CN108490108B - 一种检测水体中氟节胺的方法 - Google Patents

一种检测水体中氟节胺的方法 Download PDF

Info

Publication number
CN108490108B
CN108490108B CN201810246955.3A CN201810246955A CN108490108B CN 108490108 B CN108490108 B CN 108490108B CN 201810246955 A CN201810246955 A CN 201810246955A CN 108490108 B CN108490108 B CN 108490108B
Authority
CN
China
Prior art keywords
flumetralim
water
solution
edta
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810246955.3A
Other languages
English (en)
Other versions
CN108490108A (zh
Inventor
任水英
刘莉
李弘毅
万鸿飞
吴燕
杨永宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute
Original Assignee
Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute filed Critical Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Research Institute
Priority to CN201810246955.3A priority Critical patent/CN108490108B/zh
Publication of CN108490108A publication Critical patent/CN108490108A/zh
Application granted granted Critical
Publication of CN108490108B publication Critical patent/CN108490108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Abstract

本发明属于化学物质检测方法的设计技术领域,具体涉及一种检测水体中氟节胺的方法,包括下述步骤:一、标准溶液的配制;二、采用化学共沉淀法进行Fe3O4@EDTA材料的合成;三、待测水体中氟节胺的处理;四、待测水体中氟节胺的定量测定:分析柱采用Thermo Hypersil GOLD aQ C18(150 mm×2.1 mm,3μm)色谱柱,采用0.1%甲酸水溶液和甲醇为流动相,即可检测出氟节胺定量离子。该方法展示了MSPE的优越性,富集效果好,降低了方法检出限。

Description

一种检测水体中氟节胺的方法
技术领域
本发明属于化学物质检测方法的设计技术领域,具体涉及一种检测水体中氟节胺的方法。
背景技术
由于氟节胺电负性较强,在MS/MS检测时响应较弱,方法检出限往往高于一些组织和国家规定的的最大残留限量。基于此,拟制备材料对该化合物进行富集。
磁性纳米离子(Magnetic Nanoparticles,MNPs)作为一种新型的功能性材料,不仅吸附性能好、化学稳定性好,其超顺磁特性更容易实验固液分离和回收,在分离领域倍受青睐,尤其在离线富集中展示出很好的发展前景。MSPE是以MNPs为吸附剂的一种分散固相萃取技术,被越来越多地应用于样品中待测组分的分离、净化与富集。
氢键吸附色谱固定相主要是经过单体聚合或表面修饰的具有酚羟基、羧基、氨基、羰基、酯基等基团的材料。乙二胺四乙酸(EDTA)含有4个羧基和2个氨基,同时,该化合物作为六齿配体,能与铁(III)、锰(II)、铜(II)、钴(II)等金属离子组成螯合物。为此,拟利用EDTA与铁(III)的配合性及易于形成氢键的特性,制备磁性纳米材料,用于富集氟节胺。制备过程和富集流程示意图如图1所示。
发明内容
本发明的目的在于:设计一种方法,能较好的检出水体中的氟节胺,能够满足欧盟和日本制订的MRLs限量要求。
本发明的技术方案:一种检测水体中氟节胺的方法,包括下述步骤:
一、标准溶液的配制:
称取氟节胺标准品10.0mg于10mL容量瓶中,以乙腈为溶剂配成1.00mg/mL的标准储备溶液,-18℃冷冻避光保存;取上述标准储备液1mL至100mL容量瓶中,用乙腈稀释至刻度,配成10mg/L的中间标准溶液;再用高纯水稀释中间标准溶液,得到系列标准工作液,氟节胺的质量浓度为:2.0,10.0,25.0,50.0,100.0μg/L;
二、采用化学共沉淀法进行Fe3O4@EDTA材料的合成:
将3.05g FeCl3·6H2O和2.1g FeSO4·7H2O分别溶于50mL蒸馏水中,混合于三口瓶中并加热至90℃,加入5mL质量分数为25%的氨水和25mL浓度为25mg/mL的EDTA溶液,于90℃搅拌30min制得Fe3O4@EDTA,磁性分离,并用蒸馏水洗涤至中性;
三、待测水体中氟节胺的处理:
取5mL待测水体,加入10mg Fe3O4@EDTA材料,摇床上孵育30min,磁分离,高纯水洗涤,然后用0.2mL 0.1%甲酸甲醇溶液洗脱三次,合并洗脱液并氮吹近干,用0.5甲醇水(v/v=1:1)溶液复溶后,过0.22μm微孔滤膜后,待测;
四、待测水体中氟节胺的定量测定:
分析柱采用Thermo Hypersil GOLD aQ C18(150mm×2.1mm,3μm)色谱柱,采用0.1%甲酸水溶液和甲醇为流动相,即可检测出氟节胺定量离子。
有益效果:采用共沉淀法一步合成EDTA功能化的磁性纳米粒子(Fe3O4@EDTA),对水体中的氟节胺进行富集,建立了测定水体中氟节胺的MSPE-LC-MS/MS检测方法。该方法展示了MSPE的优越性,富集效果好,降低了方法检出限。
附图说明
图1为Fe3O4@EDTA材料制备过程及富集流程示意图,其中,X为F、Cl、O、S、N等原子;图2为EDTA@Fe3O4的TEM图(a)和对外加磁场的响应图(b);图3为ESI+模式下氟节胺定量离子MRM图。
具体实施方式
实施例、1.实验室验证本申请检测水体中氟节胺的方法。
2.材料与方法
2.1材料与仪器
标准品:氟节胺,德国Dr.Ehrenstorfer公司;甲醇、乙腈(HPLC级):美国Fisher公司;甲酸(优级纯)、NaAc、MgSO4(分析纯):上海国药集团化学试剂有限公司;六水合三氯化铁(FeCl3·6H2O)、七水合硫酸亚铁(FeSO4·7H2O)(分析纯),天津光复精细化工研究所;EDTA(分析纯),天津化学试剂三厂;试验用水均为超纯水。
AB SCIEX API 4000+质谱/质谱仪配有ESI离子源,岛津Nexera LC-30AD高效液质色谱仪配有脱气机、二元梯度泵、自动进样器、柱温箱,AB SCIEX公司;XW-80A涡旋混合器,宁波新芝生物科技股份有限公司;透射电子显微镜(TEM),JEOL JEM-2010,日本电子株式会社;SHZ水浴恒温振荡器,金坛市医疗仪器厂;N-EVAP 116氮吹仪,美国Organomation公司。
2.2标准溶液的配制
准确称取氟节胺标准品10.0mg于10mL容量瓶中,以乙腈为溶剂配成1.00mg/mL的标准储备溶液,-18℃冷冻避光保存,有效期6个月;取上述标准储备液1mL至100mL容量瓶中,用乙腈稀释至刻度,配成10μg/mL的混合中间标准溶液;再用高纯水稀释混合中间标准溶液,得到系列标准工作液,氟节胺的质量浓度为:2.0,10.0,25.0,50.0,100.0μg/L。
2.3 Fe3O4@EDTA材料的合成
合成方法采用化学共沉淀法。首先,将3.0 5g FeCl3·6H2O和2.1g FeSO4·7H2O分别溶于50mL蒸馏水中,混合于三口瓶中并加热至90℃,加入5mL质量分数为25%的氨水和25mL浓度为25mg/mL的EDTA溶液,于90℃搅拌30min制得Fe3O4@EDTA,磁性分离,并用蒸馏水洗涤至中性。
2.4 Fe3O4@EDTA材料的表征
采用透射电子显微镜对Fe3O4@EDTA的形貌进行表征;并用外加磁场测试其磁响应能力。
2.5色谱条件
色谱条件:色谱柱:Thermo Hypersil GOLD aQ C18(150mm×2.1mm,3μm);流动相A相为0.1%甲酸水溶液;B相为甲醇,梯度变化见表1;流速:0.2mL/min;进样量:1μL;柱温:40℃。
表1ESI+模式流动相梯度变化表
2.6质谱条件
质谱条件:ESI离子源,ESI+模式扫描,MRM监测;电喷雾电压(IonSpray Voltage,IS):5500V;碰撞气(Collision Gas,CAD):8Psi;气帘气(Curtain Gas,CUR):25Psi;离子源气1(Ion Source Gas 1,GS1):50Psi;离子源气2(Ion Source Gas 2,GS2):45Psi;温度:550℃。氟节胺的质谱参数见表2。
表2氟节胺的扫描模式、监测离子及质谱采集参数
表2氟节胺的扫描模式、监测离子及质谱采集参数
2.7样品前处理
5mL待测水体中加入10mg Fe3O4@EDTA材料,摇床上孵育30min,磁分离,高纯水洗涤,然后用0.2mL 0.1%甲酸甲醇溶液洗脱三次,合并洗脱液并氮吹近干,用0.5mL甲醇水(v/v=1:1)溶液复溶后,过0.22μm微孔滤膜后,待测。
3.结果与讨论
3.1 EDTA@Fe3O4的表征
采用共沉淀方法一步合成Fe3O4@EDTA MNPs,其SEM图及对外加磁场的响应如图2所示。由图2(a)可知,制备的EDTA@Fe3O4材料粒径为15nm左右,分散较为均匀,即保持了纳米材料的分散稳定性。由图2(b)可以看出,该材料对外加磁场表现出快速响应的能力,可在15s内完成分离。
3.2HPLC-MS/MS条件的优化
分析柱采用Thermo Hypersil GOLD aQ C18(150mm×2.1mm,3μm)色谱柱,采用0.1%甲酸水溶液和甲醇为流动相;氟节胺的定量离子MRM图如图3所示。
3.3作用机理探讨
向矮壮素、助壮素、嘧啶醇、赤霉素、丁酰肼、吲熟酯、4-氯苯氧乙酸、氯吡脲、多效唑、氟节胺10种化合物的混合标准水溶液中加入制备的Fe3O4@EDTA材料,摇床上孵育30min,磁分离,测试负载液体中剩余的10种化合物的浓度,与原标准溶液比较,计算负载率(Loading Ratio,LR),结果如表3所示。由表3可以看出,电负性较强的化合物如氟节胺、氯吡脲等负载率几乎可以达到100%,而对于电负性较弱的化合物如嘧啶醇、赤霉素负载率低于40%,离子型化合物如矮壮素、助壮素几乎不负载,即负载率与这些化合物的电负性,表现为形成氢键的能力有直接关系。因此,初步判定材料与目标化合物之间的作用力为氢键吸附作用。
LR(%)=(c0-c1)/c0×100
其中,c0为标准溶液原浓度;
c1为负载后剩余浓度;
表3水溶液中15种化合物的负载率
注:a-当负载后剩余溶液中含量低于检出限时,视为负载率100%。
3.4洗脱液的选择
因目标化合物与吸附材料之间为氢键吸附原理,洗脱过程即为破坏两者之间的这种氢键作用而达到洗脱目标化合物的目的。破坏氢键的方式有很多种,最常见的是调节洗脱液pH值。分别以含甲酸0.1%、0.2%、0.5%、1.0%的水溶液和甲醇溶液作为洗脱液进行处理,考察不同洗脱溶液及其酸度对氟节胺回收率的影响。结果表明,甲酸甲醇溶液的洗脱能力明显高于甲酸水溶液。采用不同甲酸浓度的甲醇洗脱时,目标化合物的回收率如表4所示。结果表明,最佳洗脱液为含0.1%甲酸的甲醇。
表4洗脱液酸度对氟节胺回收率的影响
表5.4洗脱液酸度对氟节胺回收率的影响
3.5方法验证
3.5.1线性范围、回归方程及相关系数
取系列标准工作液,进样量1μL,在最佳HPLC-MS/MS色谱、质谱条件下进行分析。以目标物在MRM监测下的峰面积(Y)为纵坐标,以其质量浓度(X,μg/L)为横坐标作标准曲线。在10-200μg/L浓度范围内,回归方程为:Y=21527+1315.35X,线性关系良好(r2=0.9907),可满足定量分析的要求。
3.5.2精密度和回收率
表5氟节胺的回收率、精密度、方法检出限、定量限
将空白样品中加入标准溶液,制备氟节胺浓度为5.0μg/kg,10.0μg/kg,50.0μg/kg的加标样品。按照前处理方法进行处理,每个添加水平平行测定6次,计算方法的回收率和精密度,结果如表5所示。结果表明,在不同的加标水平下,回收率在88.6%~91.7%之间,相对标准偏差RSD≤6.57%,较为满意;方法的检出限为0.25μg/kg,定量限为1.0μg/kg,能够满足欧盟和日本制订的MRLs限量要求。
4结论
采用共沉淀方法一步合成EDTA-MNPs材料,基于氢键吸附色谱原理对电负性较强的氟节胺进行富集,建立了水体中氟节胺的MSPE-HPLC-MS/MS检测方法。在2-100μg/L浓度范围内,线性关系良好(r2=0.9907),回收率在88.6%~91.7%之间,相对标准偏差RSD≤6.57%,可满足定量分析的要求。方法检出限为0.25μg/kg,定量限为1.0μg/kg,能够满足欧盟和日本制订的MRLs限量要求。

Claims (1)

1.一种检测水体中氟节胺的方法,包括下述步骤:
一、标准溶液的配制:
称取氟节胺标准品10.0 mg于10mL容量瓶中,以乙腈为溶剂配成1.00mg/mL的标准储备溶液,-18℃冷冻避光保存;取上述标准储备液1mL至100mL容量瓶中,用乙腈稀释至刻度,配成10mg/L的中间标准溶液;再用高纯水稀释中间标准溶液,得到系列标准工作液,氟节胺的质量浓度为:2.0,10.0,25.0,50.0,100.0μg/L;
二、采用化学共沉淀法进行Fe3O4@EDTA材料的合成:
将3.05g FeCl3•6H2O和2.1g FeSO4•7H2O分别溶于50mL蒸馏水中,混合于三口瓶中并加热至90℃,加入5mL质量分数为25%的氨水和25mL浓度为25mg/mL的EDTA溶液,于90℃搅拌30min制得Fe3O4@EDTA,磁性分离,并用蒸馏水洗涤至中性;
三、待测水体中氟节胺的处理:
取5mL待测水体,加入10mg Fe3O4@EDTA材料,摇床上孵育30min,磁分离,高纯水洗涤,然后用0.2mL 0.1%甲酸甲醇溶液洗脱三次,合并洗脱液并氮吹近干,用0.5ml甲醇水溶液复溶后,过0.22μm微孔滤膜后,待测;
四、待测水体中氟节胺的定量测定:
分析柱采用Thermo Hypersil GOLD aQ C18色谱柱,采用0.1%甲酸水溶液和甲醇为流动相,即可检测出氟节胺定量离子。
CN201810246955.3A 2018-03-23 2018-03-23 一种检测水体中氟节胺的方法 Active CN108490108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810246955.3A CN108490108B (zh) 2018-03-23 2018-03-23 一种检测水体中氟节胺的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810246955.3A CN108490108B (zh) 2018-03-23 2018-03-23 一种检测水体中氟节胺的方法

Publications (2)

Publication Number Publication Date
CN108490108A CN108490108A (zh) 2018-09-04
CN108490108B true CN108490108B (zh) 2019-11-15

Family

ID=63319552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810246955.3A Active CN108490108B (zh) 2018-03-23 2018-03-23 一种检测水体中氟节胺的方法

Country Status (1)

Country Link
CN (1) CN108490108B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323547B (zh) * 2013-06-08 2014-09-10 国家烟草质量监督检验中心 分析烟草及烟草制品中有机氯、菊酯类和二硝基苯胺类农药残留的gc-ms/ms方法
CN104374857B (zh) * 2014-11-05 2016-06-08 中国烟草总公司四川省公司 一种烟草中氟节胺、仲丁灵和除芽通残留量的测定方法

Also Published As

Publication number Publication date
CN108490108A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
Han et al. Mesoporous Fe2O3 microspheres: Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis
Huang et al. Speciation of inorganic tellurium from seawater by ICP‐MS following magnetic SPE separation and preconcentration
Kazemi et al. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions
CN105664861B (zh) 一种磁性共价有机骨架纳米复合材料及制备方法和应用
Gao et al. Rapid magnetic solid-phase extraction based on magnetite/silica/poly (methacrylic acid–co–ethylene glycol dimethacrylate) composite microspheres for the determination of sulfonamide in milk samples
Zhang et al. Modifying the surface of Fe3O4/SiO2 magnetic nanoparticles with C18/NH2 mixed group to get an efficient sorbent for anionic organic pollutants
Yin et al. Simultaneous on-line preconcentration and determination of trace metals in environmental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alumina packed micro-column
Zhang et al. Magnetic porous β-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples
Huang et al. Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples
CN105498694B (zh) 一种温敏聚合物包裹的金属有机骨架磁性材料及其应用
Reyes-Gallardo et al. Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples
Chen et al. Speciation analysis of Mn (II)/Mn (VII) using Fe3O4@ ionic liquids-β-cyclodextrin polymer magnetic solid phase extraction coupled with ICP-OES
Li et al. Preparation of magnetic poly (diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) for the determination of chlorophenols in water samples
Ye et al. Restricted-access nanoparticles for magnetic solid-phase extraction of steroid hormones from environmental and biological samples
Li et al. Magnetic effervescent tablet-assisted ionic liquid-based dispersive liquid-liquid microextraction of polybrominated diphenyl ethers in liquid matrix samples
Wang et al. Determination of trace amounts of Se (IV) by hydride generation atomic fluorescence spectrometry after solid-phase extraction using magnetic multi-walled carbon nanotubes
Mehdinia et al. Microwave-assisted synthesis of reduced graphene oxide decorated with magnetite and gold nanoparticles, and its application to solid-phase extraction of organochlorine pesticides
Li et al. Magnetic solid phase extraction for the determination of trace antimony species in water by inductively coupled plasma mass spectrometry
CN104475030A (zh) 一种磁性金属有机骨架材料的制备方法及其应用
Huang et al. Magnetic γ-cyclodextrin polymer with compatible cavity promote the magnetic solid-phase extraction of microcystins in water samples
Shokri et al. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry
Qiao et al. Water-compatible magnetic imprinted microspheres for rapid separation and determination of triazine herbicides in environmental water
Liu et al. Fluorocarbon-bonded magnetic mesoporous microspheres for the analysis of perfluorinated compounds in human serum by high-performance liquid chromatography coupled to tandem mass spectrometry
Safarikova et al. Preconcentration of middle oxyethylated nonylphenols from water samples on magnetic solid phase
Yan et al. Restricted accessed nanoparticles for direct magnetic solid phase extraction of trace metal ions from human fluids followed by inductively coupled plasma mass spectrometry detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant