connected to provide electric energy for the analog circuit part of the seismic data acquisition unit; the digital power supply 220 is connected to the 12V lithium battery 218, the ARM processor 214, the GPS module 215, the SD card 216, and the LoRa wireless module 217 to be the seismic data acquisition unit The digital circuit part provides electric energy.

请参考图2,图2是本发明实施例中基于LoRa技术的无线分布式三分量地震数据采集系统的地震数据采集单元工作流程图,包括以下步骤:Please refer to Fig. 2, Fig. 2 is the working flow diagram of the seismic data acquisition unit of the wireless distributed three-component seismic data acquisition system based on LoRa technology in an embodiment of the present invention, including the following steps:

S201:上位机监控系统配置参数命令无线发送至采集单元:S201: The upper computer monitoring system configuration parameter command is wirelessly sent to the acquisition unit:

上位机监控系统通过LoRa无线模块将地震信号放大倍数、AD采样率等参数信息发送至地震数据采集单元。The upper computer monitoring system sends parameter information such as seismic signal amplification factor and AD sampling rate to the seismic data acquisition unit through the LoRa wireless module.

S202:系统授时、参数配置:S202: System timing and parameter configuration:

地震数据采集单元打开GPS模块读取UTC时间以及当前经纬度信息,通过UTC时间来校准RTC时间,同时根据LoRa无线模块接收的参数配置指令配置采集单元的参数,其中配置的参数包括地震信号放大倍数、AD采样率。The seismic data acquisition unit opens the GPS module to read the UTC time and current latitude and longitude information, and calibrates the RTC time through the UTC time. At the same time, configure the parameters of the acquisition unit according to the parameter configuration instructions received by the LoRa wireless module. The configured parameters include seismic signal magnification, AD sampling rate.

S203:地震检波器采集地震信号:S203: The seismometer collects seismic signals:

用地质锤锤击地面,模拟地震震源,采用三分量地震检波器采集地震信号。Hammer the ground with a geological hammer to simulate the source of an earthquake, and use a three-component geophone to collect seismic signals.

S204:信号放大:S204: Signal amplification:

采用程控放大器PGA281及其外围电路对地震信号进行放大,放大倍数有1倍、2倍、4倍、8倍、16倍、32倍,可编程控制调节不同的放大倍数。The program-controlled amplifier PGA281 and its peripheral circuits are used to amplify the seismic signal. The magnifications are 1 times, 2 times, 4 times, 8 times, 16 times, and 32 times. Programmable control can adjust different magnifications.

S205:滤波、模数转换:S205: filtering, analog-to-digital conversion:

采用Σ-Δ型模数转换芯片ADS1274及其外围电路实现地震信号滤波处理,降低环境噪声干扰,以及实现模拟信号至数字信号的转换。ADS1274芯片采用Σ-Δ调制技术,具有数字滤波功能。采用数字滤波电路代替传统的模拟滤波电路,有效避免了模拟器件的温漂和噪声影响,大幅度提高了信噪比和系统动态范围。The Σ-Δ analog-to-digital conversion chip ADS1274 and its peripheral circuits are used to filter and process seismic signals, reduce environmental noise interference, and realize conversion from analog signals to digital signals. The ADS1274 chip adopts Σ-Δ modulation technology and has digital filtering function. The digital filter circuit is used to replace the traditional analog filter circuit, which effectively avoids the temperature drift and noise influence of the analog device, and greatly improves the signal-to-noise ratio and system dynamic range.

S206:SD卡本地存储:S206: SD card local storage:

模数转换单元将模拟信号转换至数字信号后,为防止采集数据丢失,采用SD卡以一定的文本格式存储采集数据。After the analog-to-digital conversion unit converts the analog signal into a digital signal, in order to prevent the loss of the collected data, the SD card is used to store the collected data in a certain text format.

S207:采集数据无线发送:S207: wireless transmission of collected data:

LoRa无线模块将采集的地震数据无线发送至上位机监控系统。The LoRa wireless module wirelessly sends the collected seismic data to the host computer monitoring system.

请参考图3,图3是本发明实施例中基于LoRa技术的无线分式三分量地震布数据采集系统的系统工作流程图,包括以下步骤:Please refer to Fig. 3, Fig. 3 is the systematic workflow diagram of the wireless fractional three-component seismic data acquisition system based on LoRa technology in the embodiment of the present invention, comprises the following steps:

S301:上位机监控系统配置参数命令无线发送至采集单元:S301: The host computer monitoring system configuration parameter command is wirelessly sent to the acquisition unit:

上位机监控系统将设置的地震信号放大倍数和采样率参数通过LoRa无线模块发送至地震数据采集单元。The host computer monitoring system sends the set seismic signal amplification factor and sampling rate parameters to the seismic data acquisition unit through the LoRa wireless module.

S302:GPS授时、参数配置:S302: GPS timing, parameter configuration:

地震数据采集单元通过GPS模块读取UTC时间以及当前经纬度信息,通过UTC时间来校准RTC时间,同时ARM处理器根据LoRa无线模块接收的参数配置指令配置采集单元的参数,其中配置的参数包括地震信号放大倍数、AD采样率。The seismic data acquisition unit reads the UTC time and current latitude and longitude information through the GPS module, and calibrates the RTC time through the UTC time. At the same time, the ARM processor configures the parameters of the acquisition unit according to the parameter configuration instructions received by the LoRa wireless module. The configured parameters include seismic signals Magnification, AD sampling rate.

S303:地震信号采集、处理:S303: Seismic signal acquisition and processing:

地震数据采集单元通过三分量地震检波器采集地震信号,然后将地震信号进行放大、滤波、以及模数转换处理。The seismic data acquisition unit collects seismic signals through a three-component geophone, and then performs amplification, filtering, and analog-to-digital conversion processing on the seismic signals.

S304:采集数据本地存储:S304: Local storage of collected data:

处理后的采集数据以一定的文本格式存储至SD卡中。The processed collected data is stored in the SD card in a certain text format.

S305:采集数据无线发送:S305: wireless transmission of collected data:

处理后的采集数据通过LoRa无线模块发送至上位机监测系统。The processed collected data is sent to the host computer monitoring system through the LoRa wireless module.

S306:上位机监控系统无线接收采集数据并处理、存储:S306: The upper computer monitoring system wirelessly receives and collects data and processes and stores them:

上位机监控系统利用LoRa无线模块接收采集数据,并对采集数据进行分析、打包存储等处理。The host computer monitoring system uses the LoRa wireless module to receive and collect data, and analyze, package and store the collected data.

S307:实时显示采集数据和地震波形、调整参数:S307: Real-time display of collected data and seismic waveforms, and adjustment of parameters:

上位机监控系统在人机交互界面实时显示当前的采集数据和地震波形,地震波形可回放观看。同时,根据当前地震波形显示情况可在人机交互界面实时调整地震信号放大倍数和采样率参数信息。The host computer monitoring system displays the current collected data and seismic waveform in real time on the man-machine interface, and the seismic waveform can be played back for viewing. At the same time, according to the current seismic waveform display situation, the seismic signal amplification factor and sampling rate parameter information can be adjusted in real time on the human-computer interaction interface.

本发明的有益效果是:通过本发明提供的技术方案,有效地降低了施工成本和节约人力资源等,降低了噪声干扰和通信故障的发生概率,提高了地震仪器的便携性和适应性,使地震数据的采集更方便。The beneficial effects of the present invention are: through the technical solution provided by the present invention, the construction cost and human resources are effectively reduced, the probability of noise interference and communication failure is reduced, the portability and adaptability of the seismic instrument are improved, and the Acquisition of seismic data is more convenient.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (9)

1.一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:包括上位机监控系统和一个或者多个地震数据采集单元,其中:1. A wireless distributed three-component seismic data acquisition system based on LoRa technology, characterized in that: comprising a host computer monitoring system and one or more seismic data acquisition units, wherein: 所述上位机监控系统是地震数据采集系统的控制平台,采用基于虚拟仪器技术的LabVIEW进行开发,所述上位机监控系统包括LoRa无线模块和PC机主控平台;所述PC机主控平台为所述一种基于LoRa技术的无线分布式三分量地震数据采集系统提供人机交互界面,所述人机交互界面包括参数设置模块、数据通信及预处理模块和地震波形显示模块;所述参数设置模块用于对地震信号放大倍数、采样率参数的配置;所述数据通信及预处理模块用于对所述上位机监控系统与所述地震数据采集单元的无线通讯和采集数据的接收、存储及显示;所述地震波形显示模块用于地震波形的显示;通过所述人机交互界面,所述主控台控制所述地震数据采集单元的参数配置、采集数据的接收、存储及显示和地震波形的实时显示及回放;Described upper computer monitoring system is the control platform of seismic data acquisition system, adopts the LabVIEW based on virtual instrument technology to develop, and described upper computer monitoring system comprises LoRa wireless module and PC main control platform; Described PC main control platform is Described a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology provides human-computer interaction interface, and described human-computer interaction interface comprises parameter setting module, data communication and preprocessing module and seismic waveform display module; Said parameter setting The module is used to configure the seismic signal amplification factor and sampling rate parameters; the data communication and preprocessing module is used to receive, store and monitor the wireless communication between the host computer monitoring system and the seismic data acquisition unit and the collected data. display; the seismic waveform display module is used for the display of seismic waveforms; through the human-computer interaction interface, the main console controls the parameter configuration of the seismic data acquisition unit, the reception, storage and display of collected data and the seismic waveform real-time display and playback; 所述地震数据采集单元包括地震检波器、信号处理电路、模数转换电路、ARM处理器、GPS模块、SD卡、LoRa无线模块、12V锂电池、模拟电源和数字电源;所述地震数据采集单元用于对地震信号的采集、采集数据的本地存储以及采集数据的无线发送;所述地震检波器检测地震信号,地震信号首先通过所述信号处理电路进行放大,然后通过所述模数转换电路进行数字滤波处理和模拟信号与数字信号的转换,然后存储到所述SD卡中,进行本地存储;最后通过所述LoRa无线模块将采集数据发送给所述上位机监控系统,同时所述LoRa无线模块接收所述上位机监控系统发送的地震信号放大倍数和采样率参数配置的指令,所述ARM处理器对接收到的所述指令进行处理,所述地震数据采集单元做出响应;所述模拟电源和所述数字电源为所述地震数据采集单元供电。The seismic data acquisition unit includes a geophone, signal processing circuit, analog-to-digital conversion circuit, ARM processor, GPS module, SD card, LoRa wireless module, 12V lithium battery, analog power supply and digital power supply; the seismic data acquisition unit Used for the collection of seismic signals, local storage of collected data, and wireless transmission of collected data; the seismic signal is detected by the geophone, and the seismic signal is first amplified by the signal processing circuit, and then amplified by the analog-to-digital conversion circuit Digital filtering processing and conversion of analog signals and digital signals, and then stored in the SD card for local storage; finally, the collected data is sent to the host computer monitoring system through the LoRa wireless module, while the LoRa wireless module receiving instructions for seismic signal amplification and sampling rate parameter configuration sent by the host computer monitoring system, the ARM processor processes the received instructions, and the seismic data acquisition unit responds; the analog power supply and the digital power supply supplies power to the seismic data acquisition unit. 2.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述上位机监控系统是由便携式电脑和LabVIEW软件平台搭建的应用软件,用于对交互界面的设计、参数的配置、采集数据的处理、存储及显示和以及地震波形的显示。2. a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described host computer monitoring system is the application software that is built by portable computer and LabVIEW software platform, is used for The design of the interactive interface, the configuration of parameters, the processing, storage and display of collected data, and the display of seismic waveforms. 3.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述LoRa无线模块采用LoRa通信协议,实现地震信号采集数据的接收以及参数配置指令的发送。3. A kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described LoRa wireless module adopts LoRa communication protocol, realizes the reception of seismic signal acquisition data and parameter configuration instruction sent. 4.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述地震检波器采用三分量地震检波器,完成地震信号的检测,并输出三路差分信号。4. a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described geophone adopts three-component geophone, completes the detection of seismic signal, and outputs three differential signal. 5.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述信号处理电路采用程控放大器PGA281及其外围电路组成,所述信号处理电路的放大倍数有1倍、2倍、4倍、8倍、16倍和32倍,可通过程序对所述信号处理电路的放大倍数进行调节,所述信号处理电路的输入输出均为差分信号。5. A kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described signal processing circuit adopts program-controlled amplifier PGA281 and its peripheral circuit to form, and the signal processing circuit The magnifications are 1 time, 2 times, 4 times, 8 times, 16 times and 32 times. The magnification of the signal processing circuit can be adjusted through the program, and the input and output of the signal processing circuit are all differential signals. 6.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述模数转换电路实现了数字滤波和模数转换,所述模数转换电路中的AD采样率包括200Hz、600Hz、1000Hz和2000Hz,根据程序可对所述AD采样率进行调节;此外,所述模数转换电路中采用多通道Σ-Δ型ADC,对采集的三路差分信号同时处理。6. A kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described analog-to-digital conversion circuit has realized digital filtering and analog-to-digital conversion, and described analog-to-digital conversion circuit The AD sampling rate includes 200Hz, 600Hz, 1000Hz and 2000Hz, and the AD sampling rate can be adjusted according to the program; in addition, the multi-channel Σ-Δ ADC is used in the analog-to-digital conversion circuit, and the collected three-way differential Signals are processed simultaneously. 7.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述GPS模块为所述地震数据采集系统提供了经纬度信息以及系统时间信息;采用所述SD卡用于在本地存储地震信号采集数据。7. a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described GPS module provides longitude and latitude information and system time information for described seismic data acquisition system; Adopt The SD card is used for locally storing seismic signal acquisition data. 8.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述12V锂电池选用的是无磁性的磷酸铁锂电池;所述模拟电源和所述数字电源均由线性稳压芯片构成,所述数字电源的通断由按钮控制,所述模拟电源的通断由所述ARM处理器发出的使能信号控制;所述模拟电源和所述数字电源分别对所述地震数据采集单元的模拟部分和数字部分单独供电,避免了数字信号和模拟信号相互干扰。8. A kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: what described 12V lithium battery selects is nonmagnetic lithium iron phosphate battery for use; Described analog power supply and The digital power supply is composed of a linear voltage regulator chip, the on-off of the digital power supply is controlled by a button, and the on-off of the analog power supply is controlled by an enable signal sent by the ARM processor; the analog power supply and the The digital power supply separately supplies power to the analog part and the digital part of the seismic data acquisition unit, thereby avoiding mutual interference between the digital signal and the analog signal. 9.如权利要求1所述的一种基于LoRa技术的无线分布式三分量地震数据采集系统,其特征在于:所述地震数据采集单元中的所述LoRa无线模块收到所述上位机监控系统发送的地震信号放大倍数、所述AD采样率参数配置信息后,所述ARM处理器响应指令,配置参数。9. a kind of wireless distributed three-component seismic data acquisition system based on LoRa technology as claimed in claim 1, is characterized in that: described LoRa wireless module in the described seismic data acquisition unit receives described host computer monitoring system After sending the seismic signal amplification factor and the AD sampling rate parameter configuration information, the ARM processor responds to the instruction and configures the parameters.
CN201810458036.2A 2018-05-14 2018-05-14 A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies Pending CN108614290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810458036.2A CN108614290A (en) 2018-05-14 2018-05-14 A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810458036.2A CN108614290A (en) 2018-05-14 2018-05-14 A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies

Publications (1)

Publication Number Publication Date
CN108614290A true CN108614290A (en) 2018-10-02

Family

ID=63662983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810458036.2A Pending CN108614290A (en) 2018-05-14 2018-05-14 A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies

Country Status (1)

Country Link
CN (1) CN108614290A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738941A (en) * 2019-01-29 2019-05-10 大连大学 A Strong Earthquake Recording and Acquisition System Based on Wireless Technology
CN110751818A (en) * 2019-10-12 2020-02-04 湖南科技大学 Distributed bridge real-time monitoring system based on LORA wireless communication
CN111123353A (en) * 2019-12-24 2020-05-08 中国科学院地质与地球物理研究所 A device, system and method for real-time acquisition of seismic data
WO2020177490A1 (en) * 2019-03-06 2020-09-10 合肥国为电子有限公司 Seismic detection method and system based on wireless communication
CN111694048A (en) * 2020-06-30 2020-09-22 中国石油天然气集团有限公司 Vibroseis monitoring method and device and vibroseis monitoring system
CN111696589A (en) * 2020-06-04 2020-09-22 华夏吉泰(北京)科技有限公司 Mass seismic data storage equipment and seismic professional data management system
WO2020253417A1 (en) * 2019-06-18 2020-12-24 国网电力科学研究院武汉南瑞有限责任公司 Lorawan-based electric transmission line monitoring device and system
CN112987083A (en) * 2019-12-02 2021-06-18 中国石油化工集团有限公司 Node instrument state data recovery system based on LORA
WO2022251921A1 (en) * 2021-06-04 2022-12-08 Bhp Innovation Pty Ltd A geophysical data acquisition device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561509A (en) * 2008-04-18 2009-10-21 中国石油化工股份有限公司 Tri-component digital geophone and acquisition method thereof
CN102565850A (en) * 2012-01-01 2012-07-11 成都理工大学 Wireless telemetry seismic signal acquisition system
CN204302505U (en) * 2014-11-19 2015-04-29 北京霍里思特科技有限公司 Distributed seismic data acquisition system
CN204694854U (en) * 2014-10-16 2015-10-07 中国地震局工程力学研究所 A kind of structure and the monitoring of slope land vibration responding report instrument with speed
CN204831360U (en) * 2015-07-01 2015-12-02 青岛派科森光电技术股份有限公司 Seabed intelligence optic fibre integration monitoring system based on shimmer mechnical & electrical technology
CN205484843U (en) * 2016-03-08 2016-08-17 刘小宝 Seismic prospecting data acquisition detecting system based on labVIEW
CN106768298A (en) * 2016-12-29 2017-05-31 江西飞尚科技有限公司 Distributed wireless vibration blasting monitoring system and method based on Lora technology
CN206433189U (en) * 2017-02-24 2017-08-22 中国人民解放军71777部队 MANET Tactical Communications Terminal based on LoRa technologies
CN206893080U (en) * 2017-07-12 2018-01-16 东华理工大学 It is a kind of based on the seismic signal acquiring system being wirelessly transferred

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561509A (en) * 2008-04-18 2009-10-21 中国石油化工股份有限公司 Tri-component digital geophone and acquisition method thereof
CN102565850A (en) * 2012-01-01 2012-07-11 成都理工大学 Wireless telemetry seismic signal acquisition system
CN204694854U (en) * 2014-10-16 2015-10-07 中国地震局工程力学研究所 A kind of structure and the monitoring of slope land vibration responding report instrument with speed
CN204302505U (en) * 2014-11-19 2015-04-29 北京霍里思特科技有限公司 Distributed seismic data acquisition system
CN204831360U (en) * 2015-07-01 2015-12-02 青岛派科森光电技术股份有限公司 Seabed intelligence optic fibre integration monitoring system based on shimmer mechnical & electrical technology
CN205484843U (en) * 2016-03-08 2016-08-17 刘小宝 Seismic prospecting data acquisition detecting system based on labVIEW
CN106768298A (en) * 2016-12-29 2017-05-31 江西飞尚科技有限公司 Distributed wireless vibration blasting monitoring system and method based on Lora technology
CN206433189U (en) * 2017-02-24 2017-08-22 中国人民解放军71777部队 MANET Tactical Communications Terminal based on LoRa technologies
CN206893080U (en) * 2017-07-12 2018-01-16 东华理工大学 It is a kind of based on the seismic signal acquiring system being wirelessly transferred

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
中国地震局监测预报司 编: "《地震学与地震观测(试用本)》", 30 November 2007, 地震出版社 *
任鹏: ""长周期大地电磁场源信号采集电路研究"", 《中国优秀硕士学位论文全文数据库(基础科学辑)》 *
孙传友 等编著: "《地震勘探原理》", 31 December 1996, 石油大学出版社 *
孟娟 等: ""自适应去噪的地震数据采集系统设计"", 《计算机工程与应用》 *
李明亮 等著: "《无线地震勘探仪器关键技术研究》", 30 June 2017 *
李科 等: ""基于FPGA的多通道实时地震勘探采集系统设计"", 《现代电子技术》 *
杨柳 等: ""分布式槽波地震仪器的研究"", 《自动化应用》 *
赵人达 等编: "《中国铁道出版社》", 31 March 2012 *
雷振山 等编著: "《LabVIEW高级编程与虚拟仪器工程应用》", 29 February 2012, 中国铁道出版社 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738941A (en) * 2019-01-29 2019-05-10 大连大学 A Strong Earthquake Recording and Acquisition System Based on Wireless Technology
KR20210129196A (en) * 2019-03-06 2021-10-27 허페이 궈웨이 일렉트로닉스 컴퍼니 리미티드 Seismic exploration method and system based on wireless communication
WO2020177490A1 (en) * 2019-03-06 2020-09-10 合肥国为电子有限公司 Seismic detection method and system based on wireless communication
KR102669970B1 (en) * 2019-03-06 2024-05-27 허페이 궈웨이 일렉트로닉스 컴퍼니 리미티드 Seismic exploration method and system based on wireless communication
WO2020253417A1 (en) * 2019-06-18 2020-12-24 国网电力科学研究院武汉南瑞有限责任公司 Lorawan-based electric transmission line monitoring device and system
CN110751818A (en) * 2019-10-12 2020-02-04 湖南科技大学 Distributed bridge real-time monitoring system based on LORA wireless communication
CN112987083A (en) * 2019-12-02 2021-06-18 中国石油化工集团有限公司 Node instrument state data recovery system based on LORA
CN111123353A (en) * 2019-12-24 2020-05-08 中国科学院地质与地球物理研究所 A device, system and method for real-time acquisition of seismic data
WO2021128857A1 (en) * 2019-12-24 2021-07-01 中国科学院地质与地球物理研究所 Seismic data real-time acquisition device, system and method
CN111696589A (en) * 2020-06-04 2020-09-22 华夏吉泰(北京)科技有限公司 Mass seismic data storage equipment and seismic professional data management system
CN111694048A (en) * 2020-06-30 2020-09-22 中国石油天然气集团有限公司 Vibroseis monitoring method and device and vibroseis monitoring system
CN111694048B (en) * 2020-06-30 2023-09-26 中国石油天然气集团有限公司 Controllable seismic source monitoring method and device and seismic source monitoring system
WO2022251921A1 (en) * 2021-06-04 2022-12-08 Bhp Innovation Pty Ltd A geophysical data acquisition device

Similar Documents

Publication Publication Date Title
CN108614290A (en) A kind of wireless distributed three-component seismic data acquisition system based on LoRa technologies
CN101840008B (en) Multifunctional seismic hydrophone tester
CN105844887B (en) A kind of 32 triple channel synchronous data collection devices with wireless self-networking function
CN103353607A (en) Great seismogenic process and imminent earthquake monitoring system based on earth sound detection
CN105785475A (en) Hydraulic fracturing seismo-electric combined detection system, detection method and field work method
CN104360402B (en) Well-to-ground joint electrical-method testing method and system
CN112987603B (en) Node seismic instrument remote monitoring system based on GPRS
Gao et al. Design of distributed three component seismic data acquisition system based on LoRa wireless communication technology
CN102466814A (en) Wireless Telemetry Seismograph System
CN103149593A (en) Method and device for solving field source stability of natural electric field geophysical prospecting instrument
CN204192578U (en) Human life cell health detection signal acquisition process stores one earphone
CN108761526A (en) One kind being based on Labview untethereds seismic instrument and its test method
CN210294548U (en) Microseism monitoring system
CN203311010U (en) Buried wire cable testing instrument
CN102680651A (en) A vertical space CO 2 monitoring and collection system and method
CN207073706U (en) Water supply line leakage measuring instrument by sonic and network diagnosis cloud platform based on GIS-Geographic Information System
CN107436448B (en) Engineering seismic exploration system and data reading system
CN209017042U (en) A system for automatic testing of optical transmission power and optical reception sensitivity
CN203632664U (en) Portable fault detector for remote power-collecting system equipment
CN201757788U (en) Wireless ground penetrating radar system
CN205749925U (en) A kind of Electromagnetism of Earthquake disturbance observation instrument main frame
CN210666043U (en) Marine seismic data acquisition control device
CN102288991A (en) Device and method for acquiring earthquake electromagnetic information
CN103413422A (en) Information acquisition, integration and development platform of sensor
CN204405873U (en) Have the geophysical instrument of electromagnetism and earthquake data acquisition function concurrently

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181002

RJ01 Rejection of invention patent application after publication