CN108462974A - Failure management method in wireless sensor node and device - Google Patents
Failure management method in wireless sensor node and device Download PDFInfo
- Publication number
- CN108462974A CN108462974A CN201810255752.0A CN201810255752A CN108462974A CN 108462974 A CN108462974 A CN 108462974A CN 201810255752 A CN201810255752 A CN 201810255752A CN 108462974 A CN108462974 A CN 108462974A
- Authority
- CN
- China
- Prior art keywords
- zigbee
- fault
- controller
- wireless sensor
- transceiver module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007726 management method Methods 0.000 title claims abstract description 16
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000004891 communication Methods 0.000 claims abstract description 23
- 230000004913 activation Effects 0.000 claims description 12
- 238000012423 maintenance Methods 0.000 claims description 12
- 230000006855 networking Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 abstract 2
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/04—Arrangements for maintaining operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0261—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
- H04W52/0274—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及无线传感器节点,尤其涉及无线传感器节点中的故障管理方法。The present invention relates to wireless sensor nodes, in particular to a fault management method in wireless sensor nodes.
背景技术Background technique
现有技术的无线传感器网络中,无线传感器节点一般采用GPRS模块和管理中心进行通信,将采集数据发送给管理中心进行分析和处理。由于GPRS通信需要与基站建立通信连接,涉及的网络结构较为复杂,因此建立通信连接以及维持通信所需的耗电量较高。而在野外的无线传感器节点通常以电池方式供电,电池电量有限,省电是保证传感器节点长期有效工作的重要因素。In the wireless sensor network of the prior art, the wireless sensor nodes generally use the GPRS module to communicate with the management center, and send the collected data to the management center for analysis and processing. Since the GPRS communication needs to establish a communication connection with the base station, the involved network structure is relatively complex, so the power consumption required for establishing the communication connection and maintaining the communication is relatively high. However, wireless sensor nodes in the wild are usually powered by batteries, and the battery power is limited. Power saving is an important factor to ensure long-term effective work of sensor nodes.
为解决上述问题,现有技术中提出一种以Zigbee方式(MESH)组网代替GPRS上报采集数据的无线传感器网络。Zigbee技术是基于IEEE802.15.4标准的低功耗局域网协议,其特点是低复杂度,低功耗,是用于远程控制领域,可以嵌入各种设备。虽然Zigbee无线传感器节点具有省电的优点,但是当Zigbee通信模块出现故障时,则无法及时将故障信息经Zigbee通信网络上报给管理中心,而现有技术只关注传感器本身以及采集数据是否出现异常,并不关注通信模块是否正常。并且,当Zigbee通信模块故障时,传感器节点仍在采集数据,此时采集的数据无法经Zigbee通信网络上报给管理中心,由于许多采集数据要求是实时的,因此无法实时上报的采集数据是无意义的。并且无线传感器节点往往分布在较广的地理范围内,维修人员从发现故障到完成对Zigbee通信模块的维修需要比较长的时间,在这段时间内,毫无意义的数据采集已经耗费了大量电能。In order to solve the above problems, a wireless sensor network that uses Zigbee mode (MESH) networking instead of GPRS to report and collect data is proposed in the prior art. Zigbee technology is a low-power LAN protocol based on the IEEE802.15.4 standard. It is characterized by low complexity and low power consumption. It is used in the field of remote control and can be embedded in various devices. Although the Zigbee wireless sensor node has the advantage of saving power, when the Zigbee communication module fails, the failure information cannot be reported to the management center through the Zigbee communication network in time, and the existing technology only pays attention to the sensor itself and whether the collected data is abnormal. It does not pay attention to whether the communication module is normal. Moreover, when the Zigbee communication module fails, the sensor nodes are still collecting data. At this time, the collected data cannot be reported to the management center through the Zigbee communication network. Since many collected data requirements are real-time, the collected data that cannot be reported in real time is meaningless of. Moreover, wireless sensor nodes are often distributed in a wide geographical range. It takes a long time for maintenance personnel to complete the maintenance of the Zigbee communication module from the discovery of the fault. During this period, meaningless data collection has consumed a lot of power. .
发明内容Contents of the invention
为解决上述技术问题,本发明目的在于提供一种无线传感器节点中的故障管理方法与装置,本发明的另一目的在于提供一种无线传感器网络,包括多个如权利要求1所述的无线传感器节点,还包括Zigbee-GPRS网关和管理中心,各个无线传感器节点之间以Zigbee方式实现组网。In order to solve the above-mentioned technical problems, the object of the present invention is to provide a fault management method and device in wireless sensor nodes, and another object of the present invention is to provide a wireless sensor network, including a plurality of wireless sensors as claimed in claim 1 Nodes also include Zigbee-GPRS gateways and management centers, and Zigbee is used to realize networking among wireless sensor nodes.
本发明技术方案是:一种无线传感器节点中的故障管理方法,基于如下装置:传感器单元,Zigbee收发模块以及控制器,其中,传感器单元采集传感器数据,将采集到的数据发送给控制器,控制器将采集数据发送给Zigbee收发模块,Zigbee收发模块通过Zigbee无线通信的方式发送采集数据,其特征在于:另设有GPRS收发模块、故障检测模块、状态切换模块,故障检测模块定期检测Zigbee收发模块是否正常工作,如果检测到Zigbee收发模块正常工作,则故障检测模块继续定期检测,并向控制器发送状态正常反馈信号,如果检测到Zigbee收发模块出现故障,则故障检测模块向控制器发送故障信号,控制器收到故障信号后,向GPRS收发模块发送激活信号,同时向状态切换模块发送停止工作命令,GPRS收发模块收到激活信号后,接入GPRS网络,向管理中心发送故障信息,状态切换模块在收到停止工作命令后,使传感器单元停止工作。The technical scheme of the present invention is: a fault management method in a wireless sensor node, based on the following devices: a sensor unit, a Zigbee transceiver module and a controller, wherein the sensor unit collects sensor data, sends the collected data to the controller, and controls The device sends the collected data to the Zigbee transceiver module, and the Zigbee transceiver module sends the collected data through Zigbee wireless communication. Whether it is working normally, if it is detected that the Zigbee transceiver module is working normally, the fault detection module will continue to detect regularly, and send a normal status feedback signal to the controller, if it detects that the Zigbee transceiver module is faulty, the fault detection module will send a fault signal to the controller After the controller receives the fault signal, it sends an activation signal to the GPRS transceiver module, and at the same time sends a stop working command to the state switching module. After receiving the activation signal, the GPRS transceiver module connects to the GPRS network, sends fault information to the management center, and switches the state After the module receives the stop working order, it stops the sensor unit from working.
进一步的,控制器在接收到状态正常反馈信号时,向状态切换模块发送工作命令。Further, the controller sends a work command to the state switching module when receiving the normal state feedback signal.
进一步的,状态切换模块是设在传感器单元的供电电路上的开关,当收到工作命令时,开关导通,使电源向传感器单元供电,当收到停止工作命令时,开关断开,使电源停止向传感器单元供电。Further, the state switching module is a switch arranged on the power supply circuit of the sensor unit. When receiving the work command, the switch is turned on to make the power supply supply power to the sensor unit. When the stop work command is received, the switch is turned off to make the power supply Stop supplying power to the sensor unit.
进一步的,无线传感器节点包括报警指示灯,当故障检测模块检测到Zigbee收发模块出现故障时,报警指示灯闪烁。Further, the wireless sensor node includes an alarm indicator light, and when the fault detection module detects that the Zigbee transceiver module fails, the alarm indicator light will flash.
进一步的,故障信息包括故障时间,出现故障的无线传感器节点的ID或地理位置等。Further, the fault information includes the fault time, the ID or geographic location of the faulty wireless sensor node, and the like.
本发明的另一目的在于提供一种无线传感器网络的故障管理方法,包括多个所述的无线传感器节点,还包括Zigbee-GPRS网关和管理中心,各个无线传感器节点之间以Zigbee方式实现组网,无线传感器节点采集传感器数据,然后通过Zigbee无线通信的方式将采集数据无线发送至Zigbee-GPRS网关,所述Zigbee-GPRS网关执行数据转换,将Zigbee数据转换为适合GPRS方式发送的数据,并接入GPRS网络,将采集数据发送给管理中心。Another object of the present invention is to provide a kind of fault management method of wireless sensor network, comprise a plurality of described wireless sensor nodes, also comprise Zigbee-GPRS gateway and management center, realize networking with Zigbee mode between each wireless sensor node , the wireless sensor node collects sensor data, and then wirelessly sends the collected data to the Zigbee-GPRS gateway through Zigbee wireless communication, and the Zigbee-GPRS gateway performs data conversion, converts the Zigbee data into data suitable for GPRS transmission, and receives into the GPRS network, and send the collected data to the management center.
进一步的,多个无线传感器节点的组网方式是星型、链型或混合型网络结构。Further, the networking mode of multiple wireless sensor nodes is a star, chain or hybrid network structure.
进一步的,管理中心设置有GPRS服务器和用户界面,在用户界面上显示故障信息。Further, the management center is provided with a GPRS server and a user interface, and fault information is displayed on the user interface.
本发明的还提供一种无线传感器节点的工作方法,其特征在于,包括以下步骤:The present invention also provides a working method of a wireless sensor node, characterized in that, comprising the following steps:
a.故障检测模块定期检测Zigbee收发模块是否正常工作,如果检测到Zigbee收发模块正常工作,则进行步骤b,否则进行步骤c;a. The fault detection module regularly detects whether the Zigbee transceiver module is working normally, if it detects that the Zigbee transceiver module is working normally, then proceed to step b, otherwise proceed to step c;
b.故障检测模块继续定期检测,并向控制器发送状态正常反馈信号,控制器向状态切换模块发送工作命令,使传感器单元采集数据;b. The fault detection module continues to detect regularly, and sends a normal state feedback signal to the controller, and the controller sends a work command to the state switching module to make the sensor unit collect data;
c.故障检测模块向控制器发送故障信号,控制器收到故障信号后,向GPRS收发模块发送激活信号,同时向状态切换模块发送停止工作命令;c. The fault detection module sends a fault signal to the controller. After the controller receives the fault signal, it sends an activation signal to the GPRS transceiver module, and at the same time sends a stop working command to the state switching module;
d.GPRS收发模块收到激活信号后,接入GPRS网络,向管理中心发送故障信息;d. After the GPRS transceiver module receives the activation signal, it connects to the GPRS network and sends fault information to the management center;
e.状态切换模块在收到停止工作命令后,使传感器单元停止工作,等待维修;e. After the state switching module receives the stop working command, the sensor unit stops working and waits for maintenance;
f.当完成维修后,重新启动,返回步骤a。f. When the maintenance is completed, restart and return to step a.
进一步的,步骤b中,完成采集后,将采集到的数据发送给控制器,控制器将采集数据发送给Zigbee收发模块,Zigbee收发模块通过Zigbee无线通信的方式发送采集数据。Further, in step b, after the collection is completed, the collected data is sent to the controller, and the controller sends the collected data to the Zigbee transceiver module, and the Zigbee transceiver module sends the collected data through Zigbee wireless communication.
有益效果:基于本申请的方案,能在Zigbee通信模块故障时切换至备用通信模块以上报故障信息,同时停止采集数据,从而实现故障信息的及时上报,同时具有更低的能耗。以上通过先检测Zigbee收发模块是否正常工作,在Zigbee收发模块正常工作的情况下再促使传感器单元采集数据的方式,可以在Zigbee收发模块不正常时使得感器单元停止工作,降低了功耗;同时这样的先后顺序可以使得采集上报的数据更具实时性。本申请的方案,能在Zigbee通信模块故障时切换至备用通信模块以上报故障信息,同时停止采集数据,从而实现故障信息的及时上报,同时具有更低的能耗。Beneficial effects: Based on the scheme of the present application, when the Zigbee communication module fails, it can switch to the backup communication module to report the failure information, and at the same time stop collecting data, thereby realizing the timely reporting of the failure information and having lower energy consumption. By first detecting whether the Zigbee transceiver module is working normally, and then prompting the sensor unit to collect data when the Zigbee transceiver module is working normally, the sensor unit can stop working when the Zigbee transceiver module is abnormal, reducing power consumption; Such a sequence can make the collected and reported data more real-time. The solution of the present application can switch to the standby communication module to report the fault information when the Zigbee communication module fails, and stop collecting data at the same time, so as to realize the timely reporting of the fault information and have lower energy consumption at the same time.
附图说明Description of drawings
图1为本发明的无线传感器网络的示意图。FIG. 1 is a schematic diagram of a wireless sensor network of the present invention.
图2为本发明的无线传感器节点的结构的示意图。Fig. 2 is a schematic diagram of the structure of the wireless sensor node of the present invention.
图3为本发明的无线传感器节点的工作流程图。Fig. 3 is a working flowchart of the wireless sensor node of the present invention.
具体实施方式Detailed ways
以下结合说明书附图及具体实施例进一步说明本发明的技术方案。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示,本发明的无线传感器网络包括多个无线传感器节点,Zigbee-GPRS网关、管理中心。各个无线传感器节点之间以Zigbee方式实现组网,组网方式可以是星型、链型或混合型网络结构。无线传感器节点采集传感器数据,然后通过Zigbee无线通信的方式将采集数据无线发送至Zigbee-GPRS网关。所述Zigbee-GPRS网关执行数据转换,将Zigbee数据转换为适合GPRS方式发送的数据,并接入GPRS网络,将采集数据远距离无线发送给管理中心。管理中心设置有GPRS服务器和用户界面(未显示)。As shown in Figure 1, the wireless sensor network of the present invention includes multiple wireless sensor nodes, a Zigbee-GPRS gateway, and a management center. Zigbee is used to realize the networking between each wireless sensor node, and the networking mode can be star, chain or mixed network structure. The wireless sensor nodes collect sensor data, and then wirelessly send the collected data to the Zigbee-GPRS gateway through Zigbee wireless communication. The Zigbee-GPRS gateway performs data conversion, converts Zigbee data into data suitable for GPRS transmission, and accesses the GPRS network, and sends the collected data to the management center wirelessly over a long distance. The management center is provided with a GPRS server and user interface (not shown).
图2显示了无线传感器节点的具体结构。无线传感器节点10包括传感器单元,Zigbee收发模块,GPRS收发模块,故障检测模块,状态切换模块以及控制器。Figure 2 shows the specific structure of wireless sensor nodes. The wireless sensor node 10 includes a sensor unit, a Zigbee transceiver module, a GPRS transceiver module, a fault detection module, a state switching module and a controller.
传感器单元采集传感器数据,将采集到的数据发送给控制器的缓存(未显示),控制器将缓存中的采集数据发送给Zigbee收发模块,Zigbee收发模块通过Zigbee无线通信的方式将采集数据发送至Zigbee-GPRS网关。The sensor unit collects sensor data, and sends the collected data to the cache of the controller (not shown), and the controller sends the collected data in the cache to the Zigbee transceiver module, and the Zigbee transceiver module sends the collected data to the Zigbee-GPRS gateway.
故障检测模块定期检测Zigbee收发模块是否正常工作。如果检测到Zigbee收发模块正常工作,则故障检测模块继续定期检测,能正常工作是指不能正常的接收或发送数据,定期是指1分钟;并向控制器发送状态正常反馈信号,控制器向状态切换模块发送工作命令,使传感器单元采集数据。如果检测到Zigbee收发模块出现故障,则故障检测模块向控制器发送故障信号。控制器收到故障信号后,向GPRS收发模块发送激活信号,同时向状态切换模块发送停止工作命令。The fault detection module regularly detects whether the Zigbee transceiver module is working normally. If it is detected that the Zigbee transceiver module is working normally, the fault detection module will continue to detect regularly. It can work normally means that it cannot receive or send data normally, and regularly refers to 1 minute; and sends a normal status feedback signal to the controller, and the controller sends a status feedback signal to the controller. The switching module sends a work command to make the sensor unit collect data. If it is detected that the Zigbee transceiver module fails, the fault detection module sends a fault signal to the controller. After the controller receives the fault signal, it sends an activation signal to the GPRS transceiver module, and at the same time sends a stop working command to the state switching module.
GPRS收发模块收到激活信号后,接入GPRS网络,向管理中心发送故障信息,并在管理中心的用户界面上显示故障信息。故障信息可以包括故障时间,出现故障的无线传感器节点的ID或地理位置等。维修人员在看到故障信息后,可以尽快到现场进行维修。After receiving the activation signal, the GPRS transceiver module connects to the GPRS network, sends fault information to the management center, and displays the fault information on the user interface of the management center. The fault information may include fault time, ID or geographic location of the faulty wireless sensor node, etc. Maintenance personnel can go to the scene for maintenance as soon as possible after seeing the fault information.
作为优选,无线传感器节点还可以包括报警指示灯(未显示)。当故障检测模块检测到Zigbee收发模块出现故障时,报警指示灯闪烁。这样,维修人员就可以很容易地发现故障设备。Preferably, the wireless sensor node may also include an alarm indicator light (not shown). When the fault detection module detects that the Zigbee transceiver module fails, the alarm indicator light will flash. In this way, maintenance personnel can easily find faulty equipment.
状态切换模块在收到停止工作命令后,使传感器单元停止工作。具体来说,状态切换模块可以是设在传感器单元的供电电路上的开关,当收到工作命令时,开关导通,使电源向传感器单元供电。当收到停止工作命令时,开关断开,使电源停止向传感器单元供电。The state switching module makes the sensor unit stop working after receiving the stop working command. Specifically, the state switching module may be a switch provided on the power supply circuit of the sensor unit. When receiving a work command, the switch is turned on so that the power supply supplies power to the sensor unit. When the stop working command is received, the switch is opened, so that the power supply stops supplying power to the sensor unit.
图3显示了无线传感器节点的工作流程。Figure 3 shows the workflow of wireless sensor nodes.
首先,故障检测模块定期检测Zigbee收发模块是否正常工作。First, the fault detection module regularly detects whether the Zigbee transceiver module is working normally.
如果检测到Zigbee收发模块正常工作,则故障检测模块继续定期检测,并向控制器发送状态正常反馈信号,控制器向状态切换模块发送工作命令,使传感器单元采集数据。完成采集后,将采集到的数据发送给控制器,控制器将采集数据发送给Zigbee收发模块,Zigbee收发模块通过Zigbee无线通信的方式将采集数据发送至Zigbee-GPRS网关。If it is detected that the Zigbee transceiver module is working normally, the fault detection module continues to detect regularly, and sends a normal state feedback signal to the controller, and the controller sends a work command to the state switching module to make the sensor unit collect data. After the collection is completed, the collected data is sent to the controller, the controller sends the collected data to the Zigbee transceiver module, and the Zigbee transceiver module sends the collected data to the Zigbee-GPRS gateway through Zigbee wireless communication.
如果检测到Zigbee收发模块出现故障,则故障检测模块向控制器发送故障信号。控制器收到故障信号后,向GPRS收发模块发送激活信号,同时向状态切换模块发送停止工作命令。If it is detected that the Zigbee transceiver module fails, the fault detection module sends a fault signal to the controller. After the controller receives the fault signal, it sends an activation signal to the GPRS transceiver module, and at the same time sends a stop working command to the state switching module.
GPRS收发模块收到激活信号后,接入GPRS网络,向管理中心发送故障信息,并在管理中心的用户界面上显示故障信息。After receiving the activation signal, the GPRS transceiver module connects to the GPRS network, sends fault information to the management center, and displays the fault information on the user interface of the management center.
状态切换模块在收到停止工作命令后,使传感器单元停止工作,等待维修。After the state switching module receives the stop working order, the sensor unit stops working and waits for maintenance.
当维修人员完成维修后,重新启动,返回初始步骤。After the maintenance personnel complete the maintenance, restart and return to the initial step.
以上通过先检测Zigbee收发模块是否正常工作,在Zigbee收发模块正常工作的情况下再促使传感器单元采集数据的方式,可以在Zigbee收发模块不正常时使得感器单元停止工作,降低了功耗;同时这样的先后顺序可以使得采集上报的数据更具实时性。By first detecting whether the Zigbee transceiver module is working normally, and then prompting the sensor unit to collect data when the Zigbee transceiver module is working normally, the sensor unit can stop working when the Zigbee transceiver module is abnormal, reducing power consumption; Such a sequence can make the collected and reported data more real-time.
上文虽然结合附图对本发明的具体实施方式进行了描述,但是应该注意,在不脱离如通过所附权利要求定义的所描述方面和/或实施例的范围的情况下,可以进行各种变形和修改。While specific embodiments of the present invention have been described above in conjunction with the accompanying drawings, it should be noted that various modifications may be made without departing from the scope of the described aspects and/or embodiments as defined by the appended claims and modify.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810255752.0A CN108462974A (en) | 2018-03-27 | 2018-03-27 | Failure management method in wireless sensor node and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810255752.0A CN108462974A (en) | 2018-03-27 | 2018-03-27 | Failure management method in wireless sensor node and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108462974A true CN108462974A (en) | 2018-08-28 |
Family
ID=63236598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810255752.0A Pending CN108462974A (en) | 2018-03-27 | 2018-03-27 | Failure management method in wireless sensor node and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108462974A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109727440A (en) * | 2019-02-15 | 2019-05-07 | 天地科技股份有限公司 | A kind of wireless sensor |
CN110234089A (en) * | 2019-06-04 | 2019-09-13 | 苏州经贸职业技术学院 | A kind of wireless sensor network system and collecting method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102307225A (en) * | 2011-05-31 | 2012-01-04 | 中国科学院上海微系统与信息技术研究所 | Toxic gas monitoring system based on wireless sensor network |
CN103130095A (en) * | 2011-11-30 | 2013-06-05 | 深圳市一兆科技发展有限公司 | Elevator fault early warning method and relevant server |
CN203643622U (en) * | 2013-12-19 | 2014-06-11 | 南京信息工程大学 | A vehicle-mounted meteorological data automatic collection and uploading device |
CN203896510U (en) * | 2014-01-17 | 2014-10-22 | 重庆城市管理职业学院 | Self-adaption bidirectional automatic switching wireless communication device |
-
2018
- 2018-03-27 CN CN201810255752.0A patent/CN108462974A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102307225A (en) * | 2011-05-31 | 2012-01-04 | 中国科学院上海微系统与信息技术研究所 | Toxic gas monitoring system based on wireless sensor network |
CN103130095A (en) * | 2011-11-30 | 2013-06-05 | 深圳市一兆科技发展有限公司 | Elevator fault early warning method and relevant server |
CN203643622U (en) * | 2013-12-19 | 2014-06-11 | 南京信息工程大学 | A vehicle-mounted meteorological data automatic collection and uploading device |
CN203896510U (en) * | 2014-01-17 | 2014-10-22 | 重庆城市管理职业学院 | Self-adaption bidirectional automatic switching wireless communication device |
Non-Patent Citations (2)
Title |
---|
姜凤鸣: "无线传感器网络节点设备的模块化设计与实现", 硕士电子期刊, pages 14 - 15 * |
杜岗,徐静,于红,孙振: "一种ZigBee-GPRS网关系统设计", 自动化应用, vol. 2015, no. 3, pages 1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109727440A (en) * | 2019-02-15 | 2019-05-07 | 天地科技股份有限公司 | A kind of wireless sensor |
CN110234089A (en) * | 2019-06-04 | 2019-09-13 | 苏州经贸职业技术学院 | A kind of wireless sensor network system and collecting method |
CN110234089B (en) * | 2019-06-04 | 2022-07-29 | 苏州经贸职业技术学院 | Wireless sensor network system and data acquisition method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201248048Y (en) | Forest fire prewarning and monitoring system based on ZigBee sensing net | |
CN101883455B (en) | Lighting power-saving measurement and control system based on wireless sensor network | |
CN201178509Y (en) | Remote wireless control system for LED street lamp | |
CN109885002A (en) | A welding machine networking intelligent monitoring system and monitoring method | |
CN109378898B (en) | Intelligent regulation and control system and method for distribution transformer area | |
CN110672962A (en) | A state monitoring system for electrical equipment | |
CN102325155A (en) | Vital sign monitoring method and system based on wireless sensor network | |
CN105376534A (en) | Integrated electric power information communication monitoring platform based on wireless transmission technology | |
CN103543731A (en) | Remote intelligent monitoring system of wave crest welding machine | |
CN108390763A (en) | PoE interchangers, internet protocol camera system and its automatic testing method | |
CN106230122B (en) | A kind of power equipment safety monitoring system based on wireless network | |
CN106679734A (en) | Micro-grid on-line monitoring and fault diagnosis system | |
CN107018205A (en) | A kind of network intelligence fire fighting hydraulic pressure table control system and its control method | |
CN108462974A (en) | Failure management method in wireless sensor node and device | |
CN101604472A (en) | A wireless smoke detector | |
CN207968970U (en) | Fault management device in wireless sensor node | |
CN204096795U (en) | Based on the elevator remote monitoring system of WLAN | |
CN207301710U (en) | A kind of equipment state remote monitoring system | |
CN205404718U (en) | Disconnected electric detection means of circuit and system | |
CN202168256U (en) | Remote lighting control system based on Internet of things | |
CN202225886U (en) | Answer-type train approaching wireless pre-alarming equipment | |
CN104065581A (en) | Intelligent wireless router | |
CN115811129A (en) | Low-power consumption non-direct-buried urban distribution cable monitoring system and method | |
CN203455675U (en) | ZigBee technology based energy consumption monitoring system | |
CN103269127A (en) | Remote monitoring system and remote monitoring method of communication base station power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |