CN108521391A - 接收用于在用户设备之间直接通信的同步信息的方法及其的装置 - Google Patents

接收用于在用户设备之间直接通信的同步信息的方法及其的装置 Download PDF

Info

Publication number
CN108521391A
CN108521391A CN201810205387.2A CN201810205387A CN108521391A CN 108521391 A CN108521391 A CN 108521391A CN 201810205387 A CN201810205387 A CN 201810205387A CN 108521391 A CN108521391 A CN 108521391A
Authority
CN
China
Prior art keywords
cell
signal
information
synchronous
subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810205387.2A
Other languages
English (en)
Other versions
CN108521391B (zh
Inventor
徐翰瞥
李承旻
徐人权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN108521391A publication Critical patent/CN108521391A/zh
Application granted granted Critical
Publication of CN108521391B publication Critical patent/CN108521391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0093Neighbour cell search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0025Synchronization between nodes synchronizing potentially movable access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Abstract

本发明涉及接收用于在用户设备之间直接通信的同步信息的方法及其的装置。本发明公开的是一种第一用户设备接收在无线通信系统中的用户设备之间直接通信的同步信息的方法。特别地,该方法包括:从服务小区接收与参考小区相关的信息的步骤;从参考小区接收同步参考信号的步骤;和基于同步参考信号获得用于在用户设备之间直接通信的同步的步骤,其中参考小区包括在小区簇中包含的至少一个小区,并且小区簇包括在邻近于参考小区的多个相邻的小区之中的至少一个和服务小区。

Description

接收用于在用户设备之间直接通信的同步信息的方法及其的 装置
本申请是2015年10月12日提交的国际申请日为2014年3月11日的申请号为201480020927.X(PCT/KR2014/001989)的,发明名称为“接收用于在用户设备之间直接通信的同步信息的方法及其的装置”专利申请的分案申请。
技术领域
本发明涉及无线通信系统。尤其是,本发明涉及用于接收在无线通信系统中的终端之间直接通信的同步信息的方法以及用于其的装置。
背景技术
作为本发明可应用其的移动通信系统的一个示例,将简要地描述第三代合作项目(3GPP)长期演进(LTE)通信系统。
图1是示出作为无线通信系统的一个示例的演进的通用移动电信系统(E-UMTS)的网络结构的示意图。E-UMTS是UMTS的演进形式,并且已经在3GPP中标准化。通常,E-UMTS可以被称作长期演进(LTE)系统。对于UMTS和E-UMTS的技术规范的细节,参考“3rdGeneration Partnership Project;Technical Specification Group Radio AccessNetwork(第三代合作项目;技术规范组无线电接入网络)”的版本7和版本8。
参考图1,E-UMTS主要地包括用户设备(UE)、基站(或者eNB或者节点B),和接入网关(AG),其位于网络(E-UTRAN)的一端,并且连接到外部网络。通常,eNB可以同时地发送用于广播服务、多播服务和/或单播服务的多个数据流。
每个eNB可以存在一个或多个小区。小区被设置为使用诸如1.25、2.5、5、10、15或者20MHz的带宽,以给几个UE提供下行链路或者上行链路传输服务。不同的小区可以被设置为提供不同的带宽。eNB控制多个UE的数据发送或者接收。eNB发送DL数据的下行链路(DL)调度信息,以便通知相应的UE数据在其中发送的时间/频率域、编码、数据大小,和混合自动重复以及请求(HARQ)相关的信息。此外,eNB将UL数据的上行链路(UL)调度信息发送给相应的UE,以便通知UE可以由UE使用的时间/频率域、编码、数据大小以及HARQ相关的信息。用于发送用户业务或者控制业务的接口可以在eNB之间使用。核心网(CN)可以包括用于UE的用户注册的AG和网络节点等等。AG在跟踪区(TA)基础上管理UE的移动。一个TA包括多个小区。
虽然无线通信技术已经基于宽带码分多址(WCDMA)开发至长期演进(LTE),用户和提供者的需求和期待继续提高。此外,由于已经不断地开发其它的无线接入技术,需要新的技术演进以保证在未来具有高的竞争性。需要每位成本的降低、服务可利用性的提高、频带灵活的使用、简单结构、开放接口、适宜的用户设备(UE)功率消耗等等。
发明内容
技术问题
鉴于以上的论述,本发明的一个目的是提供一种用于接收在无线通信系统中的终端之间直接通信的同步信息的方法以及用于其的装置。
技术方案
本发明的目的可以通过提供一种用于由第一终端接收在无线通信系统中的终端之间直接通信的同步信息的方法实现,该方法包括:从服务小区接收有关参考小区的信息,从参考小区接收同步参考信号,和基于同步参考信号获得用于直接通信的同步,其中参考小区包括在小区簇中包含的至少一个小区,其中小区簇包括邻近参考小区的多个邻近小区和服务小区中的至少一个。优选地,该方法进一步包括:基于使用直接通信获得的同步,向对方终端发送发送信号或者从对方终端接收信号。
优选地,参考小区包括多个小区。因此,该方法可以进一步包括:将用于直接通信的资源划分为多个分区,其中用于多个分区的第一资源分区的同步是从参考小区的第一参考小区获得的,其中用于多个分区的第二资源分区的同步是从参考小区的第二参考小区获得的。做为选择,该方法可以进一步包括:从服务小区接收有关参数的信息,其中当使用直接通信将包含第一参数的信号发送到对方终端或者从对方终端接收包含第一参数的信号时,该信号使用从可操作地与第一参数相连接的第一参考小区获得的同步被发送或者接收,其中当使用直接通信将包含第二参数的信号发送到对方终端或者从对方终端接收包含第二参数的信号时,该信号使用从可操作地与第二参数相连接的第二参考小区获得的同步被发送或者接收。
优选地,有关参考小区的信息包括参考小区的小区标识(ID)和包括在小区簇中的小区列表的至少一个。在此处,当服务小区包括在小区列表中时,执行从参考小区接收同步参考信号。
另外,该方法可以进一步包括从服务小区接收有关资源区域的信息,同步参考信号在资源区域中被发送,其中至少一个邻近小区的发射功率在资源区域中被降低。
该方法可以进一步包括将获得的同步的结果报告给服务小区。
根据本发明的另一个方面,在此处所提供的是一种在无线通信系统中的终端,包括:收发模块,配置为从服务小区接收有关参考小区的信息,和从参考小区接收同步参考信号,和处理器,配置为基于同步参考信号,获得用于在终端之间直接通信的同步,其中参考小区包括在小区簇中包含的至少一个小区,其中小区簇包括邻近参考小区的多个邻近小区的至少一个和服务小区。
优选地,参考小区包括多个小区。因此,该处理器可以被配置为将用于直接通信的资源划分为多个分区,其中用于多个分区的第一资源分区的同步是从参考小区的第一参考小区获得的,其中用于多个分区的第二资源分区的同步是从参考小区的第二参考小区获得的。做为选择,该处理器可以被配置为从服务小区接收有关参数的信息,其中当使用直接通信将包含第一参数的信号发送到对方终端或者从对方终端接收包含第一参数的信号时,该信号使用从可操作地与第一参数相连接的第一参考小区获得的同步被发送或者接收,其中当使用直接通信将包含第二参数的信号发送到对方终端发送或者从对方终端接收包含第二参数的信号时,该信号使用从可操作地与第二参数相连接的第二参考小区获得的同步被发送或者接收。
优选地,有关参考小区的信息包括参考小区的小区标识(ID)和包括在小区簇中的小区列表的至少一个。因此,当服务小区包括在小区列表中时,收发模块可以从参考小区接收同步参考信号。
本发明的许多方面可以共同地包括以下的细节。
第一资源分区可以可操作地与第一参考小区的小区标识(ID)相连接,其中第二资源分区可以可操作地与第二参考的小区ID相连接。
该参数可以包括前导序列和解调参考信号序列的至少一个。
该同步参考信号可以包括主同步信号、辅同步信号、小区特定的参考信号(CRS)、跟踪参考信号(RS)和信道状态信息-参考信号(CSI-RS)的至少一个。
本发明的以上常规的描述和以下的详细描述示范性地给出以补充在权利要求中的说明。
有益效果
根据本发明的一个实施例,当在UE之间执行直接通信时,可以获得在连接到不同的基站的UE之间的同步。
通过在连接到不同的基站的UE之间获得不同的同步,可以有效地使用资源。
本领域技术人员应该理解,借助于本发明可以实现的效果不局限于已经如上所述的那些,并且本发明的其它的优点将从以下与伴随的附图一起进行的详细说明中更加清楚地理解。
附图说明
附图被包括以提供对本发明进一步的理解,其图示本发明的实施例,并且与说明书一起可以起解释本发明原理的作用。在附图中:
图1是图示无线通信系统结构的示意图;
图2图示在3GPP LTE中的无线电帧结构;
图3是图示下行链路时隙的资源网格的示意图;
图4是图示下行链路子帧结构的示意图;
图5是图示上行链路子帧结构的示意图;
图6图示具有多个天线(MIMO)的无线通信系统的配置;
图7图示下行链路参考信号;
图8是图示当在LTE系统中给出四个发射天线端口时应用的常规的CRS图案的示意图;
图9是图示信道状态信息-参考信号(CSI-RS)的周期的传输示例的示意图;
图10是图示信道状态信息-参考信号(CSI-RS)的非周期的传输示例的示意图;
图11是图示在UE之间直接通信的示意图;
图12是图示根据本发明的一个实施例当UE连接到不同的eNB时,用于接收供在UE之间直接通信的同步信息方法的示意图;
图13图示在代表性小区与服务小区相同的情形下,在时间域中的资源;
图14图示在代表性小区不同于服务小区的情形下,在时间域中的资源;
图15图示在代表性小区和服务小区之间存在大的误差的情形下,在时间域中的资源;
图16是图示控制有关执行同步的特定的资源的发射功率的邻近小区操作的示意图;
图17是图示根据本发明的一个实施例,用于接收供在UE之间直接通信的同步信息方法的示意图;
图18是图示根据本发明的另一个实施例,用于接收供在UE之间直接通信的同步信息方法的示意图;
图19是图示根据本发明的一个实施例,当存在多个同步参考小区时,用于接收供在UE之间直接通信的同步信息方法的示意图;和
图20是图示根据本发明的一个实施例的通信设备配置的方框图。
具体实施方式
以下的实施例根据预先确定的格式,通过组合本发明的组成部件和特征提出。各个组成部件或者特征在没有额外的注释的条件下应该认为是可选择的因素。如果需要的话,各个组成部件或者特征可以不与其它的部件或者特征结合。此外,某些组成部件和/或特征可以合并以实现本发明的实施例。在本发明的实施例中公开的操作排序可以转变为另外的。任何实施例的某些部件或者特征也可以包括在其它的实施例中,或者可以根据需要以其它的实施例的替换。
本发明的实施例基于在基站(BS)和终端之间的数据通信关系公开。在这种情况下,BS用作网络的终端节点,经由其BS可以与终端直接通信。在本发明中由BS实施的特定的操作也可以根据需要由BS的上层节点实施。
换句话说,对于本领域技术人员来说将是显而易见的,用于允许BS与在由包括BS的若干网络节点组成的网络中的终端通信的各种操作将由BS或者除BS以外的网络节点实施。术语“BS”可以根据需要以固定站、节点B、演进的节点B(eNB或者e节点B),或者接入点(AP)替换。术语“中继站”可以以中继节点(RN)或者中继站(RS)替换。术语“终端”也可以根据需要以用户设备(UE)、移动站(MS)、移动用户站(MSS)或者用户站(SS)替换。
应当注意到,在本发明中公开的特定的术语是为了描述和更好地理解本发明的方便起见提出的,并且这些特定的术语的使用可以转变为在本发明的技术范围或者精神内的另一个格式。
在有些情况下,公知的结构和设备被省略,以免使本发明的概念难以理解,并且该结构和设备的重要的功能可以以方框图的形式示出。贯穿附图将使用相同的参考数字以指代相同的或者类似的部分。
本发明的实施例由对于包括电气与电子工程师协会(IEEE)802系统、第三代合作项目(3GPP)系统、3GPP长期演进(LTE)系统和3GPP2系统的无线接入系统的至少一个公开的标准文献支持。尤其是,在本发明的实施例中没有描述去清楚地展现本发明的技术想法的步骤或者部分可以由以上的文献支持。在此处使用的所有术语可以由以上提到的文献的至少一个支持。
本发明的以下的实施例可以应用于各种无线接入技术,例如,码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单个载波频分多址(SC-FDMA)等等。CDMA可以以无线(或者无线电)技术,诸如通用陆上无线电接入(UTRA)或者CDMA2000实施。TDMA可以以无线(或者无线电)技术,诸如全球数字移动电话系统(GSM)/通用分组无线电服务(GPRS)/用于GSM演进的增强数据速率(EDGE)实施。OFDMA可以以无线(或者无线电)技术,诸如,电气与电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE802-20,和演进的UTRA(E-UTRA)实施。UTRA是通用移动电信系统(UMTS)的一部分。第三代合作项目长期演进(3GPP LTE)是使用E-UTRA的演进的UMTS(E-UMTS)的一部分。3GPP LTE在下行链路中采用OFDMA,并且在上行链路中采用SC-FDMA。高级LTE(LTE-A)是3GPP LTE的演进。WiMAX可以由IEEE 802.16e(无线MAN-OFDMA参考系统)和高级IEEE 802.16m(无线MAN-OFDMA高级系统)解释。为了清楚,以下的描述集中于3GPP LTE和LTE-A系统。但是,本发明的技术特征不受限于此。
3GPP LTE系统的无线电帧的结构将参考图2描述。
在蜂窝正交频分复用(OFDM)无线电分组通信系统中,上行链路/下行链路数据分组被在子帧中发送。一个子帧被限定为包括多个OFDM符号的预先确定的时间间隔。3GPPLTE标准支持可应用于频分双工(FDD)的类型1无线电帧结构,和可应用于时分双工(TDD)的类型2无线电帧结构。
图2(a)是图示类型1的无线电帧结构的示意图。无线电帧包括10个子帧,并且一个子帧在时间域中包括两个时隙。用于发送一个子帧需要的时间被限定为传输时间间隔(TTI)。例如,一个子帧可以具有1ms的长度,并且一个时隙可以具有0.5ms的长度。一个时隙在时间域中可以包括多个OFDM符号,并且在频率域中包括多个资源块(RB)。由于3GPP LTE系统在下行链路中使用OFDMA,OFDM符号表示一个符号宽度。OFDM符号可以被称作SC-FDMA符号或者符号持续时间。RB是在一个时隙中包括多个连续的子载波的资源分配单元。
包括在一个时隙中的OFDM符号的数目可以根据循环前缀(CP)的配置变化。存在扩展CP和正常CP。例如,在正常CP的情况下,包括在一个时隙中OFDM符号的数目可以是7个。在扩展的CP的情况下,一个OFDM符号的长度增加,并且因此,包括在一个时隙中OFDM符号的数目小于在正常CP的情况下。在扩展CP的情况下,例如,包括在一个时隙中OFDM符号的数目可以是6个。如果由于当UE快速移动时的情形下信道状态是不稳定的,可以使用扩展的CP,以便进一步减少在符号之间的干扰。
图2(b)类型2无线电帧包括两个半帧(每个具有5个子帧)、下行链路导频时隙(DwPTS)、保护时段(GP),和上行链路导频时隙(UpPTS)。每个子帧被分成两个时隙。DwPTS用于在UE上初始小区搜索、同步或者信道估计。UpPTS用于在eNB上信道估计和获得UE的上行链路传输同步。GP是在上行链路和下行链路之间的时段,其消除由下行链路信号的多径延迟所引起的上行链路干扰。不管无线电帧的类型,一个子帧包括两个时隙。
在LTE TDD系统中,上行链路/下行链路子帧配置(UL/DL配置)如以下的表1所示给出。
表1
在表1中,D表示下行链路子帧,U表示上行链路子帧,并且S表示特定的子帧。表1还示出在每个系统的上行链路/下行链路子帧配置中的下行链路到上行链路转换点周期性。
支持的上行链路/下行链路子帧在表1中示出。对于无线电帧的子帧,“D”表示预留用于下行链路传输的子帧,“U”表示预留用于上行链路传输的子帧,“S”表示包括下行链路导频时隙(DwPTS)、保护时段(GP)和上行链路导频时隙(UpPTS)的特定的子帧。
当前的3GPP标准文献定义如以下的表2所示特定的子帧的配置。表2示出当TS=1/(15000*2048)时给出的DwPTS和UpPTS,并且另一个区被配置为GP。
表2
图示的无线电帧结构仅仅是示例,并且可以对包括在无线电帧中子帧的数目、包括在子帧中时隙的数目,或者包括在时隙中符号的数目进行各种改进。
图3是图示下行链路时隙的资源网格的示意图。下行链路时隙在时间域中包括7个OFDM符号,并且RB在频率域中包括12个子载波。但是,本发明的实施例不受限于此。对于正常CP,一个时隙可以包括7个OFDM符号。对于扩展的CP,一个时隙可以包括6个OFDM符号。在资源网格中的每个元素称为资源元素(RE)。一个RB包括12×7个RE。包括在下行链路时隙中RB的数目NDL取决于下行链路传输带宽。上行链路时隙可以具有与下行链路时隙相同的结构。
图4是图示下行链路子帧结构的示意图。在一个子帧的第一时隙的开始处直至三个OFDM符号对应于控制信道分配给其的控制区域。其余的OFDM符号对应于物理下行链路共享信道(PDSCH)分配给其的数据区域。在3GPP LTE系统中使用的下行链路控制信道的示例例如可以包括物理控制格式指标信道(PCFICH)、物理下行链路控制信道(PDCCH)、物理混合自动重复请求指标信道(PHICH)等等。PCFICH位于子帧的第一OFDM符号中,携带有关用于在该子帧中控制信道的OFDM符号的数目信息。PHICH包括作为对上行链路传输响应的HARQ确认/否认(ACK/NACK)信号。在PDCCH上发送的控制信息将称为下行链路控制信息(DCI)。DCI包括上行链路或者下行链路调度信息,或者用于某个UE组的上行链路发射功率控制命令。PDCCH可以包括有关下行链路共享信道(DL-SCH)的资源分配和传输格式的信息,上行链路共享信道(UL-SCH)的资源分配信息,寻呼信道(PCH)的寻呼信息,有关DL-SCH的系统信息,有关高层控制消息的资源分配,诸如,在PDSCH上发送的随机接入响应(RAR)的信息,用于在某个UE组中单个UE的一组发射功率控制命令,发射功率控制信息,有关IP语音(VoIP)激活的信息等等。多个PDCCH可以在控制区域中发送。UE可以监测多个PDCCH。PDCCH在一个或者几个邻接的控制信道元素(CCE)的聚合上被发送。CCE是基于无线电信道的状态用于以编码速率提供PDCCH的逻辑分配单元。CCE包括一组RE。用于PDCCH的格式和可用的位数基于在CCE的数目和由CCE提供的编码速率之间的相关性确定。BS根据要发送给UE的DCI确定PDCCH格式,并且将循环冗余校验(CRC)附加给控制信息。CRC被根据PDCCH的拥有者或者用途通过无线电网络临时标识符(RNTI)掩蔽。如果PDCCH用于特定的UE,CRC可以通过UE的小区RNTI(C-RNTI)掩蔽。如果PDCCH用于寻呼消息,CRC可以由寻呼指示符标识符(P-RNTI)掩蔽。如果PDCCH是用于系统信息(更具体地说,系统信息块(SIB)),CRC可以通过系统信息标识符和系统信息RNTI(SI-RNTI)掩蔽。为了表示对从UE接收的随机接入前导的随机接入响应,CRC可以通过随机接入RNTI(RA-RNTI)掩蔽。
图5是图示上行链路子帧结构的示意图。上行链路子帧可以在频率域中被分成控制区域和数据区域。包括控制信息的物理上行链路控制信道(PUCCH)被分配给控制区域。包括用户数据的物理上行链路共享信道(PUSCH)被分配给数据区域。为了保持单个载波属性,一个UE不同时地发送PUCCH和PUSCH。用于一个UE的PUCCH在子帧中被分配给一个RB对。RB对的RB在两个时隙中占据不同的子载波。因此,分配给PUCCH的RB对是在时隙边界上的“跳频”。
多天线(MIMO)系统的建模
在下文中,将描述MIMO系统。MIMO(多输入多输出)是使用多个发射天线和多个接收天线的方案。借助于这种方案,可以提高数据的发送和接收效率。也就是说,当无线通信系统的发送实体或者接收实体使用多个天线时,传输能力和性能可以提高。在本说明书中,MIMO可以称为“多个天线”。
在多天线技术中,一个完整消息的接收不取决于单个天线路径。代之以,经由几个天线接收的数据片段被采集和合并成整个数据。借助于多天线技术,系统覆盖范围可以以改进的数据传送速率,或者确保的特定的数据传送速率在特定的大小的小区区域中扩展。此外,这种技术可以例如由移动通信终端和中继站广泛地使用。在常规的情形下,已经使用单个发射天线和单个接收天线。借助于多天线技术,可以基于使用单个天线的常规的技术克服有关在移动通信中的传送速率的局限性。
同时,数据传输效率可以改善。在各种技术之中,MIMO技术可以无需额外的频率分配或者额外的功率增加大大地提高通信能力和发送/接收性能。由于这个优点,MIMO技术引起大多数公司和开发者的注意。
图6图示具有多个天线(MIMO)的无线通信系统的配置。
如图6所示,NT个发射(Tx)天线安装在发送实体上,并且NR个接收(Rx)天线安装在接收实体上。如果发送实体和接收实体两者如在图中图示的使用多个天线,获得比当仅仅发送实体和接收实体的一个使用多个天线时更大的理论信道传输能力。信道传输容量与天线的数目成比例增加。因此,传送速率和频率效率随同信道传输能力的提高一起提高。当使用一个天线获得的最大传送率是Ro时,使用多个天线获得的传送速率理论上可以通过最大传送率Ro乘以由以下的公式1给出的速率提高Ri的比率提高。在此处,Ri是NT和NR的更小的一个。
[公式1]
Ri=min(NT,NR)
例如,使用四个Tx天线和四个Rx天线的MIMO通信系统理论上可以获得四倍通过单个天线系统获得的传送速率。在以上提及的在MIMO系统的能力方面的理论提高在二十世纪九十年代中期论证之后,已经对可以大体上提高数据传送速率的各种技术积极地实施研究,并且一些技术已经反映在各种无线通信标准中,诸如,例如,第三代移动通信和下一代无线LAN。
已经积极地研究各种MIMO相关的技术。例如,已经积极地实施对在各种信道环境和多路访问环境下与MIMO通信能力相关的信息理论的研究、对射频(RF)信道测量和MIMO系统的模拟的研究,和对空时信号处理技术的研究。
在下文中,将详细描述供MIMO系统使用的通信方法的数学模型。如图6所示,假设该系统包括NT个Tx天线和NR个Rx天线。在传输信号的情况下,在使用NT个Tx天线的条件之下,最大可发送的信息数是NT,并且因此,传输信息可以由以下给出的公式2的矢量表示。
[公式2]
对于相应的传输信息s1、s2、…、sNT,可以使用不同的发射功率。在这种情况下,当相应的发射功率由P1、P2、…、PNT表示时,具有调整的发射功率的传输信息片可以由以下的公式3表示。
[公式3]
可以由使用发射功率的对角矩阵P的以下的公式4表示。
[公式4]
假如权重矩阵W应用于已经调整发射功率的信息矢量并且因此,实际上要发送的NT个发送信号x1、x2、…、xNT被配置。在这种情况下,权重矩阵W用来根据传输信道情形适当地分配传输信息给单个天线。发送信号x1、x2、…、xNT可以由以下使用矢量X的公式5表示。
[公式5]
在这里,Wij表示对应于第i个Tx天线和第j个信息的权重。W被称作权重矩阵或者预编码矩阵。
就MIMO技术的类型而言,这个方法可以以不同的方式看到。如果一个数据流经由几个天线被发送,则该方法可以被视为空间分集方案。在这种情况下,信息矢量的元素具有相同的值。如果多个数据流经由多个天线发送,则该方法可以视为空间复用方案。在这种情况下,信息矢量的元素具有不同的值。当然,组合空间分集和空间复用的混合方法也是可允许的。也就是说,一个信号根据空间分集方案经由三个发射天线被发送,并且其它的信号被根据空间复用方案发送。
当使用NR个Rx天线时,单个天线的接收信号y1、y2、…、yNR可以由以下公式的矢量表示。
[公式6]
当在MIMO无线通信系统中执行信道建模时,单个信道可以通过Tx/Rx天线索引相互不同。假如从Tx天线j流动到Rx天线i的信道由hij表示。在表示用于hij的索引中,应当注意到,Rx天线索引首先出现,并且Tx天线索引稍后出现。
图6(b)示出从NT个Tx天线到Rx天线i的信道。该信道可以被分组,并且以矢量或者矩阵的形式表示。在图6(b)中,从NT个Tx天线到达Rx天线i的信道可以由以下的公式表示。
[公式7]
从NT个Tx天线到达NR个Rx天线的所有信道可以由以下表示。
[公式8]
事实上,加性高斯白噪声(AWGN)在信道矩阵H的应用之后被添加到信道。添加到NR个Rx天线的AWGNn1、n2、…、nNR可以由以下的公式表示。
[公式9]
根据如上所述的数学模型的接收的信号可以由以下的公式表示。
[公式10]
表示信道条件的信道矩阵H的行数和列数由Tx/Rx天线的数目确定。在信道矩阵H中,行数等于Rx天线NR的数目,并且列数等于Tx天线NT的数目。也就是说,信道矩阵H是NR×NT矩阵。
矩阵的秩被限定为矩阵的单独的行数目和单独的列数目的较小的。因此,矩阵秩不高于行或者列数。信道矩阵H的秩可以限定为由以下的公式表示。
[公式11]
rank(H)≤min(NT,NR)
秩可以限定为当对矩阵执行本征值划分时获得的非零的本征值的数目。类似地,秩可以限定为当对矩阵执行奇异值划分时获得的非零的奇异值的数目。因此,信道矩阵的秩实际上指的是在给定的信道上可发送的最大信息数。
通过UE的测量
有时候,UE需要执行下行链路测量。例如,为了使BS支持UE的切换操作,或者小区间干扰协调,UE需要执行DL测量,并且将DL测量的结果报告给BS。DL测量涉及各种测量方案,诸如,例如,用于无线电链路监测(RLM)的测量、用于信道状态信息(CSI)报告的测量,和无线电资源管理(RRM)测量以及各种测量值。
RLM测量可以包括,例如,DL测量,其在检测无线电链路故障(RLF)和发现新的无线电链路的过程中使用。用于CSI报告的测量可以包括,例如,由UE执行的下行链路信道质量的测量,以选择/计算和报告适宜的秩指标、适宜的预编码矩阵指标和适宜的信道质量指标。RRM测量可以包括,例如,用于确定UE的切换存在或者不存在的测量。
RRM测量可以包括参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、接收的信号强度指标(RSSI)等等的测量。
RSRP被限定为资源元素的功率的线性平均值,在测量的频带宽度中其携带小区特定的RS(CRS)。UE可以通过检测作为映射给特定的资源元素发送的CRS确定RSRP。对于RSRP计算,可以基本上使用用于天线端口0的CRS(R0)。如果UE能够可靠地检测用于天线端口1的CRS(R1),则RSRP可以使用除了R0之外的R1确定。对于小区特定的RS的细节,标准文献(例如,3GPP TS36.211)和以下参考图7给出的描述可以参考。
RSRQ被限定为通过RSRP乘以在测量的频带宽度中资源块的数目N获得的值除以“E-UTRA载波RSSI”获得的值(即,RSRQ=N×RSRP/(E-UTRA载波RSSI))。分子(N×RSRP)和分母(E-UTRA载波RSSI)对于相同的资源块集合被测量。
“E-UTRA载波RSSI”包括对从包含公共信道服务和非服务小区的所有信源接收的信号、邻近信道干扰和热噪声、通过UE仅仅在测量带宽中对在N个资源块上包括用于天线端口0(即,用于天线端口0的CRS)的参考符号的OFDM符号测量的总的接收功率的线性平均值。
“UTRA FDD载波RSSI”被限定为接收的宽带功率,包括从接收机产生的噪声,和由脉冲成形滤波器限定的带宽中的热噪声。
“UTRA TDD载波RSSI”被限定为接收的宽带功率,包括从接收机产生的噪声,和在特定的时隙内由脉冲成形滤波器限定的带宽中的热噪声。
除以上给出的描述以外,标准文献(例如,3GPP TS36.214)可以参考用于DL信道测量的描述,并且为了清楚,DL信道测量的详细说明将被省略。但是,很明显,在该标准中公开的DL信道测量的细节可应用于在如下所述本发明的各种实施例中采用的DL信道测量。
参考信号RS
在下文中,将描述参考信号(RS)。
在无线通信系统中,因为分组经由无线电信道被发送,所以信号可能在传输期间失真。为了允许接收侧正确地接收失真的信号,接收的信号的失真将被使用信道信息校正。为了检测该信道信息,主要地使用发送信号的方法,其中发送侧和接收侧两者知道,并且当经由信道接收该信号时,使用失真度检测信道信息。以上的信号称为导频信号或者参考信号(RS)。
近来,在大多数移动通信系统中,当分组被发送时,与使用一个发射天线和一个接收天线的相关技术不同,已经使用使用多个发射天线和多个接收天线用于改善数据发送/接收效率的方法。在发射机或者接收机使用多个天线,以便提高能力或者改善性能的情形下,为了精确地接收信号,在发射天线和接收天线之间的信道状态将从发射天线的相应的RS获得。
在无线通信系统中,RS可以根据其目的主要地分成两种RS:用于获得信道信息的RS和用于数据解调的RS。前者用于允许用户设备(UE)获得下行链路信道信息,并且因此,将在宽带中发送。因此,甚至在特定的子帧中没有下行链路数据的UE将接收这个RS,并且执行信道测量。此外,这个RS也用于移动管理的测量,诸如切换等等。
后者是当基站(eNB)发送下行链路数据时一起发送的RS。UE可以接收这个RS以便执行信道估计并且解调该数据。这个RS将在数据在其中发送的区域中发送。
在LTE系统中,两个下行链路RS被限定用于单播服务。更具体地说,存在用于与切换和信道状态信息获得有关的测量的公共RS(CRS)和用于数据解调的专用的RS(DRS)。CRS可以称为小区特定的RS,并且DRS可以称为UE特定的RS。
在LTE系统中,DRS仅仅用于数据解调,并且CRS用于信道信息获得和数据解调。
接收侧(UE)可以从CRS估计信道状态,并且将信道质量相关的指标,诸如,CQI(信道质量指标)、PMI(预编码矩阵索引),和/或RI(秩指标)反馈给发送侧(eNB)。做为选择,与信道状态信息(CSI)反馈有关的RS,诸如CQI/PMI/RI可以分别地定义为CSI-RS。CRS也可以称为小区特定的参考信号。CRS被作为小区特定的参考信号在宽带上的每个子帧中发送。此外,CRS被根据eNB的Tx天线的数目基于直至四个天线端口发送。
同时,当需要对PDSCH的数据解调时,DRS可以经由相应的RE发送。UE可以从高层接收示意DRS的存在或者不存在的只是,并且只有在PDSCH被映射时,还接收示意DRS是有效的只是。DRS可以称为UE特定的参考信号,或者解调参考信号(DMRS)。
图7是图示将在传统3GPP LTE系统(例如,版本8)中定义的CRS和DRS映射给资源块(RB)对图案的示意图。作为RS映射给其的单元的下行链路RB对可以以在时间域中的一个子帧×在频率域中的12个子载波为单位表示。也就是说,一个RB对的长度对于正常CP(图7(a))是14个OFDM符号,并且对于扩展的CP(图7(b))是12个OFDM符号。
图7示出在BS支持四个发射天线的系统中在RB对上RS的位置。在图7中,由“0”、“1”、“2”和“3”表示的资源元素(RE)分别地表示用于天线端口索引0、1、2和3的CRS的位置。在图7中,由“D”表示的RE表示DMRS的位置。
在下文中,将详细描述CRS。
CRS用于估计物理天线端的信道,并且作为参考信号分布在整个频带上,其可以由在小区中的所有UE共同地接收。CRS可以用于CSI获得和数据解调的目的。
CRS根据在发送侧(eNB)上的天线配置以各种形式定义。3GPPLTE(例如,版本8)系统支持各种天线配置,并且下行链路信号发送侧(eNB)具有包括单个天线、2个Tx天线和4个Tx天线的三个类型的天线配置。如果eNB发送执行单个天线传输,则用于单个天线端口的参考信号被部署。如果eNB执行2天线传输,则用于两个天线端口的参考信号根据时分复用方案和/或频分复用方案部署。也就是说,用于两个天线端口的参考信号可以通过布置在不同的时间资源和/或不同的频率资源上相互区别。如果eNB执行4天线传输,则用于四个天线端口的参考信号被根据TDM/FDM方案部署。由下行链路信号接收侧(UE)经由CRS估计的信道信息可以用于使用传输技术,诸如,单个天线传输、发射分集、闭环空间复用、开环空间复用,和多用户MIMO(MU-MIMO)发送的数据的解调。
如果支持多个天线,参考信号在根据RS图案指定的RE的位置上经由某个天线端口被发送,并且没有信号在指定用于其它的天线端口的RE的位置上发送。
通过其CRS映射到RB上的规则由以下给出的公式12表示。
[公式12]
k=6m+(v+vshift)mod 6
在公式12中,k是子载波索引,l是符号索引,并且p是天线端口索引。表示一个下行链路时隙的OFDM符号的数目,表示分配给下行链路的RB的数目,ns表示时隙索引,和表示小区ID。“mod”表示模操作。在频率域中参考信号的位置取决于Vshift的值。由于Vshift取决于小区ID,参考信号的位置具有用于相应的小区不同的频率移位值。
特别地,为了经由CRS改善信道估计的性能,在频率域中CRS的位置可以通过移动CRS的位置对于相应的小区不同地设置。例如,每3个子载波放置参考信号,一个小区可以被布置在子载波3k上,并且另一个小区可以被布置在子载波3k+1上。用于一个天线端口的参考信号在频率域中以6个RE(即,6个子载波)的间隔布置,并且在频率域中从用于另一个天线端口的参考信号开始保持间隔3个RE。
另外,功率提升可以应用于CRS。功率提升指的是除在一个OFDM符号的RE之中分配给参考信号的RE以外使用大功率的RE发送参考信号。
在时间域中,参考信号从每个时隙的符号索引(l)0开始以恒定间隔布置。时间间隔根据CP长度不同地限定。对于正常CP,参考信号被放置在时隙的符号索引0和4上。对于扩展的CP,参考信号被放置在时隙的符号索引0和3上。用于直至两个天线端口的参考信号被限定在每个OFDM符号上。因此,在4个Tx天线传输的情况下,用于天线端口0和1的参考信号被放置在时隙的符号索引0和4上(对于扩展的CP是符号索引0和3),并且用于天线端口2和3的参考信号被放置在时隙的符号索引1上。在频率域中用于天线端口2和3的参考信号的位置在第二时隙中转换。
为了支持高于传统的3GPP LTE(例如,版本8)系统的频谱效率,可以设计具有扩展的天线配置的系统(例如,LTE-A系统)。扩展的天线配置例如可以是8个Tx天线配置。在具有这样扩展的天线的系统中,必须支持在常规的天线配置中工作的UE,即,支持后向兼容。因此,需要支持根据常规的天线配置的参考信号图案,并且需要设计用于额外的天线配置新的参考信号图案。在此处,如果用于新的天线端口的CRS被添加到具有常规的天线配置的系统,则参考信号开销急速地增加,从而降低数据传送速率。考虑到这个原因,用于供新的天线端口的CSI测量(CSI-RS)的单独的参考信号可以在LTE-A(高级)系统中引入,LTE-A系统是3GPP LTE的演进。稍后将描述单独的参考信号的CSI-RS。
在下文中,将给出DRS的详细说明。
DRS(或者UE特定的参考信号)是用于数据解调的参考信号。在执行天线传输中用于特定的UE的预编码权重可以应用于参考信号。因此,一旦UE接收到该参考信号,UE可以估计与传输信道等效的信道,其是经由每个发射天线发送的预编码权重的组合。
在传统3GPP LTE系统(例如,版本8)中,支持经由直至4个Tx天线的传输,并且用于秩1波束形成的DRS被限定。用于秩1波束形成的DRS可以由用于天线端口索引5的参考信号表示。DRS被映射到RB上的规则遵循以下给出的公式13和14。公式13应用于正常CP,并且公式14应用于扩展的CP。
[公式13]
[公式14]
在公式13和14中,k是子载波索引,l是符号索引,并且p是天线端口索引。在频率域中表示RB大小,其是子载波的数目。nPRB表示物理RB编号。表示用于相应的PDSCH传输的RB的带宽。ns表示时隙索引,并且表示小区ID。“mod”表示模操作。在频率域中,参考信号的位置取决于Vshift的值。由于Vshift取决于小区ID,参考信号的位置具有用于相应的小区不同的频率移位值。
在LTE-A(高级)系统(其是3GPP LTE的演进)中,考虑高阶MIMO、多小区传输,和高级MU-MIMO。为了支持参考信号和高级传输方案的有效的管理,考虑基于DRS的数据解调。也就是说,与用于在传统的3GPP LTE(例如,版本8)中限定的秩1波束形成的DRS(天线端口索引5)不同,用于两个或更多个层的DRS可以被限定经由增加的天线支持数据传输。
同时,如上所述,在LTE系统中,CRS根据发射天线的数目基于最多四个天线端口被发送。例如,如果基站的发射天线的数目是两个,则用于天线端口0和1的CRS被发送,并且如果发射天线的数目是四个,则用于天线端口0至3的CRS被发送。
图8是示出在LTE系统中在发射天线端口的数目是4的情形下,常规CRS图案的示意图。
参考图8,如果CRS在LTE系统中被映射给时间-频率资源,在频率轴上用于一个天线端口的RS被以在6个RE之中映射给一个RE的状态发送。由于一个RB在频率轴上包括12个RE,一个RB的两个RE用作用于一个天线端口的RE。
在LTE-A系统(LTE系统的演进形式)中,基站(eNB)将设计成在下行链路中能支持最多八个发射天线。因此,也将支持用于最多八个发射天线的RS传输。
更具体地说,由于仅仅用于最多四个天线端口的RS在LTE系统中被限定为下行链路RS,如果eNB在LTE-A系统中具有四至八个下行链路发射天线,用于这些天线的RS将另外限定。用于信道测量的RS和用于数据解调的RS将设计为用于最多八个发射天线端口RS。
在LTE-A系统的设计中一个重要的考虑是后向兼容。也就是说,LTE UE甚至在LTE-A系统中将良好地工作,并且LTE-A系统将支持LTEUE。就RS传输而言,在LTE系统中限定的CRS在其中发送的时间-频率域中,用于最多八个发射天线端口的RS将另外限定。但是,在LTE-A系统中,如果用于最多八个发射天线的RS图案被使用与常规的LTE系统的CRS相同的方法每个子帧添加到整个频带,则开销过度地增加。
因此,在LTE-A系统中新近设计的RS大致被分成两种类型:用于选择MCS、预编码矩阵指标(PMI)等等的信道测量RS(信道状态信息RS(CSI-RS)),和用于经由八个发射天线发送的数据解调的解调RS(DM-RS)。
CSI-RS仅仅用于信道测量,而现有的CRS用于信道测量、切换测量或者数据解调。由于CSI-RS被发送以获得信道状态信息,与CRS不同,CSI-RS不能每个子帧发送。目前地,在LTE-A标准中,CSI-RS可以分配给天线端口15至22,并且CSI-RS设置信息被限定为经由高层信令接收。
此外,对于数据解调,DM-RS被作为DRS发送给在相应的时间-频率域中调度的UE。也就是说,发送给特定的UE的DM-RS仅仅在调度给UE的域中,也就是说,在UE接收数据的时间-频率域中,被发送。
在支持直至八个下行链路Tx天线的LTE-A系统中,如之前描述的,eNB将发送用于所有天线端口的CSI-RS。因为在每个子帧中用于直至八个Tx天线端口的CSI-RS的传输导致过高的开销,CSI-RS将沿着时间轴周期性地发送,因此,降低CSI-RS开销。因此,CSI-RS可以以一个子帧的每个整数倍数,或者以预先确定的传输图案周期地发送。
CSI-RS的CSI-RS传输周期或者图案可以由eNB配置。为了测量CSI-RS,UE将具有对在其服务小区中已经为CSI-RS天线端口设置的CSI-RS配置的了解。CSI-RS配置可以指定携带CSI-RS的下行链路子帧的索引、在下行链路子帧中CSI-RS RE的时间-频率位置、CSI-RS序列(根据预先确定的规则基于时隙号、小区ID、CP长度等等伪随机地产生的用于CSI-RS的序列)等等。也就是说,给定的eNB可以使用多个CSI-RS配置,并且可以将在多个CSI-RS配置之中选择供使用的CSI-RS配置表示给在其小区中的UE。
为了识别用于每个天线端口的CSI-RS,携带用于天线端口的CSI-RS的资源将与携带用于其它的天线端口的CSI-RS的资源正交。如之前参考图8描述的,用于不同的天线端口的CSI-RS可以在使用正交频率资源的FDM中,在使用正交时间资源的TDM中,和/或在使用正交码资源的CDM中复用。
当通知在小区内的UE CSI-RS信息(即,CSI-RS配置)时,eNB将首先将有关用于每个天线端口的CSI-RS映射给其的时间-频率资源的信息(时间信息和频率信息)发送给UE。更加具体地,时间信息可以包括携带CSI-RS的子帧的编号、CSI-RS传输周期、CSI-RS传输子帧偏移,和携带用于天线的CSI-RS RE的OFDM符号的编号。频率信息可以包括在用于天线的CSI-RS RE和沿着频率轴的CSI-RS RE偏移或者移位值之间的频率间隔。
图9图示示例性周期的CSI-RS传输。CSI-RS可以以一个子帧的每个整数倍数(例如,以每5、10、20、40或者80个子帧)周期地发送。
参考图9,一个无线电帧被分成10个子帧,子帧0至子帧9。举例来说,eNB以10ms的CSI-RS传输周期(即,以每10个子帧)和3的CSI-RS传输偏移发送CSI-RS。不同的eNB可以具有不同的CSI-RS传输偏移,使得从多个小区发送的CSI-RS在时间上均匀分布。如果CSI-RS每10ms被发送,则其CSI-RS传输偏移可以是0至9的一个。同样地,如果CSI-RS每5ms被发送,则CSI-RS传输偏移可以是0至4的一个。如果CSI-RS每20ms被发送,则CSI-RS传输偏移可以是0至19的一个。如果CSI-RS每40ms被发送,则CSI-RS传输偏移可以是0至39的一个。如果CSI-RS每80ms被发送,则CSI-RS传输偏移可以是0至79的一个。CSI-RS传输偏移表示eNB以每个预先确定的周期开始CSI-RS传输的子帧。当eNB将CSI-RS传输周期和偏移示意给UE时,UE可以在由CSI-RS传输周期和偏移确定的子帧中从eNB接收CSI-RS。UE可以使用接收的CSI-RS测量信道,并且因此,可以将诸如信道质量指标(CQI)、PMI和/或秩指标(RI)这样的信息报告给eNB。除非CQI、PMI和RI在此处被分别描述,否则它们可以共同地称为CQI(或者CSI)。与CSI-RS相关的以上所述的信息是为在小区内的UE所共用的小区特定的信息。CSI-RS传输周期和偏移可以对于每个单个的CSI-RS配置分别地设置。例如,CSI-RS传输周期和偏移可以对于用于以零传输功率发送的CSI-RS的CSI-RS配置,和用于以非零传输功率发送的CSI-RS的CSI-RS配置分别地设置。
图10图示示例性非周期的CSI-RS传输。参考图10,一个无线电帧被分成10个子帧,子帧0至子帧9。携带CSI-RS的子帧可以以预先确定的图案表示。例如,CSI-RS传输图案可以以10个子帧为单位形成,并且1位指标可以设置用于每个子帧以表示是否子帧携带CSI-RS。在图10图示的情形下,CSI-RS图案表明10个子帧(即,子帧0至子帧9)当中的子帧3和子帧4携带CSI-RS。这样的1位指标可以通过高层信令发送给UE。
各种CSI-RS配置是如上所述可用的。为了允许UE接收可靠地用于信道测量的CSI-RS,eNB需要将CSI-RS配置示意给UE。现在将在下面给出用于将CSI-RS配置示意给UE的本发明的实施例的描述。
CSI-RS配置信令
eNB可以以两种方法将CSI-RS配置示意给UE。
方法之一是eNB通过动态的广播信道(DBCH)信令广播CSI-RS配置信息给UE。
在传统LTE系统中,eNB可以在广播信道(BCH)上将系统信息发送给UE。如果要在BCH上发送的系统信息过多,则eNB可以以与下行链路数据传输相同的方式发送系统信息。值得注意的是,eNB可以通过SI-RNTI,而不是特定的UE ID掩蔽与系统信息有关的PDCCH的CRC。因此,系统信息类似单播数据被在PDSCH上发送。在小区内的所有UE可以使用SI-RNTI解码PDCCH,并且因此,通过解码由PDCCH表示的PDSCH获得系统信息。这个广播方案可以称为与常规的物理BCH(PBCH)信令可区别的DBCH信令。
两个类型的系统信息通常在传统LTE系统中广播。一个类型的系统信息是在PBCH上发送的主信息块(MIB),并且另一个类型的系统信息是在PDSCH区域中与常规单播数据复用的系统信息块(SIB)。由于传统LTE系统限定SIB类型1至SIB类型8(SIB1至SIB8)用于系统信息传输,所以新的SIB类型可以限定用于CSI-RS配置信息,其是未限定为任何常规的SIB类型的新的系统信息。例如,SIB9或者SIB10可以被限定,并且eNB可以通过DBCH信令以SIB9或者SIB10将CSI-RS配置信息发送给在其小区内的UE。
用于示意CSI-RS配置信息的另一个方法是eNB通过无线电资源控制(RRC)信令将CSI-RS配置信息发送给每个UE。也就是说,CSI-RS配置信息可以通过专用的RRC信令提供给在小区内的每个UE。例如,当UE在初始接入或者切换期间建立到eNB连接时,eNB可以通过RRC信令将CSI-RS配置信息发送给UE。做为选择或者另外,eNB可以基于对UE的CSI-RS测量,在请求信道状态反馈的RRC信令消息中将CSI-RS配置信息示意给UE。
先前的用于将要用于CSI反馈的CSI-RS配置和CSI-RS配置示意给UE的两个方法可应用于本发明的实施例。
在下文中,将给出使用如上所述的参考信号,通过特定的UE与用于接收供在UE之间直接通信的同步信息的方法相关的本发明的特定的实施例的描述。
在描述本发明之前,将描述在UE之间的直接通信。图11是在UE之间的直接通信的示意图。
参考图11,UE1 1111和UE2 1113互相执行直接通信。在此处,UE指的是用户的终端。如果网络设备,诸如,BS根据UE间通信方案发送和接收信号,则其可以被认为是一种UE。同时,eNB可以经由适当的控制信号控制用于在UE之间直接通信的时间/频率资源的位置、发射功率等等。但是,如果UE位于eNB的覆盖范围外面,则在UE之间的直接通信可以无需eNB的控制信号执行。在下文中,在UE之间的直接通信将称为设备对设备(D2D)通信。此外,连接用于在UE之间直接通信的链路将称为D2D链路,并且经由其UE与eNB通信的链路将称为eNB-UE(NU)链路。
典型的D2D操作包括D2D发现操作和D2D通信操作。每个UE1111、1113执行D2D发现,以便检测是否与之执行D2D通信的对方UE位于D2D操作可允许的区域中。每个UE 1111、1113发送用于识别UE的唯一的发现信号。如果邻近UE检测该发现信号,则邻近UE可以识别相应的UE是在接近位置。每个UE 1111、1113经由该发现操作检测是否希望执行D2D通信操作的对方UE放置在附近,然后执行D2D通信以发送和接收数据。
D2D发现操作和D2D通信操作可以在执行连接到eNB以在覆盖范围通信内执行通信的UE之间,或者在放置在eNB的覆盖范围外面并且没有连接到eNB的UE之间执行。做为选择,连接到D2D链路的两个UE的至少一个可以放置在eNB的覆盖范围之内,并且另一个可以放置在eNB覆盖范围的覆盖范围外面。是否UE在覆盖范围内存在可以使用由eNB发送的参考信号的接收质量检查。特别地,UE可以测量eNB的参考信号的RSRP或者RSRQ。如果测量RSRP或者RSRQ低于或者等于某个电平,则可以确定UE在覆盖范围外面。
如果放置在eNB的覆盖范围内的UE发送发现信号,则对于发现信号来说以许多的方式与eNB的信号同步是有益的。这是因为如果在覆盖范围内部的几个UE与一个eNB的信号同步,则为发现信号的发送和接收所必需的同步操作可以被省略。在这种情况下,如果特定的UE被允许与连接到邻近小区的UE执行发现操作,则该发现信号的覆盖范围可以加宽。此外,当特定的UE执行切换操作转换服务小区时,如果发现信号的同步不直接与服务小区相关,则发现信号的同步可以保持。
图12是图示根据本发明的一个实施例当UE连接到不同的eNB时,用于接收供在UE之间直接通信的同步信息方法的示意图。在下文中,将参考图12给出特定的UE使用与连接到邻近小区的UE执行发现操作的技术的描述。在这个图中,假设UE1 1111和UE2 1113连接到eNB1 1110,并且UE3 1121和UE4 1123连接到eNB2 1120。
如果在UE3 1121(或者UE4)和eNB之间的信号发送和接收与作为服务小区的eNB21120的信号同步,则UE3需要与作为邻近小区的eNB1 1110同步,以便从接到eNB1 1110的UE1 1111(或者UE2)的接收发现信号或者向其发送发现信号。
即使所有小区的传输时间完美地同步,每个小区的eNB可以相对于特定的UE的位置具有不同的传输迟延。因此,由UE观察的相应的小区的信号接收时间可以不必彼此相同。此外,如果在eNB之间的同步误差很大,或者eNB不同步,则在UE之间的发现操作与不同的小区同步,其可能陷于额外的困难。
为了解决这个问题,本发明提出多个小区被分组为一个D2D发现簇,并且一个代表性小区被每个簇选择。此外,本发明提出在一个簇中的所有UE在与相应的代表性小区同步时执行发现操作。
在下文中,假设eNB1 1110和eNB2 1120形成一个D2D发现簇,并且eNB1被选择为代表性小区。UE1 1111在与eNB1 1110同步时发送发现信号,eNB1 1110是UE的服务小区和簇的代表性小区。连接到eNB2的UE3 1121和UE4 1123识别该发现信号与eNB1同步。UE3 1121和UE4 1123首先获得eNB1的同步,然后基于获得的同步,检测由UE1 1121发送的发现信号。
D2D发现簇可以具有仅仅一个小区。在这种情况下,该小区被选择为该簇的代表性小区。当在小区之间的D2D发现操作是不必要时可以使用这个配置。做为选择,即使代表性小区没有分别地配置,当在小区之间的D2D发现是可允许时,可以使用该配置。例如,当非常精确地执行在小区之间同步时,可以使用该配置,并且由于小区半径是很小的,从几个小区发送的信号几乎同时接收。
在D2D簇中有关代表性小区的信息可以作为用于D2D操作的参数的一部分从eNB传送给UE。例如,eNB可以指定属于相同簇的小区列表和簇的代表性小区ID(标识)。如果特定的UE连接到包括在小区列表中的一个小区,则UE可以将该发现信号与小区属于的簇的代表性小区的信号同步。
发现信号可以与代表性小区发送的同步信号(或者同步参考信号)同步。该同步信号例如可以是3GPP LTE系统的主同步信号或者辅同步信号。或者,该同步信号可以是代表性小区的小区特定的参考信号(CRS)。如果代表性小区的CRS被用作同步信号,则可以精确地执行同步操作。例如,可以执行验证同步信号位置的操作。有时,该同步信号可以是跟踪参考信号,其在一个子帧中在与CRS相同的位置上被发送,并且用于执行供相应的小区的时间/频率跟踪。如果代表性小区使用新载波类型(NCT),则与传统载波类型相比,其显著地降低CRS传输的发生数目,该跟踪参考信号可以用作同步信号。除了前面提到的信号之外,可以使用信号,诸如,信道状态信息-参考信号(CSI-RS)。做为选择,单独的信号格式可以设计用于发现信号的同步。
处于空闲模式之中的UE可以操作如下。没有与服务小区通信业务的UE无需连接到特定的小区以空闲模式操作。即使UE处于空闲模式之中,有时候,UE需要执行D2D发现操作。因此,为了应用本发明,需要形成确定D2D簇的代表性小区基础的参考。首先,处于空闲模式之中的UE选择起参考作用的小区。其后,UE可以同步D2D发现信号与参考小区属于其的D2D簇的代表性小区。在此处,该参考可以是具有最高的RSRP或者RSRQ的小区,其中CRS的信号质量最好。做为选择,该参考可以是处于空闲模式之中的UE从其中接收寻呼信号的小区。做为选择,处于空闲模式之中的UE可以从网络接收D2D簇代表性小区的列表,将具有最高的RSRP或者RSRQ的小区选择为在D2D簇代表性小区之中提供最好的信号质量的小区,并且将其与该发现信号同步。
为了与在覆盖范围外的UE执行D2D发现操作,在覆盖范围内部的特定的UE可以将有关特定的UE已经获得的D2D子帧的边界信息发送给在覆盖范围外的UE。例如,特定的UE在基于获得的簇子帧的边界确定的特定的时间上发送预先确定的信号。在覆盖范围外的UE可以检测该信号,从而获得D2D发现信号的同步。如果多个D2D发现簇彼此重叠,则服务小区可以另外指定边界信息将发送给其的簇。在此处,UE是在覆盖范围外指的是发送UE是在覆盖范围外。做为选择,UE是在覆盖范围外可以指的是发送UE是在覆盖范围内部,并且接收UE是在覆盖范围外。当然,使用相同的原理,特定的UE可以与是在同步参考小区的覆盖范围外的UE执行D2D通信,并且连接到另一个小区。
图13图示在代表性小区与服务小区相同的情形下,在时间域中的资源。在下文中,将参考图13给出在时间域中资源的描述,即,当代表性小区和服务小区彼此相同时,特定的UE用于D2D发现操作。
参考图13,在其上用于D2D发现操作的子帧开始的时间是通过将预先确定的偏移应用于在其上检测到D2D发现簇的代表性小区的子帧边界的时间获得的时间。此后,D2D发现簇的代表性小区的子帧边界将称为簇子帧1307的边界。在图13中,假设应用偏移值,则使得D2D发现子帧1309的边界被放置在簇子帧1307的边界之前。做为选择,可以应用偏移值,使得D2D发现子帧1309的边界被放置在簇子帧1307的边界之后。做为选择,偏移值可以是0。在这种情况下,在其上检测到簇子帧1307的边界的时间可以是D2D发现子帧1309的边界。
从UE开始的上行链路无线电帧的传输可以在关于UE的相应的下行链路无线电帧的起点之前某个时间开始。对应于某个时间的值被称为时序提前值。通常,UE通过将某个时序提前应用于上行链路传输信号操作。因此,上行链路子帧的边界放在相应的下行链路子帧的边界之前。
在UE在上行链路子帧m-1 1301中发送信号给服务小区之后,UE转换收发电路的操作,以便在子帧m 1309中执行D2D发现。经由如上所述的一系列的操作,UE确定在子帧m中D2D发现子帧1309的边界,并且执行D2D发现操作。其后,UE转换收发电路的操作以在子帧m+1(1305)中执行信号传输给eNB。在此处,假设转换收发电路的操作花费对应于半个OFDM符号的时间。
由于转换收发电路的操作花费的时间和用于对服务小区的信号传输的时序提前,子帧的某些OFDM符号不可以用于D2D发现。参考图13,OFDM符号#13是子帧m 1309的最后的符号,其不可以用于D2D发现。
图14图示在代表性小区不同于服务小区的情形下在时间域中的资源。参考图14,簇子帧的边界不同于服务小区的子帧的边界。
在这种情况下,如图14图示,即使UE操作,并且时序提前值被应用于上行链路传输信号,在子帧m 1409中可用于D2D发现操作的OFDM符号的数目降低。参考图14,子帧m 1409的OFDM符号#0至#9可用于D2D发现操作,并且这个子帧的其它的OFDM符号#10至#13被使用解决在簇代表性小区和服务小区的子帧之间的边界调整不当。
如果代表性小区不同于如上所述的服务小区,则用于D2D发现信号的发送和接收的子帧的不同数目的可用的OFDM符号可以被配置支持发现信号与代表性小区的同步。例如,多个配置可以限定用于D2D发现子帧,并且用于D2D发现信号的发送和接收的不同数目的可用的OFDM符号可以设置用于每个配置。eNB可以将要使用的D2D发现子帧配置示意给UE。如果多个D2D簇彼此重叠,则eNB可以将与代表性小区信号同步的特定的D2D发现子帧配置示意给UE。D2D发现子帧配置可以作为参数配置信息的一部分发送给UE。在其上每个D2D发现子帧出现的时间位置(例如,周期或者偏移值)也可以作为参数配置信息的一部分传送给UE。
图15图示在代表性小区和服务小区之间存在很大误差的情形下在时间域中的资源。参考图15,与图14的情形相比,在服务小区的簇子帧的边界和子帧的边界之间存在很大差异。为了使用子帧m+1 1505用于与服务小区的信号发送和接收,在子帧m 1509中可用于D2D发现操作的OFDM符号的数目被进一步降低。参考图15,仅仅子帧m 1509的OFDM符号#0至#2可用于D2D发现操作,并且该子帧的其它的OFDM符号#3至#13被使用解决在簇代表性小区和服务小区之间的边界调整不当。
在这种情况下,优选地,UE无需发送信号给服务小区,在子帧m+11505中执行D2D发现操作。因此,可用于D2D发现操作的符号的数目可以提高。
当子帧的一部分被如上所述分配给D2D操作时,在UE和eNB之间的信号发送和接收可以被限制。在图13和14图示的实施例中,子帧m的使用被限制。在图15图示的实施例中,子帧m和子帧m+1的使用被限制。如果eNB能够识别在相应的UE的子帧之间的时间关系,则eNB可以适当地使用在其中执行D2D发现操作的子帧和邻近子帧。但是,对于特定的服务小区识别在由特定的UE观察的服务小区的簇子帧边界和子帧边界之间的差异可能是困难的。因此,为了确保安全操作,每个小区可以发出一个命令给执行D2D发现操作的UE,以便不使用在其中执行D2D发现操作的子帧和与服务小区执行通信的邻近子帧。尤其是,没有用于与服务小区通信的子帧可以限于D2D通信通常存在的上行链路子帧。在此处,邻近在其中执行D2D发现操作的子帧的子帧可以指的是在执行D2D发现操作的子帧之前、之后或者前和后的某些子帧。
每个小区可以将是否与服务小区的通信限制在邻近特定的D2D发现子帧的子帧中示意给UE,并且如果存在限制,则还示意被限制的子帧。此外,如果UE识别与服务小区的通信被限制在特定的子帧中,则UE可以执行适当的操作以解决这个限制。例如,如果用于从服务小区发送的PDSCH的HARQ-ACK(混合自动重复请求-确认)需要在具有前面提到的限制的子帧中发送,则UE可以操作以将HARQ-ACK移动到受该限制影响的另一个子帧。
为了帮助服务小区如上操作,UE可以测量当前的D2D发现信号的同步状态,并且将其报告给服务小区。例如,UE可以测量和报告在服务小区的下行链路子帧的边界和簇下行链路子帧的边界之间的差异。在此处,簇下行链路子帧指的是簇代表性小区的下行链路子帧。特别地,在无线电帧、子帧或者OFDM符号方面的差异可以被测量和报告。做为选择,UE可以报告在用于传输给服务小区的上行链路子帧的边界和D2D发现子帧的边界之间的差异。规则可以被建立,使得当在两个子帧的边界之间的调整不当程度高于或者等于某个水平时,执行这样的状态报告。例如,如果在两个子帧的边界之间的调整不当的程度高于或者等于某个水平,则在用于传输给服务小区的上行链路子帧的边界和D2D发现子帧的边界之间的差异可以以无线电帧、子帧或者OFDM符号为单位报告。有时候,UE可以简单地报告有关是否在两个子帧边界之间的调整不当的程度高于或者等于某个水平。
为了确保更加精确的同步,服务小区可以提供有关D2D发现簇的代表性小区ID的附加信息。尤其是,如果使用CRS获得D2D发现信号的同步,则服务小区可以提供作为附加信息的有关代表性小区的CRS信息。该附加信息可以包括用于代表性小区CRS的天线端口的数目、代表性小区CRS在其中发送的子帧的位置、表示是否代表性小区使用通过其CRS传输在时间/频率域方面降低的NCT的信息,或者有关代表性小区的CRS在其中发送的带宽的信息。有关代表性小区的CRS在其中发送的子帧位置的信息例如可以是代表性小区的MBSFN(多播广播单频网络)子帧配置信息。附加信息的一部分可以被省略以便降低信号开销。如果该信息的一部分被省略,则省略的部分可以被认为是与服务小区的参数相同。如果信号,诸如,周期性地发送的CSI-RS用作供同步的参考信号,服务小区可以传送有关传输周期或者该信号的时间位置的信息。
如果D2D簇的代表性小区是邻近小区,不是服务小区,则信号质量可能不和服务小区一样。在这种情况下,邻近小区可以降低在特定的资源上的发射功率,使得UE更加精确地接收D2D簇的代表性小区信号。降低在特定的资源上的发射功率的操作包括在资源上设置发射功率为0的静音操作。因此,邻近小区应用占据特定的资源的D2D簇的代表性小区信号的干扰可以降低。
图16是图示控制在特定的资源上发射功率去执行同步的邻近小区操作的示意图。
参考图16,eNB2 1620起用于UE 1630的服务小区eNB的作用,并且eNB1 1610起代表性小区eNB的作用。假设UE 1630与从eNB1 1610发送的信号同步以执行发现操作。在此处,为了保护在第二时间段中D2D簇的代表性小区信号,eNB2 1620在对应于第二时间段的资源上不发送信号。
为此,代表性小区可以经由小区间回程链路示意用于供发现信号的同步参考信号传输的时间/频率资源。另外,小区可以示意将执行低功率传输以便保护用于发现信号的同步参考信号的时间/频率区域。在图16图示的实施例中,UE 1630优选地仅仅在作为eNB21620的非传输范围的第二时间段中检测eNB1 1610的信号以同步发现信号,因此,避免与eNB2 1620干扰。
每个服务小区可以将有关特定的资源的信息传送给UE 1630。有关特定的资源的信息表示在其上保护同步参考信号的资源。一旦获得该信息,UE 1630可以检测仅仅在表示的资源上用于发现信号同步的参考信号。因此,经历许多干扰的信号分量可以预先除去。如果UE没有接收该信息,则UE可以仅仅使用特定的资源的信号分量检测用作供发现信号同步的参考的信号。当同步参考信号被周期性地发送时,这个操作是有效的。例如,如果D2D发现簇的代表性小区的同步信号用作该参考信号,代表性小区的同步信号没有在整个时间区域中检测,而是,可以仅仅在执行D2D发现操作的子帧之前的时间区域的一部分中检测。在这种情况下,其它的小区可以在时间区域的该部分中降低代表性小区的同步信号在其中发送的频率区域的发射功率。
如果CRS用作供发现信号的同步参考信号,则可以执行类似的操作。在这种情况下,UE可以从服务小区接收有关特定的频率区域的信息。有关特定的频率区域的信息表示在其中保护代表性小区的CRS的频率区域。因此,UE可以识别是否其优选地尝试仅仅在某个频率区域中检测代表性小区的CRS。
在下文中,将给出在频率域中同步操作的描述。
如上所述的D2D簇的代表性小区的信号可以用作不仅用于时间同步,而且用于频率同步的参考信号。每个UE基于由其振荡器产生的信号执行频率域处理,诸如,调制/解调。在这种情况下,由每个UE的振荡器产生的信号可能具有某个误差。因此,如果UE发送发现信号而没有用于频率同步的单独的参考,该信号可能与由于UE的振荡器中的误差扰乱的频率同步复用,并且因此,发送和接收性能被恶化。为了解决这个问题,如上所述的D2D簇的代表性小区的信号可以用作供发现信号的频率同步的参考。因此,从相应的UE发送的发现信号被在频率域中同步,并且因此,发送和接收性能可以改善。也就是说,发送发现信号的UE从D2D簇的代表性小区的信号识别参考频率,并且基于该识别产生和发送发现信号。
产生的发现信号可以不是UE发送给服务小区的频率同步的信号。尤其是,如果服务小区不是D2D簇的代表性小区,则产生的发现信号可以不是与UE的其他信号频率同步的。因此,如果用于特定的UE的服务小区不同于D2D簇的代表性小区,则UE可能不能够同时发送D2D信号和用于服务小区eNB的信号。在这种情况下,两个信号的仅仅一个可以根据预先建立的规则发送。例如,如果到eNB的信号包含重要的控制信息,则该信号可以首先发送给eNB。做为选择,为了防止多个UE尝试检测的缺少信号接收D2D信号,D2D信号可以被首先发送。但是,如果在发送给服务小区eNB的信号的频率和D2D信号的频率之间的误差小于或者等于某个水平,则对于UE同时发送两个信号是可允许的。
为了确保如上的操作,UE可以测量在服务小区信号的频率和D2D簇的代表性小区信号的频率之间的误差,并且将其报告给服务小区eNB。eNB可以参考该报告执行调度。如果到每个eNB的信号和D2D信号被根据服务小区信号和D2D簇的代表性小区信号发送,则该报告可以被简化为是否两个类型的信号是同时可发送的。例如,该报告可以被简化为1位信息的传输。
同时,接收发现信号的UE可以接收从相应的UE发送的发现信号,假设该发现信号与用作供与在某个误差内的频率偏移频率同步的参考的D2D簇代表性小区的特定的信号同步。也就是说,就多普勒频移和/或多普勒散布而言,准共置可以被假定。
UE需要在eNB的覆盖范围外面执行D2D通信,D2D簇的代表性小区的信号不能适当地接收。因此,用于时间/频率同步的参考需要分别地建立。在这种情况下,在eNB覆盖范围内的UE可以从eNB接收命令,并且将预先确定的参考信号发送给在eNB覆盖范围外面的UE。做为选择,在eNB覆盖范围外面的UE可以根据预先建立的规则发送预先确定的参考信号。在eNB覆盖范围的外面,并且从在eNB覆盖范围内或者外面的UE接收参考信号的UE可以使用参考小区作为用于时间/频率同步的参考。当然,使用相同的原理,UE可以与在用于UE的eNB的覆盖范围外面的另一个UE执行D2D通信,并且连接到另一个小区。
当UE执行UE直接发送和接收数据的D2D通信时,也可以应用使用D2D簇的代表性小区的信号作为如上所述用于时间和/或频率同步的参考。但是,甚至当给出大的时序提前时,或者在小区之间的同步没有如在图14或者15中图示的获得,如果信号的接收时间用作用于D2D的参考,则许多的OFDM符号可能被浪费,并且D2D通信的性能可能恶化。在这种情况下,执行D2D通信的UE可以分别地配置时间同步,即,子帧边界,和频率同步。利用尽可能同样多的符号用于D2D通信的时间同步,即,子帧边界可以从用于与eNB通信的下行链路子帧或者上行链路子帧的同步推导出。为了防止由在UE之间的频率异步产生的性能退化,D2D簇的代表性小区的信号可以用作供频率同步的参考。类似地,执行D2D发现操作的UE可以使用服务小区的信号作为用于时间同步的参考,同时使用D2D簇的代表性小区的信号作为用于频率同步的参考。当小区没有充分地同步,许多的OFDM符号不能使用时,这个方法是有用的。该操作可以反向地应用于频率和时间。
当特定的UE确定特定的小区作为用于同步的参考,以便执行D2D操作时,多个小区可以作为参考使用。仍然在这种情况下,如上所述的本发明的原理可以应用。
UE将在其上执行D2D操作的一系列的时间频率资源,或者由UE发送和接收的D2D信号的属性划分为多个组。UE可以将用于每个划分的组的不同的小区作为用于时间和/或频率同步的参考使用。在这种情况下,连接到多个小区发送和接收信号的UE可以根据执行D2D操作的情形使用恰当的小区作为用于同步的参考。
图17是图示根据本发明的一个实施例,用于接收供在UE之间直接通信的同步信息的方法的示意图。
在下文中,参考图17将给出用于将所有时间/频率资源划分为多个组,并且使用多个小区作为供同步的参考方法的描述。
首先,UE将用于D2D操作的所有时间/频率资源划分为多个组。其后,用作供时间和/或频率同步的参考的小区的ID可以在每个分区中分别地指定。优化的小区用作在每个分区中供同步的参考,这个操作是有益的。优化的小区例如可以是作为用于在分区中发送信号的多个UE的服务小区工作的小区。
参考图17,UE利用不同的小区作为在时间/频率资源分区#1 1711和资源分区#21712中用于同步的参考。在此处,利用特定的小区作为特定的资源分区中用于同步的参考指的是考虑到接收D2D信号的接收UE,以下的情形可以被假定。在相应的资源区域中发送D2D信号的发送UE是在某个误差范围内与相应的小区的时间/频率同步,因此,基于从小区获得的时间/频率同步接收UE可以假定从相应的发送UE发送的D2D信号是在某个误差范围内接收。
eNB可以将有关D2D资源分区的信息和有关在每个资源分区和用作供同步的参考的小区ID之间操作连接的信息的至少一个作为配置信息的一部分预先传送给UE。
类似地,所有D2D信号可以被分成多个组。
图18是图示根据本发明的另一个实施例,用于接收供在UE之间直接通信的同步信息的方法的示意图。在下文中,参考图18将给出划分所有D2D信号为多个组,并且分别地指定用作供每个组的时间和/或频率同步的参考的小区的ID的描述。
UE可以根据需要预先确定接收D2D信号的参数的配置将所有D2D信号划分为多个组,并且分别指定用作供每个组的时间和/或频率同步的参考的小区ID。需要预先确定接收D2D信号的参数例如可以包括解调参考信号(DM-RS)序列或者前导序列。在此处,解调参考信号是用作供信息解调的参考的信号,诸如,发送D2D信号的UE的ID。解调参考信号表示其位置和传输属性预先为接收UE所知的信号。在下文中,解调参考信号将称为DM-RS,并且解调参考信号序列将称为DM-RS序列。前导是发送以便允许接收UE在包含各种类型信息的D2D信号被发送之前获得精确的时间/频率同步的信号。前导表示其位置和传输属性预先为接收UE所知的信号。
如果UE接收具有特定的参数的发现信号,则UE需要操作以利用从可操作地与参数相连接的同步参考小区获得的时间/频率同步。做为选择,不同的同步参考小区可以分配给D2D发现信号和D2D通信信号。当接收到D2D发现信号时,从可操作地与D2D发现信号相连接的小区获得的时间/频率同步可以被利用。做为选择,当接收到D2D通信信号时,可以利用从可操作地与D2D发现信号相连接的小区获得的时间/频率同步。
参考图18,UE 1801利用用于前导序列#1 1811和前导序列#2(1812)的不同的小区作为同步参考。在此处,利用特定的小区作为用于特定的D2D信号的同步参考指的是接收D2D的接收UE可以假定以下的情形。由于在相应的资源区域中发送D2D信号的发送UE与具有某个误差范围的相应的小区时间/频率同步,所以接收UE可以基于从小区获得的时间/频率同步和/或可操作地连接的前导假定从发送UE发送的D2D信号在某个误差范围内接收。
在图18中,假设用作同步参考的小区根据用于产生放置在D2D信号的开始部分上的前导的序列的种子值被不同地配置。还假设前导序列#1 1811可操作地与小区ID#1相连接,并且前导序列#2 1812可操作地与小区ID#2相连接。
当接收UE检测使用前导序列#1 1811的D2D信号时,接收UE基于从小区ID#1获得的时间/频率同步尝试信号检测。当接收UE检测使用前导序列#2 1812的D2D信号时,接收UE基于从小区ID#2获得的时间/频率同步尝试信号检测。
类似地,当发送UE发送使用前导序列#1 1811的D2D信号时,发送UE基于从小区ID#1获得的时间/频率同步发送该信号。当发送UE发送使用前导序列#2 1812的D2D信号时,发送UE基于从小区ID#2获得的时间/频率同步发送该信号。
如果接收UE能够简单地通过直接检测前导获得同步,则从每个参考小区获得同步的操作可以被省略。在这种情况下,如果接收UE检测使用前导序列#1 1811的D2D信号,则接收UE基于从前导序列#1 1811获得的时间/频率同步,立即尝试有关可操作地连接的频率/时间资源的信号检测。如果接收UE检测使用前导序列#2 1812的D2D信号,则接收UE基于从前导序列#2 1812获得的时间/频率同步,立即尝试有关可操作地连接的频率/时间资源的信号检测。
此外,如上所述的操作可以经由在DM-RS序列和同步参考小区ID之间的操作连接的关系执行。如果接收UE检测使用DM-RS序列#1的D2D信号,则接收UE基于从小区ID#1获得的时间/频率同步尝试信号检测。如果接收UE检测使用DM-RS序列#2的D2D信号,则接收UE基于从小区ID#2获得的时间/频率同步尝试信号检测。类似地,如果发送UE发送使用DM-RS序列#1的D2D信号,则发送UE基于从小区ID#1获得的时间/频率同步发送该信号。如果发送UE发送使用DM-RS序列#2的D2D信号,则发送UE基于从小区ID#2获得的时间/频率同步发送该信号。
此外,用作同步参考的相同的小区ID可以使用以执行发现消息的加扰。
eNB可以将有关在D2D信号参数和用作供同步的参考的同步参考小区ID之间的操作连接的明确信息作为D2D相关的配置信息的一部分预先传送给UE。也就是说,当D2D信号使用某个参数被发送和接收时,eNB可以将用作供同步的参考的小区ID示意给UE。做为选择,可以使用隐含的操作连接关系。在这种情况下,如果特定的信号参数从特定的小区ID产生,则具有相同的ID的小区可以用作供时间/频率同步的参考。
同时,在图18中示出的前导意图用于在发送实体和接收实体之间的时间/频率同步。因此,已经用于在传统eNB和传统UE之间同步的PSS(主同步信号)和/或SSS(辅同步信号)可以作为这样的前导的特定的形式发送。此外,PSS和/或SSS可以根据D2D情形转变为适当的形式。例如,由于所期望的是从UE的传输将使用比从eNB的传输更低的发射功率,所以PSS和/或SSS可以重复地发送若干次去传送足够的能量。
在图17和18中图示的实施例可以组合。在特定的D2D时间/频率区域中,可操作地与特定的小区ID相连接的特定的小区可以作为用于时间/频率同步的参考使用。同时,D2D信号的DM-RS序列或者前导序列可以明确地或者隐含地使用可操作地与特定的小区ID相连接的参数产生。
当UE在覆盖范围外面执行D2D操作时,也可以应用如上所述的原理。当在覆盖范围外面执行D2D操作时,特定的UE可以发送时间/频率同步参考信号,并且接收该信号的UE基于该同步参考信号执行同步。某些UE可以检测两个或更多个同步参考信号。此外,如果D2D信号在不同的时间/频率资源上被发送和接收,则可以使用从可操作地与每个资源相连接的同步参考信号获得的时间/频率同步。做为选择,如果不同的参数的D2D信号被发送和接收,则可以使用从可操作地与每个参数相连接的同步参考信号获得的时间/频率同步。尤其是,如在图18中图示的,如果存在在用于产生D2D信号的DM-RS序列或者前导序列的小区ID,和用于产生从特定的UE发送的同步参考信号的序列的小区ID之间操作连接的隐含的关系,并且D2D信号使用特定的ID被发送和接收,则UE可以使用从基于ID产生的同步参考信号获得的时间/频率同步。在这种情况下,从不同的UE发送的同步参考信号的序列需要彼此不同。每个发送UE可以在某个区域内随机地选择在发送同步参考信号时要使用的ID。
可能存在特定的UE与在覆盖范围内部的UE和在覆盖范围外面的另一个UE同时执行D2D操作的情形。在这种情况下,用作供时间/频率同步的参考的小区的ID可以基于D2D资源分区或者D2D信号的属性确定。做为选择,特定的UE传输参考信号的属性可以对于D2D资源分区或者D2D信号的相应的属性确定。例如,特定的UE可以使用特定的小区作为同步参考,在D2D资源分区1中与在覆盖范围内部的UE执行D2D操作。此外,特定的UE可以使用参考信号作为用于同步的参考,在资源分区2中与在覆盖范围外面的UE执行D2D操作。
在执行前面提到的操作中,一个或多个同步参考小区可以在一个时间/频率资源分区中用作供时间和/或频率同步的参考。也就是说,当一系列的小区在时间或者频率域中较好地同步时,小区的任何一个可以被配置为用于同步的参考。如果小区在时间或者频率域中较好地同步,即使小区的任何一个用作供同步的参考,可能没有用于D2D操作的同步的问题。
图19是图示根据本发明的一个实施例,当存在多个同步参考小区时,用于接收供在UE之间直接通信的同步信息方法的示意图。
eNB在每个时间/频率资源分区中作为候选同步参考小区发送较好地同步的一个或多个小区的列表。接收小区列表的UE可以选择在包括在列表的小区之中最适宜的小区,执行同步。最适宜的小区例如可以是具有最高的接收功率的小区或者具有最好的接收质量的小区。做为选择,接收小区列表的UE可以获得在列表中每个小区的同步,然后以获得的同步的平均值执行用于D2D操作的同步。
例如,如果eNB通过用于在不同的方向形成多个传输波束的扇区化生成多个扇区,并且在每个扇区形成单独的小区,则较好的同步小区可以是通过相同的eNB产生的小区。这是因为小区具有用于时间/频率同步相同的源。
参考图19,eNB1 1910形成小区1、小区2和小区3,eNB2 1920形成小区4、小区5和小区6,eNB3 1930形成小区7、小区8和小区9。在这种情况下,网络将用于一个时间/频率资源分区的同步参考小区列表发送给UE。同步参考小区的列表包括由一个eNB形成的三个小区。
接收同步参考小区列表的UE可以使用该列表执行用于D2D操作的同步。特别地,接收同步参考小区列表的UE可以选择在包括在该列表的小区之中最适宜的小区,执行同步。做为选择,接收小区列表小区的UE可以与包括在该列表中的小区同步,然后获得同步的平均值以获得用于D2D操作的同步。
即使小区通过不同的eNB产生,如果基于小区间同步执行网络操作,则可以获得充分的同步。在这种情况下,由不同的eNB产生的小区也可以包括在相同的时间/频率资源分区的同步参考小区的列表中。基于小区间同步的网络操作例如可以是基本上执行时间同步的TDD(时分双工)操作,或者在时间资源上协调干扰的干扰协调操作。
如果用于时间/频率同步的前导或者用于D2D信号解调的DM-RS如在图17或者18中图示的在用于D2D信号的发送和接收的资源分区中被发送,则多个同步参考小区可以在如上所述的一个资源分区中应用。在这种情况下,如果前导的序列或者DM-RS使用隐含的操作连接关系确定,则使用哪个小区ID可能是不清楚的。
在这种情况下,一个小区可以是根据预先建立的规则从同步参考小区中选择出来的,并且利用用于产生前导的序列或者DM-RS相同的小区ID。可以基于是否小区是在指定的同步参考小区之中首先指定的小区,或者是否小区具有在指定为同步参考小区的小区ID之中最小的或者最大的小区ID,来选择小区。
如果使用明确的eNB信号,则eNB可以在特定的资源分区中指定要使用产生前导或者DM-RS的小区ID。做为选择,eNB可以指定用于信号产生的种子值。
如果多个同步参考小区被指定,则eNB可以经由额外的信令另外指定至少一个小区的ID,使得ID在产生前导或者DM-RS中使用。优选地,eNB可以另外指定同步参考小区的至少一个的ID。当仅仅指定一个同步参考小区时,同步参考小区的ID可以被自动地指定,使得ID在产生前导或者DM-RS中使用。也就是说,当仅仅指定一个同步参考小区时,由eNB指定产生前导或者DM-RS的小区ID可以被认为是给定的资源分区的同步参考小区。
即使在时间/频率资源上用于D2D同步的前导如在图18中图示被发送,有时候,检测前导的过程可以被省略。如果特定的UE能够通过直接测量具有在产生前导中使用的小区ID的同步参考小区执行同步,UE可以立即参与D2D信号的发送和接收的过程,省略检测前导的过程。例如,如果足够的信号质量从同步参考小区中获得,检测前导的过程可以被省略。另外,UE可以首先检测以指定的小区ID产生的前导,然后基于通过检测前导获得的同步,接收D2D信号。
在下文中,将给出通过就与服务小区的关系而言解释实施例,每个UE应用如上所述的本发明的实施例情形的描述。
当存在如图17所示的多个D2D簇时,存在分配给每个D2D簇的多个发现资源分区。在此处,发现资源分区指的是分配给D2D发现操作的资源分区。在这种情况下,服务小区发送有关代表性小区ID的信息,以便将使用每个发现资源分区的D2D簇的代表性小区的ID示意给属于其的UE。接收有关代表性小区ID信息的UE推导出在发现资源分区中发送的D2D信号的参数。例如,用于产生发现消息的DM-RS序列、前导序列或者加扰序列的参数从代表性小区ID推导出。在这种意义上讲,在每个发现资源分区中的代表性小区ID可以称为信号产生种子值。当然,所有相关参数可以从代表性小区ID(或者一个信号产生种子值)推导出,或者应用于产生每个参数的代表性小区ID(或者信号产生种子值)可以分别地指定。
同时,服务小区可以将有关在每个发现资源分区中用作供时间/频率同步的参考的小区列表的信息发送给UE,以便通知UE该列表。在这种情况下,如果服务小区包括在该列表中,则UE可以基于在资源分区中服务小区的时间/频率同步,发送和接收从相应的资源分区的代表性小区ID产生的D2D信号。在此处,用作对于时间/频率同步的参考的小区的列表可以被简化。服务小区可以将是否该服务小区可以在资源分区中作为用于时间/频率同步的参考使用简单地示意给UE。
当服务小区发送小区的列表时,由服务小区发送的时间/频率同步参考小区列表的信令对于特定的发现资源分区可以采取{代表性小区的ID,是否服务小区包括在时间/频率同步参考小区列表中,可以是用于时间/频率同步参考的小区,而不是服务小区的小区ID的列表}的形式。代表性小区的ID可以以用于产生各种信号的种子值替换。表示是否时间/频率同步参考小区列表包括服务小区的项可以以表示是否获得与服务小区同步的项替换。以最后的项的形式包括的小区ID的列表可以被省略以减少信令开销。
如果服务小区被指定为在资源分区中不用作供同步参考的小区,则UE可以经由单独的信号获得同步。如果服务小区示意在资源分区中用作供同步参考的小区的ID,则UE可以获得与具有该ID的小区的同步。如果服务小区没有示意用作供同步参考的小区的ID,则UE可以使用代表性小区ID直接检测DM-RS序列或者前导序列,并且使用该检测的序列获得同步。
如果在特定的资源分区中用作供同步参考的小区不包括服务小区,则这指的是服务小区在分区中不与用作参考的小区同步。在这种情况下,服务小区可以在获得与不与服务小区同步的参考小区的同步中帮助UE。特别地,服务小区可以将有关在同步参考小区和服务小区之间的同步的误差程度的信息另外发送给UE。接收该信息的UE检索同步参考小区,其不是在误差的程度内的服务小区,从而减小用于同步搜索花费的时间和电池消耗。
如上所述的本发明的原理也可以应用于在不同的小区中放置的UE发送和接收用户业务的D2D通信。
图20是图示根据本发明的一个实施例的通信设备配置的方框图。
参考图20,无线通信系统包括BS 2010和UE 2020。
在下行链路上,发射机可以是BS 2010的一部分,并且接收机可以是UE 2020的一部分。在上行链路上,发射机可以是UE 2020的一部分,并且接收机可以是BS 2010的一部分。BS 2010包括处理器2012、存储器2014和射频(RF)单元2016。该处理器2012可以被配置实现根据本发明提出的过程和/或方法。该存储器2014连接到处理器2012以存储与处理器2012的操作相关的各种类型的信息。该RF单元2016连接到处理器2012,并且被配置发送和/或接收无线电信号。UE 2020包括处理器2022、存储器2024和RF单元2026。该处理器2022可以被配置实现根据本发明提出的过程和/或方法。该存储器2024连接到处理器2022以存储与处理器2022的操作相关的各种类型的信息。该RF单元2026连接到处理器2022,并且被配置发送和/或接收无线电信号。BS 2010和/或UE 2020可以具有单个天线或者多个天线。
在如上所述的实施例中,本发明的元素和特点以预先确定的形式组合。除非另外明确地提及,该元素或者特点将考虑是可选择的。该元素或者特点的每个可以无需与其他的元素或者特点结合实现。此外,某些元素和/或特点可以组合以配置本发明的实施例。在本发明的实施例中论述的操作顺序可以改变。一个实施例的某些元素或者特点也可以包括在另一个实施例中,或者可以以来自另一个实施例的相应的元素或者特点替换。很明显,在其间的从属关系没有明确地引用的某些权利要求可以被组合以配置一个实施例,或者可以在本申请申请之后经由修改被合并为新的权利要求。
在本说明书中,许多的实施例已经集中在UE和BS之间的发送和接收描述。发送和接收关系可以以相同的/类似的方式被扩展为在UE和中继站之间,或者在BS和中继站之间的信号发送和接收。在本说明书中,有时候,描述为由BS执行的特定的操作可以由上层节点执行。也就是说,很明显,在由包括BS的多个网络节点构成的网络中,用于与UE通信执行的各种操作可以由BS或者其它的网络节点执行。术语“BS”可以以术语“固定站”、“节点B”、“演进的节点B(e节点B或者eNB)”、“接入点(AP)”等等替换。术语“终端”可以以术语“用户设备(UE)”、“移动站(MS)”、“移动用户站(MSS)”等等替换。
本发明的实施例可以经由各种手段,例如,以硬件、固件、软件或者其组合实现。在通过硬件实现时,根据本发明实施例的方法可以作为一个或多个专用集成电路(ASIC)、一个或多个数字信号处理器(DSP)、一个或多个数字信号处理设备(DSPD)、一个或多个可编程序逻辑设备(PLD)、一个或多个现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器等等实施。
当由固件或者软件实施时,本发明的实施例可以作为执行如上所述的功能和或操作的模块、过程、或者功能实施。软件码可以存储在存储单元中,并且由处理器执行。该存储单元位于该处理器的内部或者外部,并且可以经由各种已知的装置发送与接收数据往返于处理器。
除了在此处阐述的那些之外,不脱离本发明的精神和基本特征,本发明可以以其他特定的方式实现。因此,以上所述的实施例将在所有方面解释为说明性的和非限制性的。本发明的范围将由所附的权利要求及其合法的等效确定,并且落在所附的权利要求的含义和等效范围内的所有变化意欲包含在其中。
工业实用性
如上所述的本发明的实施例可应用于各种移动通信系统。

Claims (8)

1.一种用于在无线通信系统中接收用于由用户设备(UE)进行同步的信号的方法,所述方法包括:
从服务小区接收用于D2D同步的配置信息;
从由所述配置信息指示的参考小区接收用于同步的信号,
其中,在相对于由所述配置信息指示的同步资源的预定范围内接收所述用于同步的信号。
2.根据权利要求1所述的方法,其中,所述配置信息包括关于所述参考小区的标识符的信息和关于所述同步资源的信息。
3.根据权利要求1所述的方法,其中,所述参考小区是相邻小区之一。
4.根据权利要求2所述的方法,其中,由关于所述同步资源的信息所指示的所述同步资源对应于用于D2D链路的开始子帧。
5.一种在无线通信系统中接收用于同步的信号的用户设备(UE),所述用户设备包括:
射频(RF)模块;和
连接到所述RF模块的处理器,
其中,所述处理器被配置为:
控制RF模块从服务小区接收用于D2D同步的配置信息,以及
控制所述RF模块从由所述配置信息指示的参考小区接收同步信号,
其中,在相对于由所述配置信息指示的同步资源的预定范围内接收所述用于同步的信号。
6.根据权利要求5所述的UE,其中,所述配置信息包括关于所述参考小区的标识符的信息和关于所述同步资源的信息。
7.根据权利要求5所述的UE,其中,所述参考小区是相邻小区之一。
8.根据权利要求6所述的UE,其中,由所述同步资源信息指示的所述同步资源对应于用于D2D链路的起始子帧。
CN201810205387.2A 2013-03-11 2014-03-11 接收用于在用户设备之间直接通信的同步信息的方法及其的装置 Active CN108521391B (zh)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201361776769P 2013-03-11 2013-03-11
US61/776,769 2013-03-11
US201361815739P 2013-04-25 2013-04-25
US61/815,739 2013-04-25
US201361836142P 2013-06-17 2013-06-17
US61/836,142 2013-06-17
US201361882601P 2013-09-25 2013-09-25
US61/882,601 2013-09-25
US201461936290P 2014-02-05 2014-02-05
US61/936,290 2014-02-05
CN201480020927.XA CN105122703B (zh) 2013-03-11 2014-03-11 接收用于在用户设备之间直接通信的同步信息的方法及其的装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480020927.XA Division CN105122703B (zh) 2013-03-11 2014-03-11 接收用于在用户设备之间直接通信的同步信息的方法及其的装置

Publications (2)

Publication Number Publication Date
CN108521391A true CN108521391A (zh) 2018-09-11
CN108521391B CN108521391B (zh) 2021-02-09

Family

ID=51537077

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480020927.XA Active CN105122703B (zh) 2013-03-11 2014-03-11 接收用于在用户设备之间直接通信的同步信息的方法及其的装置
CN201810205387.2A Active CN108521391B (zh) 2013-03-11 2014-03-11 接收用于在用户设备之间直接通信的同步信息的方法及其的装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480020927.XA Active CN105122703B (zh) 2013-03-11 2014-03-11 接收用于在用户设备之间直接通信的同步信息的方法及其的装置

Country Status (7)

Country Link
US (1) US9913232B2 (zh)
EP (1) EP2975792B1 (zh)
JP (1) JP6437933B2 (zh)
KR (1) KR102214072B1 (zh)
CN (2) CN105122703B (zh)
RU (1) RU2612408C1 (zh)
WO (1) WO2014142505A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913180A (zh) * 2018-10-31 2021-06-04 三菱电机株式会社 由设备实现的发送参考信号的方法、计算机程序产品和设备
CN112913180B (zh) * 2018-10-31 2024-04-12 三菱电机株式会社 由设备实现的发送参考信号的方法、计算机程序产品和设备

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014165712A1 (en) 2013-04-03 2014-10-09 Interdigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments
US9160515B2 (en) * 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
EP2984898B1 (en) * 2013-04-10 2019-11-27 Telefonaktiebolaget LM Ericsson (publ) A method and wireless device for providing device-to-device communication
JP6247022B2 (ja) * 2013-05-20 2017-12-13 株式会社Nttドコモ ユーザ装置、通信システム、及び無線リソース選択方法
SG11201509537RA (en) * 2013-05-21 2015-12-30 Ericsson Telefon Ab L M Communication method and user equipment in mixed cellular and d2d network
US9325480B2 (en) * 2013-07-10 2016-04-26 Google Technology Holdings LLC Methods and device for performing device-to-device communication
CN105453692B (zh) * 2013-08-11 2020-03-20 瑞典爱立信有限公司 用于发送同步信号的方法和设备
EP2951942A1 (en) * 2013-10-31 2015-12-09 Nec Corporation Communications method, user equipment, and wireless communications system for supporting device to device communications
US9572171B2 (en) * 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
US10855760B2 (en) * 2013-11-07 2020-12-01 Cole Asher Ratias Systems and methods for synchronizing content and information on multiple computing devices
US9648599B2 (en) * 2014-03-21 2017-05-09 Futurewei Technologies, Inc. System and method for avoiding collisions between open discovery and cellular resources
CN112654023A (zh) 2014-04-14 2021-04-13 创新技术实验室株式会社 用于在无线通信系统中传输用于设备到设备通信的同步信号的方法和装置
US9596668B2 (en) 2014-04-14 2017-03-14 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting synchronization signal for device to device communication in wireless communication system
GB2525659B (en) * 2014-05-01 2020-11-25 Vodafone Ip Licensing Ltd Arrangement for choosing transceiver nodes in a mobile telecommunications network
KR102245408B1 (ko) * 2014-05-10 2021-04-29 삼성전자주식회사 디바이스 대 디바이스 통신 시스템에서 동기화 방법 및 장치
WO2016021983A1 (ko) * 2014-08-08 2016-02-11 주식회사 아이티엘 단말간 통신을 지원하는 무선 통신 시스템에서 무선 통신 방법 및 장치
EP3200366B1 (en) 2014-09-24 2021-09-15 LG Electronics Inc. Method for transmitting d2d signal and terminal therefor
EP3198957B1 (en) * 2014-09-25 2021-11-17 Apple Inc. User equipment and synchronization methods for device to device (d2d) communication
EP3205173B1 (en) * 2014-10-06 2020-09-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Carrier selection for device-to-device measurements
US9667338B2 (en) 2014-10-17 2017-05-30 The Boeing Company Multiband wireless data transmission between aircraft and ground systems
US9847796B2 (en) * 2014-10-17 2017-12-19 The Boeing Company Multiband wireless data transmission between aircraft and ground systems based on availability of the ground systems
US10624049B2 (en) * 2015-02-19 2020-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Measurement of candidates synchronization references by device-to-device user equipment
CA2982195C (en) 2015-04-10 2021-02-09 Huawei Technologies Co., Ltd. Data sending method and device
US10491354B2 (en) * 2015-06-23 2019-11-26 Electronics And Telecommunications Research Institute Method and apparatus for transmitting data in direct device-to-device communication
JP6983755B2 (ja) 2015-10-31 2021-12-17 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. リソース指示方法、基地局と端末
US11190327B2 (en) * 2016-04-15 2021-11-30 Apple Inc. Frequency tracking for beamformed systems
US20170332335A1 (en) 2016-05-13 2017-11-16 Huawei Technologies Co., Ltd. System and method of configurable sequence usage for transmission reception points
EP4016915A1 (en) * 2016-05-19 2022-06-22 Samsung Electronics Co., Ltd. Method and apparatus for transmission and reception in wireless communication system supporting scalable frame structure
JP2017216360A (ja) * 2016-05-31 2017-12-07 太陽誘電株式会社 積層セラミックコンデンサ
US10231208B2 (en) * 2016-06-21 2019-03-12 Samsung Electronics Co., Ltd. System and method of paging in next generation wireless communication system
US10531313B2 (en) * 2016-07-15 2020-01-07 Huawei Technologies Co., Ltd. Method and system for generating and processing user-equipment-to-user-equipment probe signal
EP3520473B1 (en) * 2016-09-30 2022-09-28 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for measurement based mobility
CN109792305B (zh) 2016-09-30 2020-12-11 瑞典爱立信有限公司 用于无线电链路测量配置的方法和设备
WO2018058512A1 (en) 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for measurement based mobility
CN109792667B (zh) 2016-09-30 2022-03-25 瑞典爱立信有限公司 用于基于测量的移动性的方法和设备
US10743274B2 (en) 2016-11-15 2020-08-11 Qualcomm Incorporated Prioritizing synchronization channel frequencies in wireless communications
US10764798B2 (en) * 2016-11-16 2020-09-01 Corning Optical Communications LLC Discovery of neighbor radio access systems by a user mobile communications device serviced by a radio access network (RAN) for reporting discovered systems to a serving system in the RAN
KR102399978B1 (ko) 2017-01-06 2022-05-19 삼성전자 주식회사 셀룰라 통신 시스템의 시간 및 주파수 트랙킹 방법 및 장치
WO2018128346A1 (ko) * 2017-01-06 2018-07-12 삼성전자 주식회사 셀룰라 통신 시스템의 시간 및 주파수 트랙킹 방법 및 장치
US11005624B2 (en) 2017-01-20 2021-05-11 Lg Electronics Inc. Beam control method for direct communication between terminals in wireless communication system, and device therefor
BR112019019712A2 (pt) * 2017-03-24 2020-04-14 Ericsson Telefon Ab L M método, equipamento de usuário, estação base, produto de programa de computador, e, programa de computador.
MX2019011229A (es) * 2017-03-24 2019-11-18 Sharp Kk Deteccion y transmision de señales de sincronizacion para sistema de radio.
SG11201909923XA (en) * 2017-04-27 2019-11-28 Sharp Kk Base station apparatus, terminal apparatus, communication method, and integrated circuit
ES2922025T3 (es) 2017-05-05 2022-09-06 Lg Electronics Inc Método para recibir una señal de sincronización y aparato para el mismo
KR20220044869A (ko) * 2017-06-02 2022-04-11 애플 인크. 뉴 라디오(nr)를 위한 빔포밍된 측정
KR102350074B1 (ko) * 2017-06-12 2022-01-12 삼성전자주식회사 다중 사용자 지원을 위한 커버리지 확장 방법 및 장치
US10694562B2 (en) 2017-09-18 2020-06-23 Apple Inc. Off grid radio service system design
US10666489B2 (en) 2017-09-18 2020-05-26 Apple Inc. Synchronization sequence design for device-to-device communication
EP3709757B1 (en) * 2017-10-02 2022-03-16 Telefonaktiebolaget LM Ericsson (publ) Configuring random access channels for wireless communications
CN108496317B (zh) 2017-11-02 2021-11-16 北京小米移动软件有限公司 剩余关键系统信息的公共资源集合的查找方法及装置
WO2019095241A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 一种时间同步方法及装置
CN109803369B (zh) * 2017-11-17 2021-01-26 展讯通信(上海)有限公司 联合时频估计及补偿方法、装置及用户设备
US11337220B2 (en) 2017-11-30 2022-05-17 Beijing Xiaomi Mobile Software Co., Ltd. Information indication method and apparatus, base station, and user equipment
CN110035491B (zh) * 2018-01-11 2020-06-19 维沃移动通信有限公司 一种同步指示方法和设备
BR112020014813A2 (pt) * 2018-01-26 2020-12-08 Beijing Xiaomi Mobile Software Co., Ltd. Método e meio de armazenamento para configurar informação, equipamento de usuário, método e meio de armazenamento para determinar posição de tempo e frequência, e estação base
WO2020019155A1 (en) * 2018-07-24 2020-01-30 Zte Corporation Method and apparatus for muting resource allocation
WO2020032203A1 (en) * 2018-08-09 2020-02-13 Sharp Kabushiki Kaisha Configurable beam management of sidelink resources
CN110535596B (zh) * 2018-11-02 2022-07-12 中兴通讯股份有限公司 控制信道检测、信息元素传输方法、装置、设备及介质
CN109451531B (zh) * 2018-11-08 2021-12-03 武汉虹信科技发展有限责任公司 一种lte小区范围内的场强测量系统及方法
US10757598B2 (en) 2018-12-04 2020-08-25 Apple Inc. Reference frequency for UI signal bar display
WO2020167033A1 (ko) * 2019-02-14 2020-08-20 엘지전자 주식회사 Nr v2x의 사이드링크 동기 신호 블록의 전송
US11265725B2 (en) 2019-02-15 2022-03-01 Ademco Inc. Systems and methods for allocating wireless communication channels
US10999789B2 (en) * 2019-03-13 2021-05-04 Ademco Inc. Systems and methods for reducing interference in a TDMA based wireless network
US11329842B2 (en) 2020-02-07 2022-05-10 Ademco Inc. Dynamic superframe slotting
US11432254B2 (en) 2020-08-31 2022-08-30 Nokia Technologies Oy UE initiated propagation delay compensation mechanism
US20230389051A1 (en) * 2020-10-23 2023-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods for inter-ue resource coordination mechanism
US11582746B2 (en) 2021-04-01 2023-02-14 Ademco Inc. Dynamic, multi-frequency superframe slotting
US11658736B2 (en) 2021-07-13 2023-05-23 Ademco Inc. Keypad with repeater mode
US20230101476A1 (en) * 2021-09-27 2023-03-30 Qualcomm Incorporated Resource selection with sidelink demodulation reference signal (dmrs) bundling
US11356155B1 (en) * 2021-11-11 2022-06-07 King Abdulaziz University Method of optimizing multi-cell association in downlink multi-user, multiple-input, multiple-output (MU-MIMO) systems via statistical beamforming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035100A1 (en) * 2008-09-25 2010-04-01 Nokia Corporation Synchronization for device-to-device communication
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466897B1 (ko) * 2007-07-09 2014-12-02 삼성전자주식회사 이동통신 시스템에서 피어투피어 통신의 연속성을 제공하기위한 방법 및 장치
US8200233B2 (en) * 2007-09-21 2012-06-12 Samsung Electronics Co., Ltd. Apparatus and method for supporting cells with different characteristics in a broadband wireless communication system
KR101232356B1 (ko) * 2007-09-21 2013-02-08 삼성전자주식회사 광대역 무선통신 시스템에서 서로 다른 특성의 셀들을지원하기 위한 장치 및 방법
US8509162B2 (en) * 2008-02-13 2013-08-13 Qualcomm Incorporated System and method for scheduling over multiple hops
US8493887B2 (en) * 2008-12-30 2013-07-23 Qualcomm Incorporated Centralized control of peer discovery pilot transmission
US9185599B2 (en) 2009-09-23 2015-11-10 Electronics And Telecommunications Research Institute Method and device for managing interference in neighbouring cells having multiple sending and receiving nodes
US9622131B2 (en) * 2010-03-05 2017-04-11 Nokia Technologies Oy Handover of direct peer to peer communication
JP5682173B2 (ja) * 2010-08-09 2015-03-11 住友電気工業株式会社 基地局装置、基地局間同期方法、同期情報のデータ構造、及び同期要求のデータ構造
US9084191B2 (en) * 2011-01-20 2015-07-14 Qualcomm Incorporated Method and apparatus for determining timing information for cells
US9125135B2 (en) * 2011-05-09 2015-09-01 Telefonaktiebolaget L M Ericsson (Publ) Independent configuration identities in a heterogeneous cellular communication network
JP2013034165A (ja) * 2011-06-27 2013-02-14 Ntt Docomo Inc 無線通信方法、無線通信システム及び移動局
WO2013002688A1 (en) * 2011-06-29 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) A method and a user equipment for peer-to-peer communication
US8848700B2 (en) * 2011-09-30 2014-09-30 Electronics And Telecommunications Research Institute Method for device-to-device communication based on cellular telecommunication system
WO2013048528A1 (en) * 2011-10-01 2013-04-04 Intel Corporation Packetizing jtag across industry standard interfaces
WO2013081525A1 (en) * 2011-11-29 2013-06-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for operating configuration adaptation for interruption of signal transmission
KR102006179B1 (ko) * 2011-12-15 2019-08-02 삼성전자주식회사 단말간 통신을 위한 접속 식별자 할당 방법 및 장치
US20130250771A1 (en) * 2012-03-20 2013-09-26 Nokia Siemens Networks Oy Device to device enhanced voice group call
US9232503B2 (en) * 2012-04-27 2016-01-05 Intel Corporation Apparatus and method for cell information indication in a wireless network
WO2014018333A2 (en) * 2012-07-23 2014-01-30 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
US9451570B2 (en) * 2012-08-29 2016-09-20 Alcatel Lucent Device discovery for device-to-device communication
CN104618926B (zh) * 2013-11-01 2018-07-03 电信科学技术研究院 D2d信号的传输方法和装置
US9832800B2 (en) * 2014-08-08 2017-11-28 Electronics And Telecommunications Research Institute Method and apparatus for device to device communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035100A1 (en) * 2008-09-25 2010-04-01 Nokia Corporation Synchronization for device-to-device communication
CN102780993A (zh) * 2012-08-20 2012-11-14 哈尔滨工业大学 Td_lte_a系统中终端d2d协作中继通信实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "《R1-130217 Considerations for D2D Proximity Services Evaluation》", 《3GPP TSG RAN WG1 MEETING #72 》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913180A (zh) * 2018-10-31 2021-06-04 三菱电机株式会社 由设备实现的发送参考信号的方法、计算机程序产品和设备
CN112913180B (zh) * 2018-10-31 2024-04-12 三菱电机株式会社 由设备实现的发送参考信号的方法、计算机程序产品和设备

Also Published As

Publication number Publication date
RU2612408C1 (ru) 2017-03-09
US20160029333A1 (en) 2016-01-28
JP2016511611A (ja) 2016-04-14
WO2014142505A1 (ko) 2014-09-18
CN108521391B (zh) 2021-02-09
KR102214072B1 (ko) 2021-02-09
EP2975792A1 (en) 2016-01-20
US9913232B2 (en) 2018-03-06
JP6437933B2 (ja) 2018-12-12
EP2975792B1 (en) 2020-02-26
CN105122703A (zh) 2015-12-02
KR20160005003A (ko) 2016-01-13
CN105122703B (zh) 2018-04-13
EP2975792A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
CN105122703B (zh) 接收用于在用户设备之间直接通信的同步信息的方法及其的装置
CN106688190B (zh) 在无线通信系统中报告信道状态信息的方法及其设备
CN104365136B (zh) 发送信道状态信息的方法和用户设备以及接收信道状态信息的方法和基站
JP6961679B2 (ja) 無線通信システムにおいて端末のd2dデータ伝送方法及び装置
KR101884354B1 (ko) D2d 통신에서의 단말의 송신 자원 블록 풀의 결정 방법 및 이를 위한 장치
CN106134111B (zh) 在无线通信系统中配置干扰测量资源的方法及其装置
CN104604283B (zh) 在无线通信系统中估计信道的方法和设备
CN104137440B (zh) 在基于多小区的无线通信系统中接收下行链路数据信道的方法和设备
CN104604166B (zh) 在无线通信系统中接收下行链路信号的方法和装置
CN105141391B (zh) 无线电通信系统中减少小区间干扰的方法和设备
CN104025484B (zh) 在无线接入系统中测量无线通信状态的方法及其设备
CN105813108B (zh) 用于对无线电通信系统中的小区间干扰协调的测量的方法和装置
CN105706385B (zh) 无线通信系统中通过终端接收发现参考信号的方法与设备
EP3249870B1 (en) Method and apparatus for generating signal by device-to-device communication terminal in wireless communication system
CN105453507B (zh) 在无线通信系统中发送和接收信号的方法及其装置
CN107852301A (zh) 在无线通信系统中报告信道状态信息的方法及其设备
CN110383923A (zh) 在无线通信系统的终端和基站之间发送和接收物理上行链路控制信道的方法和支持该方法的装置
CN106465173A (zh) 在无线通信系统中使用发现参考信号(drs)来执行测量的方法和设备
CN107439033A (zh) 无线通信系统中执行测距有关的操作的方法
CN104995856B (zh) 在无线电通信系统中测量信道和干扰的方法
CN107534832A (zh) 在无线通信系统中测量d2d信号或选择中继的方法和设备
CN104823396A (zh) 接收下行链路信号的方法和用户设备以及发送下行链路信号的方法和基站
CN109792718A (zh) 用于在无线通信系统中选择资源并发送pssch的方法和装置
CN106716887A (zh) 无线通信系统中执行测量的方法及其装置
CN104956611A (zh) 在无线接入系统中执行准协同定位的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant