CN108531818B - 具有复合层状结构的单相高锰钢材料及其制备工艺 - Google Patents

具有复合层状结构的单相高锰钢材料及其制备工艺 Download PDF

Info

Publication number
CN108531818B
CN108531818B CN201810515136.4A CN201810515136A CN108531818B CN 108531818 B CN108531818 B CN 108531818B CN 201810515136 A CN201810515136 A CN 201810515136A CN 108531818 B CN108531818 B CN 108531818B
Authority
CN
China
Prior art keywords
manganese steel
steel material
percent
phase high
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810515136.4A
Other languages
English (en)
Other versions
CN108531818A (zh
Inventor
王玉辉
黄晓旭
王天生
彭艳
康剑梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201810515136.4A priority Critical patent/CN108531818B/zh
Publication of CN108531818A publication Critical patent/CN108531818A/zh
Application granted granted Critical
Publication of CN108531818B publication Critical patent/CN108531818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Abstract

本发明提供一种具有复合层状结构的单相高锰钢材料及其制备工艺,属于钢铁材料及其加工制备领域,采用的技术方案是:制备工艺包括以下步骤:(一)高锰钢熔炼;(二)锻造毛板:将所得钢锭在800℃~1200℃下锻造成15‑25mm厚度的毛板;(三)冷轧薄板:将毛板经冷轧为1‑3mm的冷轧薄板,控制冷轧变形量90%以上;(四)退火成型:冷轧薄板以550℃~600℃退火10min以上,即得具有复合层状结构的单相高锰钢材料。有益效果在于:首次在单相高锰钢中实现了复合层状结构设计,具有再结晶层和纳米晶层复合层状结构;该材料具有较大的约束效应强化;工艺简单,适于大规模化生产,加工技术简单,容易实现。

Description

具有复合层状结构的单相高锰钢材料及其制备工艺
技术领域
本发明涉及钢铁材料及其加工制备领域,具体涉及具有复合层状结构的单相高锰钢材料及其制备工艺。
背景技术
众所周知,材料的强度和塑性很难兼顾,制备高强度和高塑性的金属材料一直是实验室和工业界的巨大挑战。金属材料的组织可以有单相组成,也可以由多相组织,即使组织类型相同,组成相也相同,但晶粒排布、形状、大小有不同时,性能也差异很大。
研究发现,在低碳钢结构中,细化晶粒是提高钢铁材料的屈服强度、降低韧脆转变温度、提高韧性的重要途径。尤其是超细晶组织,如纳米化晶粒,可以实现材料强度的提高,但是塑性却有大幅下降。目前,在多数多相材料通过两种或两种以上材料复合获得,一般由一定含量的粗晶和超细晶或纳米晶构成,在变形过程中粗晶提供塑性,而超细晶或纳米晶提供强度,从而使多相材料同时获得高强度和高塑性。而对于单相材料,晶体组织的组成及结构排布的研究较少,一方面材料组成不易控制,另一方面,钢材锻造工艺步骤较多,工艺条件较为复杂,很难协调各步骤从而制备兼顾强度和塑性的钢材,是钢材技术领域亟待解决的技术性难题。
发明内容
为解决单相高锰钢材料结构规律性差、强度与塑性兼顾效果差的技术问题,本发明提供一种具有复合层状结构的单相高锰钢材料及其制备工艺,通过冷轧和低温退火工艺获得具有再结晶层和纳米晶层的复合层状结构的单相高锰钢材料,该结构可以提供较大的约束效应强化,实现了强度提高的同时,塑性也大大提高。
为解决上述技术问题,本发明采用的技术方案1是:
具有复合层状结构的单相高锰钢材料,所述单相高锰钢材料中锰的重量百分比为30.5%~34.5%,单相高锰钢材料组织中具有纳米晶层和再结晶层,纳米晶层与再结晶层的层间距为1~20μm。
进一步的,所述单相高锰钢材料为钢板,纳米晶层所占的体积百分比为5%~90%。
进一步的,所述单相高锰钢材料中锰的重量百分比为30.5%~34.5%,碳的重量百分比为0.04%~0.11%, S≤0.01%,P≤0.008%,其余为Fe。
本发明采用的技术方案2是:具有复合层状结构的单相高锰钢材料的制备工艺,包括以下步骤:
(一)高锰钢熔炼:所述单相高锰钢材料的中锰的重量百分比为30.5%~34.5%,按照设计要求计算投料比例,将投料熔炼成钢锭;
(二)锻造毛板:将所得钢锭在800℃~1200℃下锻造成15-25mm厚度的毛板;
(三)冷轧薄板:将毛板经10-15道次冷轧为1-3mm的冷轧薄板,控制冷轧变形量90%以上;
(四)退火成型:冷轧薄板以550℃~600℃退火10min以上,即得具有复合层状结构的单相高锰钢材料。
优选的,所述步骤(三)中毛板冷轧前预先去除其上、下表面各0.5-1.5mm的氧化铁皮;冷轧工艺控制轧制速率0.3-0.5m/s;每道次0.6-2mm的压下量。
更优选的,所述步骤(三)中冷轧为每道次等变形量轧制。
进一步的,所述单相高锰钢材料中锰的重量百分比为30.5%~34.5%,碳的重量百分比为0.04%~0.11%, S≤0.01%,P≤0.008%,其余为Fe。
优选的,所述步骤(四)中退火条件为550℃~600℃退火10min~72h。
更优选的,所述步骤(四)中退火条件为温度550℃退火2h;或温度600℃退火1h。
进一步的,所述单相高锰钢材料组织中具有纳米晶层和再结晶层,纳米晶层与再结晶层的层间距为1~20μm;所述单相高锰钢材料的组织中纳米晶层所占的体积百分比为5%~90%。
上述技术方案中,提供了具有复合层状结构的单相高锰钢材料及其制备工艺,具有复合层状结构的单相高锰钢材料中锰的重量百分比为30.5%~34.5%,为完全奥氏体结构的单相材料,单相高锰钢材料组织中具有纳米晶层和再结晶层,纳米晶层和再结晶层形成复合层状结构,纳米晶层与再结晶层的层间距为1~20μm。上述材料的制备工艺是:首先,按照设计要求,即材料组分比例,如锰的重量百分比为30.5%~34.5%,计算投料比例,投料后进行高锰钢熔炼,制得钢锭;然后将所得钢锭在800℃~1200℃下锻造成15-25mm厚度的毛板,锻造过程中组织细化;再将毛板进行多道次冷轧,控制冷轧变形量90%以上,成为1-3mm的冷轧薄板,冷轧薄板的显微组织为40-100nm的层片组织;最后将冷轧薄板以550℃~600℃退火10min以上,优选10min~72h,单相材料经过简单的变形和退火处理后,获得了由再结晶层和纳米晶层构成的复合结构的显微组织,即具有复合层状结构的单相高锰钢材料。所得具有复合层状结构的单相高锰钢材料的组织中,再结晶层为粗晶,作为“软相”,为材料提供塑性;纳米晶层为回复组织层,作为“硬相”,为材料提供强度;在变形过程,当给定一个塑性变形,由于应变在“软相”和“硬相”层的不均匀分布,“软相”发生更大的塑性变形,为了协调不均匀变形将促生额外的滑移系统,从而导致“软相”层由于约束效应形成几何必需位错,可以实现在单相复合层状材料中产生交大的约束效应强化,本发明所形成的具有符合层状结构的单相高锰钢材料的塑性与目前粗晶组织材料相当,但是强度是其2倍以上,在兼顾塑性性能时,大大提高了单相高锰钢的强度。
采用上述技术方案的有益效果在于:(1)本发明通过多道次冷轧并控制冷轧速率及变形量以及恰当的退火工艺,得到了具有再结晶层和纳米晶层复合层状结构的单相高锰钢材料;(2)本发明首次在单相高锰钢中实现了复合层状结构设计,复合层状结构提供了较大的约束效应强化;(3)本发明在材料微观结构调控、复合结构材料的制备方法方面提供了新思路,对于材料在强度和塑性多性能兼顾方面有了新的创新;(4)本发明轧制和热处理工艺简单,适于大规模化生产,加工技术简单,容易实现。
附图说明
图1为实施例1中钢锭经1000℃固溶处理1h后的XRD;
图2为实施例1中高锰钢材料冷轧后的金相图;
图3为实施例1中高锰钢材料550℃退火30分钟的EBSD图;
图4为实施例2中高锰钢材料550℃退火6小时的金相图;
图5为实施例3中高锰钢材料550℃退火12小时的金相图;
图6为实施例6中冷轧薄板的XRD图;
图7为实施例6中高锰钢材料550℃退火1小时的低倍SEM图;
图8为实施例6中高锰钢材料550℃退火1小时的高倍SEM图;
图9为实施例7中高锰钢材料550℃退火2小时的EBSD图;
图10为实施例8中高锰钢材料600℃退火1小时的高倍SEM图。
具体实施方式
以下以具体实施例详细说明本发明所提供的具有复合层状结构的单相高锰钢材料及其制备工艺,但不以任何形式限制本发明的保护范围,所属领域技术人员根据技术方案所进行的改善修改或者类似替换,均应包含在本发明的保护范围之内。
实施例1
本实施例中所述单相高锰钢材料的成分按重量百分比计为:Mn 30.5%、C 0.11%,S≤0.01%,P≤0.008%,其余为Fe和不可避免的杂质,其中硫、磷的含量为限制性含量。单相高锰钢材料组织结构中具有纳米晶层和再结晶层,参见附图2和图3,图2为高锰钢经熔炼、锻造和90%冷轧后的金相图,金相图中白色部分为纳米晶层,黑色部分为再结晶层;图3为EBSD图,EBSD图中白色部分为再结晶层,黑色部分为纳米晶层,纳米晶层与再结晶层的层间距约为10 μm。
本实施例中具有复合层状结构的单相高锰钢材料的制备工艺步骤如下:
(一)高锰钢熔炼:按照设计要求Mn 30.5%、C 0.11%、S≤0.01%、P≤0.008%,其余为Fe和不可避免的杂质,计算投料比例,投料至工频电感应炉,进行熔炼,炉内为氩气正压环境,以防止Mn在熔炼过程中挥发,熔炼成钢锭,钢锭经1000℃固溶处理1h后,送样XRD检测,结果见附图1,证明本高锰钢为单相奥氏体结构;
(二)锻造毛板:将所得钢锭加热至1000℃~1200℃,锻造成20mm厚度的毛板;
(三)冷轧薄板:将毛板放置至室温,然后经10~20道次冷轧到2mm厚的冷轧薄板,其金相图参见附图2所示;其中冷轧变形量为90%,控制轧制速率为0.4m/s,每道次1.0mm的压下量,且每道次压下量相等,即进行等变形量轧制,;
(四)退火成型:冷轧薄板以550℃退火30min,即得具有复合层状结构的单相高锰钢材料,EBSD图参见附图3所示。
制备过程中,上述组成的单相高锰钢变形性能非常好,锻造和冷轧均无边裂现象。
结果表明:经550℃退火30min后,形成的单相高锰钢材料由纳米晶层和再结晶层组成,且层状组织中的纳米晶层与再结晶层交替分布。测量发现,纳米晶层与再结晶层的层间距为10μm;所述单相高锰钢材料的组织中纳米晶层总厚度所占比例约为30%。
实施例2
本实施例工艺步骤参考实施例1,不同的是:
所述步骤(三)中毛板冷轧前预先去除其上、下表面各1.0mm的氧化铁皮;
步骤(四)退火成型的条件是550℃退火6h。
所得的具有复合层状结构的单相高锰钢材料的金相图参见附图4所示,结果表明:经550℃退火6小时后的单相高锰钢材料形成了由纳米晶层与再结晶层交替分布的层状组织。测量发现,纳米晶层与再结晶层的层间距为9μm;所述单相高锰钢材料的组织中纳米晶层所占体积百分比约10%。
实施例3
(一)高锰钢熔炼:按照设计要求Mn 32.0%、C 0.08%、S≤0.01%、P≤0.008%,其余为Fe和不可避免的杂质,计算投料比例,投料至工频电感应炉,进行熔炼,炉内为氩气正压环境,以防止Mn在熔炼过程中挥发,熔炼成钢锭;
(二)锻造毛板:将所得钢锭加热至900℃~1000℃,锻造成20mm厚度的毛板;
(三)冷轧薄板:将毛板放置至室温,去除其上、下表面各0.8 mm的氧化铁皮,然后经10~20道次冷轧到2mm厚的冷轧薄板,其金相图参见附图2所示;其中冷轧变形量为90%,控制轧制速率为0.4m/s,每道次0.9mm的压下量,且每道次压下量相等,即进行等变形量轧制,;
(四)退火成型:冷轧薄板以550℃退火12h,即得具有复合层状结构的单相高锰钢材料,金相图参见附图5所示,金相图中白色部分为纳米晶层,黑色部分为再结晶层,结果表明:经550℃退火12小时后的单相高锰钢材料形成了由纳米晶层与再结晶层交替分布的层状组织。纳米晶层与再结晶层的层间距为9μm;所述单相高锰钢材料的组织中纳米晶层所占的体积百分比约8%。
实施例4
本实施例工艺步骤参考实施例1,不同的是,本实施例在于详细考察冷轧薄板以550℃退火不同时间,对所得具有复合层状结构的单相高锰钢材料的硬度和再结晶体积分数的影响,结果见下表1。
表1 Fe-30.5Mn-0.11C钢冷轧90%试样在550℃不同退火时间后的硬度值和再结晶体积分数
结果表明:随退火时间延长,所得具有复合层状结构的单相高锰钢材料的硬度由441 HV降至196HV,硬度具有时间依赖性,再结晶层体积分数由0增至97.6%,相应的,纳米晶层在退火10min可达80%,退火720min(12h)约6%。退火时间进一步延长至7200min(120h),体积分数变化较小,从节约能量角度,退火时间优选10min~72h。
实施例5
本实施例工艺步骤参考实施例1,不同的是,本实施例在于详细考察退火对单相高锰钢材料拉伸性能的影响,冷轧薄板、冷轧薄板以550℃退火10min所得样品、冷轧薄板以550℃退火1h所得样品的拉伸性能数据见下表2。
表2 拉伸性能测试数据
结果表明:冷轧薄板屈服强度、抗拉强度高,而均匀延伸率、断裂延伸率则很低,经过退火后,屈服强度、抗拉强度有所降低,均匀延伸率、断裂延伸率则大大升高,说明退火使所得单相高锰钢材料强度适中,塑性增强,能兼顾强度和塑性。进一步的,退火1h与退火10min所得样品相比,强度进一步有所下降,均匀延伸率、断裂延伸率进一步增大。
实施例6
本实施例中所述单相高锰钢材料的成分按重量百分比计为:Mn 34.5%、C 0.04%,S≤0.01%,P≤0.008%,其余为Fe和不可避免的杂质,其中硫、磷的含量为限制性含量。单相高锰钢材料组织结构中具有纳米晶层和再结晶层,其结晶组织的低倍SEM和高倍SEM图分别参见附图7和图8,图中的白色为再结晶层,黑色为纳米晶层,纳米晶层与再结晶层的层间距约为10μm。
本实施例中具有复合层状结构的单相高锰钢材料的制备工艺步骤如下:
(一)高锰钢熔炼:按照设计要求Mn 34.5%、C 0.04%、S≤0.01%、P≤0.008%,其余为Fe和不可避免的杂质,计算投料比例,投料至工频电感应炉,进行熔炼,炉内为氩气正压环境,以防止Mn在熔炼过程中挥发,熔炼成钢锭。进一步,对所得钢锭经1000℃固溶处理后,测试XRD,XRD图中衍射峰只有奥氏体的峰,证明是单相奥氏体结构;
(二)锻造毛板:将所得钢锭加热至1000℃~1100℃,锻造成20mm厚度的毛板;
(三)冷轧薄板:将毛板上、下表面分别去除1.0 mm的氧化铁皮,然后在室温下经10~20道次冷轧到2mm厚的冷轧薄板,冷轧变形量为90%,控制轧制速率为0.4m/s,每道次1.0mm的压下量,且每道次压下量相等,即进行等变形量轧制;对90%冷轧后所得冷轧薄板进行XRD测试,结果见附图6,XRD衍射峰只有奥氏体的峰,证明是经90%冷轧后仍为单相奥氏体结构,没有马氏体相变。
(四)退火成型:冷轧薄板以550℃退火1h,即得具有复合层状结构的单相高锰钢材料,结晶组织以SEM观察,低倍SEM和高倍SEM图分别参见附图7和图8。
结果表明:说明经550℃退火1小时后形成了由纳米晶层与再结晶层交替分布的层状组织。纳米晶层与再结晶层的层间距为10μm;所述单相高锰钢材料的组织中纳米晶层总厚度所占比例约为22%。
实施例7
本实施例工艺步骤参考实施例6,不同的是,步骤(四)退火成型的条件是550℃退火2h。所得具有复合层状结构的单相高锰钢材料的EBSD照片见附图9。
结果表明:经550℃退火2小时后形成了由纳米晶层与再结晶层交替分布的层状组织。图9中白色部分为再结晶层,黑色部分为纳米晶层,纳米晶层与再结晶层的层间距约为10 μm。所述单相高锰钢材料的组织中纳米晶层总厚度所占比例约为23%。
实施例8
本实施例工艺步骤参考实施例6,不同的是,步骤(四)退火成型的条件是600℃退火1h。所得具有复合层状结构的单相高锰钢材料的SEM高倍照片见附图10。
结果表明:经600℃退火1小时后形成了由纳米晶层与再结晶层交替分布的层状组织。纳米晶层与再结晶层的层间距为5μm;所述单相高锰钢材料的组织中纳米晶层总厚度所占比例约为6%。
综合上述实施例可见,本发明轧制和热处理工艺简单,适于大规模化生产,通过多道次冷轧并控制冷轧速率及变形量以及恰当的退火工艺,首次在单相高锰钢中实现了复合层状结构,在材料微观结构调控、复合结构材料的制备方法方面提供了新思路,实现了单相高锰钢材料在强度和塑性多性能的兼顾,应用前景广阔。

Claims (7)

1.具有复合层状结构的单相高锰钢材料,其特征在于,所述单相高锰钢材料中锰的重量百分比为30.5%~34.5%,碳的重量百分比为0.04%~0.11%, S≤0.01%,P≤0.008%,其余为Fe;单相高锰钢材料为完全奥氏体结构的单相材料,组织中具有纳米晶层和再结晶层,纳米晶层与再结晶层的层间距为1~20μm;所述单相高锰钢材料制备工艺由以下步骤组成:
(一)高锰钢熔炼:所述单相高锰钢材料的中锰的重量百分比为30.5%~34.5%,按照设计要求计算投料比例,将投料熔炼成钢锭;
(二)锻造毛板:将所得钢锭在800℃~1200℃下锻造成15-25mm厚度的毛板;
(三)冷轧薄板:将毛板经10-15道次冷轧为1-3mm的冷轧薄板,控制冷轧变形量90%以上;
(四)退火成型:冷轧薄板以550℃~600℃退火10min~72h,即得具有复合层状结构的单相高锰钢材料。
2.根据权利要求1所述的单相高锰钢材料,其特征在于,所述单相高锰钢材料为钢板,纳米晶层所占的体积百分比为5%~90%。
3.权利要求1所述的具有复合层状结构的单相高锰钢材料的制备工艺,其特征在于,所述制备工艺由以下步骤组成:
(一)高锰钢熔炼:所述单相高锰钢材料的中锰的重量百分比为30.5%~34.5%,碳的重量百分比为0.04%~0.11%, S≤0.01%,P≤0.008%,其余为Fe,按照设计要求计算投料比例,将投料熔炼成钢锭;
(二)锻造毛板:将所得钢锭在800℃~1200℃下锻造成15-25mm厚度的毛板;
(三)冷轧薄板:将毛板经10-15道次冷轧为1-3mm的冷轧薄板,控制冷轧变形量90%以上;
(四)退火成型:冷轧薄板以550℃~600℃退火10min~72h,即得具有复合层状结构的单相高锰钢材料,所述单相高锰钢材料为完全奥氏体结构的单相材料,组织中具有纳米晶层和再结晶层,纳米晶层与再结晶层的层间距为1~20μm。
4.根据权利要求3所述的制备工艺,其特征在于,所述步骤(三)中毛板冷轧前预先去除其上、下表面各0.5-1.5mm的氧化铁皮;冷轧工艺控制轧制速率0.3-0.5m/s;每道次0.6-2mm的压下量。
5.根据权利要求3或4所述的制备工艺,其特征在于,所述步骤(三)中冷轧为每道次等变形量轧制。
6.根据权利要求3所述的制备工艺,其特征在于,所述步骤(四)中退火条件为温度550℃退火2h;或温度600℃退火1h。
7.根据权利要求3或6所述的制备工艺,其特征在于,所述单相高锰钢材料的组织中纳米晶层所占的体积百分比为5%~90%。
CN201810515136.4A 2018-05-25 2018-05-25 具有复合层状结构的单相高锰钢材料及其制备工艺 Active CN108531818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810515136.4A CN108531818B (zh) 2018-05-25 2018-05-25 具有复合层状结构的单相高锰钢材料及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810515136.4A CN108531818B (zh) 2018-05-25 2018-05-25 具有复合层状结构的单相高锰钢材料及其制备工艺

Publications (2)

Publication Number Publication Date
CN108531818A CN108531818A (zh) 2018-09-14
CN108531818B true CN108531818B (zh) 2019-12-31

Family

ID=63472783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810515136.4A Active CN108531818B (zh) 2018-05-25 2018-05-25 具有复合层状结构的单相高锰钢材料及其制备工艺

Country Status (1)

Country Link
CN (1) CN108531818B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983194B (zh) * 2019-12-25 2020-09-22 燕山大学 一种超级韧性钢铁材料及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152797A (zh) * 2014-08-14 2014-11-19 燕山大学 一种低温塑性高锰钢板及其加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104152797A (zh) * 2014-08-14 2014-11-19 燕山大学 一种低温塑性高锰钢板及其加工方法
CN104846273A (zh) * 2014-08-14 2015-08-19 燕山大学 低温塑性的高锰钢板及其加工工艺
CN105200309A (zh) * 2014-08-14 2015-12-30 燕山大学 一种高强度、高塑性的高锰钢材料及其加工方法

Also Published As

Publication number Publication date
CN108531818A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN105849300B (zh) 无取向性电工钢板及其制造方法
WO2019214243A1 (zh) 一种锂电池用1100合金铝箔及其制造方法
JP5387073B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
CN106795608A (zh) 铁素体系不锈钢钢板、钢管及其制造方法
CN107779746B (zh) 超高强度高韧性耐蚀耐氧化超细晶合金钢及其制备方法
CN102653839B (zh) 低温连续退火无间隙原子冷轧钢板及其生产方法
CN102676924A (zh) 一种超细晶马氏体钢板及其制备方法
KR20080063521A (ko) 고강도 무방향성 전자 강판 및 그 제조 방법
CN101289717A (zh) 一种α+β型钛合金
CN104520458B (zh) 高强度电磁钢板及其制造方法
CN105803324B (zh) 一种屈服强度450MPa级高磁感低成本冷轧磁极钢及其制造方法
CN110088327A (zh) 无取向电工钢板及其制造方法
CN110408861B (zh) 一种具较低Mn含量的冷轧高强塑积中锰钢及其制备方法
CN105112782A (zh) 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
CN110592491B (zh) 一种高耐磨性马氏体/奥氏体双相耐磨钢板及制造方法
CN114561517A (zh) 一种低密度高塑韧性钢及其制备方法和应用
CN112513299A (zh) 无取向电磁钢板
CN108531818B (zh) 具有复合层状结构的单相高锰钢材料及其制备工艺
CN110331344B (zh) 一种强度性能稳定的Rm≥600MPa汽车大梁钢及生产方法
CN103436778B (zh) 具有低温韧性药芯焊丝用冷轧带钢及其生产方法
CN106086630B (zh) 一种含有纳米析出相的低成本高强韧铁素体钢板及其制造方法
CN109913758B (zh) 高温强度和成形性能良好的铁素体不锈钢板及其制备方法
CN111961982A (zh) 高扩孔率高强度高延伸率的热轧中锰钢板及其制备方法
CN102676913B (zh) 药芯焊丝用冷轧带钢及其制造方法
CN116555672A (zh) 一种高强韧性中锰钢板材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant