CN108585125B - 还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用 - Google Patents

还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用 Download PDF

Info

Publication number
CN108585125B
CN108585125B CN201810294080.4A CN201810294080A CN108585125B CN 108585125 B CN108585125 B CN 108585125B CN 201810294080 A CN201810294080 A CN 201810294080A CN 108585125 B CN108585125 B CN 108585125B
Authority
CN
China
Prior art keywords
carbon
composite electrode
copper
nickel
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810294080.4A
Other languages
English (en)
Other versions
CN108585125A (zh
Inventor
李爱民
鲁昶
宋海欧
吴一凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810294080.4A priority Critical patent/CN108585125B/zh
Publication of CN108585125A publication Critical patent/CN108585125A/zh
Application granted granted Critical
Publication of CN108585125B publication Critical patent/CN108585125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用。以碳材料为基底,先电负载碳纳米管,然后电负载铜镍双金属,即得所述复合电极。以此复合电极为反应装置的阴极,可用于电化学还原硝酸盐,其硝态氮还原速率显著优于单纯的铜镍电极。

Description

还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用
技术领域
本发明涉及一种还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用,属于电化学领域。
背景技术
目前,人类的工农业生产和其他社会活动已造成地下水及地表水中硝酸盐浓度的不断提高,而饮用水中硝酸盐浓度的升高回对人体健康造成严重危害。因此,世界卫生组织建议,饮用水中硝酸盐浓度应低于10mg/L。
水体中硝态氮的污染来源于难处理的工业废水和生活污水、氮肥的过度使用和污染气体的沉积。这种污染会造成水体的富营养化、婴儿的蓝婴综合征以及成人的胃肠道癌。
废水的硝态氮处理方法主要有离子交换和反渗透、生物脱氮、催化加氢和电化学还原法。电渗析、反渗透和离子交换仅仅只是把硝酸盐从水中分离出来,分离产生的高浓度硝酸盐废水还需要进一步处理。生物脱氮在生物反应器中利用微生物将水中的硝态氮转变为氮气,但是处理过程中产生细菌污染的可能性、自养或异养细菌的对环境的敏感性、额外的碳源投加、连续监测、处理时间长使生物脱硝与物理化学过程相比没有竞争力。催化加氢需要不断的氢气供应,大规模工业应用得到限制。电化学过程具有不需要投加化学药剂、设备占地面积小、不会产生污泥、相对较低的投资成本、高能量效率和良好的环境兼容性。
近年来,电化学还原硝态氮的研究集中在电极材料的开发上。还原过程主要分两种途径,一是硝态氮在阴极直接还原为氮气或笑气从而脱氮,二是硝态氮先还原为氨氮然后氨氮在阳极氧化成氮气从而脱氮。目前有研究报道已经能使硝态氮达到90%的去除,没有副产物氨氮和亚硝态氮的产生,但是还原时间比较长,使用的电流密度较大,对于工业应用来说成本过高。说明现行电化学还原硝酸盐的技术还亟待改善。
发明内容
本发明的目的在于提供一种还原水中硝态氮的碳基铜镍复合电极、制备方法,该复合电极具有较快还原硝态氮的能力。
本发明的另一目的在于提供上述复合电极的应用。
实现本发明的技术解决方案是:一种还原水中硝态氮的碳基铜镍复合电极,以碳基材料为基底,所述基底依次电负载碳纳米管和铜镍双金属,即得所述复合电极。
上述复合电极中,碳基材料为石墨毡、碳电极等碳类材料中的一种。
上述复合电极中,碳纳米管为单壁碳纳米管、高纯多壁碳纳米管、羧基化多壁碳纳米管、氨基化多壁碳纳米管、羟基化多壁碳纳米管的一种或几种的混合物。
上述复合电极中,电负载铜镍双金属时,其电解质溶液中,采用的添加剂为硫酸铵或柠檬酸钠中的一种或两种混合物,采用的铜镍盐为硫酸铜和硫酸镍的两种混合物,硫酸铜与硫酸镍的摩尔比为1:4~35:2。
上述复合电极中,电负载多壁碳纳米管时,其电解质溶液中,多壁碳纳米管与溴化十六烷基三甲基溴化铵的质量比为4:1~1:1。
上述碳基铜镍复合电极的制备方法,其步骤如下:
(a)按照多壁碳纳米管:溴化十六烷基三甲基溴化铵=4:1~1:1的质量比例,将其溶于去离子水中,搅拌均匀;
(b)按照硫酸铜:硫酸镍=1:4~35:2的摩尔比例,将其溶于硫酸铵或柠檬酸钠中的一种或两种混合溶液中;
(c)将碳基材料作阴极,在15-25V恒电压下于步骤(a)所配制的溶液中负载20-40min;
(d)将步骤(c)中负载碳纳米管后的碳基材料作阴极,在10-20mA/cm2的恒电流条件下于步骤(b)所配制的溶液中负载20-40min即得碳基铜镍复合电极。
上述碳基铜镍复合电极在电化学还原硝酸盐的应用。
其中,所述的应用中,其具体步骤如下:以钌铱钛电极为阳极,以上述复合电极为阴极,电解液采用100-1000mg/L硝态氮、7.1g/L硫酸钠和1-10g/L氯化钠的混合溶液,将电解液置于用阳离子交换膜隔开的双室电化学反应器中,在电流密度为10-40mA/cm2的恒电流条件下进行反应。
与现有技术相比,本发明制备的复合电极在双室反应器中能使水中的硝态氮快速还原为氨氮,处理一段时间后无亚硝态氮,而对于产生的氨氮,可以用电化学氧化处理。具有以下特点:1、还原时间短; 2、制作成本低;3、处理后无亚硝态氮。这些特点使该复合电极在城市污水及含硝态氮废水处理等领域中对于硝酸根的去除广泛应用。
具体实施方式
下面结合实施例对本发明进行详细描述。
实施例1
将5cm×2.5cm石墨毡依次采用丙酮和甲醇进行超声清洗后进行酸洗、水洗;多壁碳纳米管负载溶液按4:1摩尔比的高纯多壁碳纳米管和溴化十六烷基三甲基胺配制的水溶液;铜镍负载溶液按1:4摩尔比的硫酸铜和硫酸镍配制的水溶液并添加柠檬酸钠和硫酸铵;
阳极使用钌铱钛电极,阴极为上述负载量的石墨毡铜镍复合电极,电解液采用100mg/L硝态氮、7.1g/L硫酸钠和1g/L氯化钠的混合溶液,将200ml电解液置于用阳离子交换膜隔开的双室电化学反应器中,在电流密度为10mA/cm2的恒电流条件下进行反应。
实施例2
改变硫酸铜和硫酸镍的摩尔比为16:35,其他条件同实施例1。
实施例3
改变硫酸铜和硫酸镍的摩尔比为1:1,其他条件同实施例1。
实施例4
改变硫酸铜和硫酸镍的摩尔比为7:4,其他条件同实施例1。
实施例5
将100ml电解液置于用阳离子交换膜隔开的双室电化学反应器中,其他条件同实施例3。
实施例6
将100ml电解液置于全混反应器中,阳极使用钌铱钛电极,阴极为实施例1负载量的石墨毡铜镍复合电极,电解液采用1000mg/L硝态氮、7.1g/L硫酸钠和1g/L氯化钠的混合溶液,在电流密度为10mA/cm2的恒电流条件下进行反应。
对比例1
电解液不添加硫酸镍,其他条件同实施例3。
对比例2
电解液不添加硫酸铜,其他条件同实施例3。
对比例3
将5cm×2.5cm石墨毡依次采用丙酮和甲醇进行超声清洗后进行酸洗、水洗;
阳极使用钌铱钛电极,阴极为上述清洗后的石墨毡,电解液采用100mg/L硝态氮、7.1g/L硫酸钠和1g/L氯化钠的混合溶液,将100ml电解液置于用阳离子交换膜隔开的双室电化学反应器中,在电流密度为10mA/cm2的恒电流条件下进行反应。
对比例4
改变阴极为泡沫镍,其他条件同对比例3。
对比例5
改变阴极为泡沫铜,其他条件同对比例3。
表1实施例5、对比例3、对比例4、对比例5硝酸盐浓度变化对比
时间/min 实施例5硝酸盐浓度(mg/L) 对比例4硝酸盐浓度(mg/L) 对比例5硝酸盐浓度(mg/L) 对比例3硝酸盐浓度(mg/L)
0 511.72 538.89 542.42 553.94
10 190.25 496.90 413.56 432.99
20 76.28 458.01 372.24 358.27
30 0 491.68 344.85 307.74
60 0 469.47 252.63 180.67
120 0 430.55 156.14 77.29
表2实施例3、对比例1、对比例2硝态氮浓度变化对比
时间/min 实施例3硝态氮浓度(mg/L) 对比例1硝态氮浓度(mg/L) 对比例2硝态氮浓度(mg/L)
0 94.48 98.73 96.91
30 23.82 27.06 79.70
60 3.58 4.59 63.10
90 1.35 1.76 60.87
120 1.55 1.15 53.99

Claims (7)

1.还原水中硝态氮的碳基铜镍复合电极,其特征在于,以碳基材料为基底,所述基底依次电负载碳纳米管和铜镍双金属,即得所述复合电极;碳基材料为石墨毡。
2.如权利要求1所述的复合电极,其特征在于,碳纳米管为单壁碳纳米管、高纯多壁碳纳米管、羧基化多壁碳纳米管、氨基化多壁碳纳米管、羟基化多壁碳纳米管的一种或几种的混合物。
3.如权利要求1所述的复合电极,其特征在于,电负载铜镍双金属时,其电解质溶液中,采用的添加剂为硫酸铵或柠檬酸钠中的一种或两种混合物,采用的铜镍盐为硫酸铜和硫酸镍的两种混合物,硫酸铜与硫酸镍的摩尔比为1:4~35:2。
4.如权利要求1所述的复合电极,其特征在于,电负载碳纳米管时,其电解质溶液中,碳纳米管与溴化十六烷基三甲基溴化铵的质量比为4:1~1:1。
5.如权利要求1-4任一所述的碳基铜镍复合电极的制备方法,其特征在于,其步骤如下:
(a)按照碳纳米管:溴化十六烷基三甲基溴化铵=4:1~1:1的质量比例,将其溶于去离子水中,搅拌均匀;
(b)按照硫酸铜:硫酸镍=1:4~35:2的摩尔比例,将其溶于硫酸铵或柠檬酸钠中的一种或两种混合溶液中;
(c)将碳基材料作阴极,在15-25V恒电压下于步骤(a)所配制的溶液中负载20-40min;
(d)将步骤(c)中负载碳纳米管后的碳基材料作阴极,在10-40mA/cm2的恒电流条件下于步骤(b)所配制的溶液中负载20-40min即得碳基铜镍复合电极。
6.如权利要求1-4任一所述的碳基铜镍复合电极在电化学还原硝酸盐的应用。
7.如权利要求6所述的应用,其特征在于,以钌铱钛电极为阳极,以所述的复合电极为阴极,电解液采用100-1000mg/L硝态氮、7.1g/L硫酸钠和1-10g/L氯化钠的混合溶液,将电解液置于用阳离子交换膜隔开的双室电化学反应器中,在电流密度为10-40mA/cm2的恒电流条件下进行反应。
CN201810294080.4A 2018-04-04 2018-04-04 还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用 Active CN108585125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810294080.4A CN108585125B (zh) 2018-04-04 2018-04-04 还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810294080.4A CN108585125B (zh) 2018-04-04 2018-04-04 还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108585125A CN108585125A (zh) 2018-09-28
CN108585125B true CN108585125B (zh) 2020-12-04

Family

ID=63624416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810294080.4A Active CN108585125B (zh) 2018-04-04 2018-04-04 还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108585125B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065998B (zh) * 2019-04-12 2021-11-16 太原理工大学 一种抑制溴类副产物生成的饮用水电化学消毒方法
CN111792705B (zh) * 2020-06-18 2022-07-29 南京师范大学 一种氧化石墨烯负载的碳基铜镍电极、制备方法及用途
CN112551650B (zh) * 2020-10-16 2022-11-04 北京工业大学 一种用于水处理的泡沫镍负载碳纳米管/铜电极的制备方法及应用
CN112206797B (zh) * 2020-10-28 2023-12-05 苏州大学 Cu(I)@Ti3C2TxMXene催化材料及电极与在硝酸根还原中的应用
CN113880198B (zh) * 2021-11-25 2023-08-01 南京环保产业创新中心有限公司 一种基于Co3O4/Fe3O4/CNTs复合分散电极的含硝酸盐氮废水处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314011A (zh) * 1998-05-07 2001-09-19 国际电力有限公司 碳基电极
CN103022450A (zh) * 2012-12-21 2013-04-03 湘潭大学 一种三维网状锡铜镍-碳纳米管合金负极及其制备方法
CN103022418A (zh) * 2012-12-21 2013-04-03 湘潭大学 一种碳纳米管增强的锡铜镍合金负极及其制备方法
CN105304872A (zh) * 2015-09-23 2016-02-03 黑龙江大学 一种镍离子掺杂硫化钴/导电基底复合材料的制备方法
CN106040239A (zh) * 2016-05-27 2016-10-26 同济大学 一种高分散纳米金属单质/碳复合材料可控制备方法及其电催化应用
JP2017076597A (ja) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション 二次電池用負極活物質及びその製造方法
CN106966494A (zh) * 2017-04-12 2017-07-21 长安大学 去除水中硝酸盐氮的方法,电极挂膜方法,电极及装置
CN107527744A (zh) * 2016-06-22 2017-12-29 广州墨羲科技有限公司 石墨烯-纳米颗粒-纳米碳墙复合材料、其制造方法及应用
CN107871887A (zh) * 2016-09-22 2018-04-03 皓智环球有限公司 电极组件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI542534B (zh) * 2014-11-27 2016-07-21 財團法人工業技術研究院 複合材料、負極、與鈉二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314011A (zh) * 1998-05-07 2001-09-19 国际电力有限公司 碳基电极
CN103022450A (zh) * 2012-12-21 2013-04-03 湘潭大学 一种三维网状锡铜镍-碳纳米管合金负极及其制备方法
CN103022418A (zh) * 2012-12-21 2013-04-03 湘潭大学 一种碳纳米管增强的锡铜镍合金负极及其制备方法
CN105304872A (zh) * 2015-09-23 2016-02-03 黑龙江大学 一种镍离子掺杂硫化钴/导电基底复合材料的制备方法
JP2017076597A (ja) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション 二次電池用負極活物質及びその製造方法
CN106040239A (zh) * 2016-05-27 2016-10-26 同济大学 一种高分散纳米金属单质/碳复合材料可控制备方法及其电催化应用
CN107527744A (zh) * 2016-06-22 2017-12-29 广州墨羲科技有限公司 石墨烯-纳米颗粒-纳米碳墙复合材料、其制造方法及应用
CN107871887A (zh) * 2016-09-22 2018-04-03 皓智环球有限公司 电极组件
CN106966494A (zh) * 2017-04-12 2017-07-21 长安大学 去除水中硝酸盐氮的方法,电极挂膜方法,电极及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes;Randhir P .Deo;《Analyst》;20041026;第1076-1081页 *
面向亚硝酸盐检测的电化学传感器;刘茂祥等;《化学通报》;20161231;第798-804页 *

Also Published As

Publication number Publication date
CN108585125A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108585125B (zh) 还原水中硝态氮的碳基铜镍复合电极、制备方法及其应用
Xu et al. Electrocatalytic reduction of nitrate–a step towards a sustainable nitrogen cycle
Li et al. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications
Reyter et al. Nitrate removal by a paired electrolysis on copper and Ti/IrO2 coupled electrodes–Influence of the anode/cathode surface area ratio
CN101624226B (zh) 催化电化学生物氢自养反硝化去除硝酸盐的方法和反应器
Zou et al. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review
CN111041521B (zh) 用于还原水中硝态氮的负载铜镍的TiO2纳米管阵列电极
CN111792705B (zh) 一种氧化石墨烯负载的碳基铜镍电极、制备方法及用途
Long et al. Staged and efficient removal of tetracycline and Cu2+ combined pollution: A designed double-chamber electrochemistry system using 3D rGO
CN109534453B (zh) 一种氯自由基介导的电化学过滤系统及其应用
CN105293688B (zh) 一种耦合生物阳极电催化去除水中硝酸盐氮的系统
CN112354541A (zh) 一种负载在泡沫镍基底上的Co/CoO异质结电催化剂及其制备方法和应用
CN111170417B (zh) 负载型阳极材料及其制备方法和应用
CN109081401A (zh) 阴阳极同步激发过硫酸盐-臭氧降解水中污染物的方法
Zha et al. Treatment of hazardous organic amine wastewater and simultaneous electricity generation using photocatalytic fuel cell based on TiO2/WO3 photoanode and Cu nanowires cathode
CN111825168B (zh) 一种铜修饰碳纤维电极及其制备方法与应用
CN111018060A (zh) 一种高效去除水中硝酸盐的Ni/TiO2纳米管电极的制备方法
CN105665024B (zh) 一种去除水体硝酸盐的双金属催化剂Pd@Cu-BTC的制备方法及其应用
CN113083369A (zh) 一种基于铁基金属有机骨架衍生的电芬顿催化剂及其制备方法和应用
Li et al. Efficient TN removal and simultaneous TOC conversion for highly toxic organic amines based on a photoelectrochemical-chlorine radicals process
CN116177716A (zh) 一种微生物燃料电池阴极电芬顿反应处理四环素废水的实验装置与方法
CN115010217A (zh) 一种高效电催化去除水中硝酸盐的三维复合电极制备方法和应用
Liu et al. Enhanced selective nitrate-to-nitrogen electrocatalytic reduction by CNTs doped Ni foam/Cu electrode coupled with Cl−
Wang et al. Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO 2/C electrocatalytic membrane
Zhang et al. Efficient ammonia removal promoted in a bifunctional system constructed with NiCu–S/DSA electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant