CN108216409A - A kind of flexible wiggle climbing robot - Google Patents
A kind of flexible wiggle climbing robot Download PDFInfo
- Publication number
- CN108216409A CN108216409A CN201711397738.6A CN201711397738A CN108216409A CN 108216409 A CN108216409 A CN 108216409A CN 201711397738 A CN201711397738 A CN 201711397738A CN 108216409 A CN108216409 A CN 108216409A
- Authority
- CN
- China
- Prior art keywords
- clamping
- spring
- fixed
- cable
- seat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009194 climbing Effects 0.000 title claims abstract description 31
- 230000000712 assembly Effects 0.000 claims abstract description 33
- 238000000429 assembly Methods 0.000 claims abstract description 33
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 18
- 230000033001 locomotion Effects 0.000 claims description 8
- 235000013351 cheese Nutrition 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 230000002572 peristaltic effect Effects 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000009193 crawling Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002493 climbing effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明适用于攀爬机器人领域,提供了一种柔性蠕动攀爬机器人,包括两个导向组件、两个开式夹持组件、主簧和驱动组件,两个开式夹持组件均夹紧在缆索上,并可沿缆索的径向方向开合运动;两个导向组件分别安装在两个开式夹持组件的两相对外侧,并始终夹置在缆索的外缘上,且导向组件可沿缆索的径向方向弹性收缩;主簧连接在两个开式夹持组件的两相对内侧,且主簧的一端与其中一个开式夹持组件固定连接,其另一端与驱动组件旋接,驱动组件固定在另一个开式夹持组件上,驱动组件带动主簧旋转,主簧随着驱动组件的转动相应地伸长或缩短。该机器人可适应不同直径的缆索,能够轻松应对具有曲率的缆索环境,环境适应能力较好。
The present invention is applicable to the field of climbing robots, and provides a flexible peristaltic climbing robot, which includes two guide assemblies, two open clamp assemblies, a main spring and a drive assembly, and the two open clamp assemblies are clamped on on the cable, and can open and close along the radial direction of the cable; the two guide assemblies are installed on the two opposite outer sides of the two open clamping assemblies, and are always clamped on the outer edge of the cable, and the guide assemblies can be moved along the The radial direction of the cable is elastically contracted; the main spring is connected to the two opposite inner sides of the two open clamping components, and one end of the main spring is fixedly connected to one of the open clamping components, and the other end is screwed to the driving component to drive The component is fixed on another open clamping component, the driving component drives the main spring to rotate, and the main spring is extended or shortened correspondingly with the rotation of the driving component. The robot can adapt to cables of different diameters, can easily cope with the cable environment with curvature, and has good environmental adaptability.
Description
技术领域technical field
本发明属于攀爬机器人领域,尤其涉及一种柔性蠕动攀爬机器人。The invention belongs to the field of climbing robots, in particular to a flexible peristaltic climbing robot.
背景技术Background technique
缆索是斜拉桥、悬索桥的主要受力构件之一,长期暴露在空气中,在大桥载荷、雨振、风振的长期作用下,缆索表面的保护层(聚乙烯PE)易出现硬化、老化等破坏现象,缆索内部钢丝束易出现断丝、断裂,危机桥梁安全,因此,缆索检测工作至关重要。The cable is one of the main stress-bearing components of the cable-stayed bridge and the suspension bridge. It is exposed to the air for a long time. Under the long-term action of the bridge load, rain vibration and wind vibration, the protective layer (polyethylene PE) on the cable surface is prone to hardening and aging. And other damage phenomena, the steel wire bundle inside the cable is prone to broken wires and fractures, which endangers the safety of the bridge. Therefore, the cable inspection work is very important.
目前,常规的检测方式是人工巡检或使用缆索攀爬机器人进行检测。人工巡检的方式不仅工作量大、效率低,而且安全性较差。现有的缆索攀爬机器人通常采用轮式结构,在抱紧缆索时由于接触面小,导致缆索表面保护层被破坏;同时,轮式驱动的缆索检测机器人在高空作业时容易出现打滑、卡死现象。现有的缆索攀爬机器人的框架多采用固定、封闭的轮式夹持结构,变径范围受外框限制,夹持力调节范围小,夹持环境变化时易脱落松动。At present, the conventional detection method is manual inspection or detection using a cable climbing robot. The way of manual inspection is not only heavy workload, low efficiency, but also poor security. Existing cable climbing robots usually adopt a wheeled structure. When the cable is tightly held, the contact surface is small, resulting in damage to the cable surface protection layer; at the same time, the wheel-driven cable detection robot is prone to slipping and jamming when working at high altitudes. Phenomenon. The frame of the existing cable climbing robot mostly adopts fixed and closed wheel type clamping structure, the diameter change range is limited by the outer frame, the clamping force adjustment range is small, and it is easy to fall off and loosen when the clamping environment changes.
专利一种斜拉桥缆索检测机器人(201520031317.1)、专利基于平行四边形独立悬挂的缆索检测机器人(201410332561.1)和专利缆索检测机器人(201510553087.X)均采用刚性的机器人本体,难以应对具有曲率的缆索。而且,当缆索上出现凸起时,机器人的刚性本体容易卡死,环境适应能力较差。The patented cable-stayed bridge cable detection robot (201520031317.1), the patented cable detection robot based on parallelogram independent suspension (201410332561.1) and the patented cable detection robot (201510553087.X) all use rigid robot bodies, which are difficult to deal with cables with curvature. Moreover, when a protrusion appears on the cable, the rigid body of the robot is easily stuck, and the environmental adaptability is poor.
发明内容Contents of the invention
本发明所要解决的技术问题在于提供一种柔性蠕动攀爬机器人,旨在解决现有技术中的攀爬机器人难以应对具有曲率的缆索,且无法自动适应障碍物的问题。The technical problem to be solved by the present invention is to provide a flexible peristaltic climbing robot, which aims to solve the problem that the climbing robot in the prior art is difficult to cope with the cables with curvature and cannot automatically adapt to obstacles.
为解决上述技术问题,本发明是这样实现的,一种柔性蠕动攀爬机器人,包括两个开式夹持组件、主簧和驱动组件,所述两个开式夹持组件沿缆索轴向方向间隔设置,并可沿所述缆索的径向方向开合运动,且在任一时间,至少有一个开式夹持组件夹紧所述缆索;所述主簧的一端与其中一个开式夹持组件固定连接,其另一端与所述驱动组件旋接,所述驱动组件固定在另一个开式夹持组件上,所述驱动组件带动所述主簧旋转,所述主簧随着驱动组件的转动相应地伸长或缩短。In order to solve the above-mentioned technical problems, the present invention is achieved in this way, a flexible peristaltic climbing robot includes two open clamping assemblies, a main spring and a drive assembly, and the two open clamping assemblies are aligned along the axial direction of the cable. set at intervals, and can open and close along the radial direction of the cable, and at any time, at least one open clamping component clamps the cable; one end of the main spring is connected to one of the open clamping components Fixed connection, the other end of which is screwed to the drive assembly, the drive assembly is fixed on another open clamp assembly, the drive assembly drives the main spring to rotate, and the main spring rotates with the drive assembly lengthen or shorten accordingly.
进一步地,所述驱动组件包括驱动电机、第一螺旋驱动齿轮、第二螺旋驱动齿轮、中空的螺旋铜套、螺旋驱动轴、上盖板和下盖板,所述螺旋铜套和螺旋驱动轴分别可转动地安装在所述上盖板与下盖板之间,所述上盖板和下盖板分别固定在所述开式夹持组件上;所述第一螺旋驱动齿轮套固在所述螺旋铜套的外缘上,所述第二螺旋驱动齿轮套固在所述螺旋驱动轴的外缘上,且所述第一螺旋驱动齿轮与第二螺旋驱动齿轮相互啮合;所述螺旋铜套内具有内螺纹,所述主簧与所述螺旋铜套旋接,所述螺旋驱动轴与所述驱动电机的动力输出轴固定连接。Further, the driving assembly includes a driving motor, a first helical driving gear, a second helical driving gear, a hollow helical copper sleeve, a helical driving shaft, an upper cover and a lower cover, and the helical copper sleeve and the helical driving shaft are respectively rotatably installed between the upper cover plate and the lower cover plate, and the upper cover plate and the lower cover plate are respectively fixed on the open clamping assembly; the first helical drive gear is sleeved and fixed on the On the outer edge of the spiral copper sleeve, the second spiral drive gear is fixed on the outer edge of the spiral drive shaft, and the first spiral drive gear and the second spiral drive gear mesh with each other; the spiral copper There is an internal thread in the sleeve, the main spring is screwed with the helical copper sleeve, and the helical drive shaft is fixedly connected with the power output shaft of the driving motor.
进一步地,所述开式夹持组件包括固定座、夹持轮、两个夹持臂以及旋转动力源,所述夹持轮固定在所述固定座朝向被夹持物的一侧面上,所述两个夹持臂分别可转动地安装在所述固定座的两侧;所述旋转动力源安装在所述固定座上,并与所述两个夹持臂传动连接,所述旋转动力源带动所述两个夹持臂相互开合运动;每一个所述的夹持臂上远离所述固定座的一端均安装有一个可弹性形变的夹持掌组件,所述两个夹持臂上的夹持掌组件与夹持轮共同夹紧缆索。Further, the open clamping assembly includes a fixed seat, a clamping wheel, two clamping arms and a rotating power source, the clamping wheel is fixed on the side of the fixed seat facing the object to be clamped, the The two clamping arms are respectively rotatably installed on both sides of the fixed base; the rotating power source is installed on the fixing base and is connected to the two clamping arms in transmission, and the rotating power source drives The two clamping arms are mutually opened and closed; an elastically deformable clamping palm assembly is installed on the end of each of the clamping arms away from the fixed seat, and the clamping palm assembly on the two clamping arms is The clamping palm assembly and the clamping wheel cooperate to clamp the cable.
进一步地,所述夹持臂包括转接座、夹持座、第一曲柄、第二曲柄以及连杆,所述转接座的一端铰接在所述固定座的一侧,所述夹持座的一端铰接在所述转接座的另一端上,所述夹持掌组件安装在所述夹持座的另一端;所述第一曲柄固定在所述固定座上,所述第二曲柄固定在所述夹持座上,所述连杆的两端分别与所述第一曲柄和第二曲柄铰接。Further, the clamping arm includes an adapter base, a clamp base, a first crank, a second crank and a connecting rod, one end of the adapter base is hinged on one side of the fixed base, and the clamp base One end of one end is hinged on the other end of the adapter base, and the clamping palm assembly is installed on the other end of the clamping base; the first crank is fixed on the fixed base, and the second crank is fixed On the clamping seat, two ends of the connecting rod are hinged to the first crank and the second crank respectively.
进一步地,所述旋转动力源的动力输出端上安装有第一直齿轮,所述固定座内穿设有旋转轴,所述旋转轴上套固有第二直齿轮,且所述旋转轴的两端分别具有一个第一锥齿轮,每一个所述夹持臂的转接座上均固定有一个第二锥齿轮,所述第一直齿轮与第二直齿轮相互啮合,所述旋转轴两端的两个第一锥齿轮分别与两个转接座上的两个第二锥齿轮相互啮合。Further, a first spur gear is installed on the power output end of the rotating power source, a rotating shaft is pierced in the fixed seat, and a second spur gear is inherently sleeved on the rotating shaft, and the two sides of the rotating shaft There is a first bevel gear at each end, and a second bevel gear is fixed on the adapter seat of each clamping arm. The first spur gear and the second spur gear mesh with each other. The two first bevel gears mesh with the two second bevel gears on the two adapter seats respectively.
进一步地,所述夹持掌组件包括夹持掌、叉架、弹簧导向轴、第一导向弹簧、中空导向套以及压力传感器,所述夹持掌可转动地安装在所述叉架的底部,所述弹簧导向轴的底部固定在所述叉架的顶部;所述弹簧导向轴和第一导向弹簧均安装在所述中空导向套内,所述中空导向套内设置有用于防止所述弹簧导向轴掉出的限位台阶,所述弹簧导向轴的周缘上相应地设置有限位凸起,所述弹簧导向轴可沿所述导向套上下移动,所述限位凸起相应地与所述限位台阶相互分离或相互抵顶;所述压力传感器安装在所述中空导向套的顶部,所述第一导向弹簧的一端始终与所述压力传感器相接触,其另一端套设在所述弹簧导向轴上,并相应地抵顶在所述弹簧导向轴的限位凸起上,所述弹簧导向轴沿所述导向套的上下移动,带动所述第一导向弹簧挤压所述压力传感器。Further, the clamping palm assembly includes a clamping palm, a fork, a spring guide shaft, a first guide spring, a hollow guide sleeve and a pressure sensor, and the clamping palm is rotatably mounted on the bottom of the fork, The bottom of the spring guide shaft is fixed on the top of the fork; the spring guide shaft and the first guide spring are installed in the hollow guide sleeve, and the hollow guide sleeve is provided with a device for preventing the spring from guiding The limit step where the shaft falls out, the limit protrusion is correspondingly provided on the periphery of the spring guide shaft, the spring guide shaft can move up and down along the guide sleeve, the limit protrusion is correspondingly aligned with the limit The steps are separated from each other or against each other; the pressure sensor is installed on the top of the hollow guide sleeve, one end of the first guide spring is always in contact with the pressure sensor, and the other end is sleeved on the spring guide shaft, and correspondingly abut against the limit protrusion of the spring guide shaft, and the spring guide shaft moves up and down along the guide sleeve, driving the first guide spring to press the pressure sensor.
进一步地,所述攀爬机器人还包括两个导向组件,所述两个导向组件分别安装在所述两个开式夹持组件的两相对外侧,并始终夹置在所述缆索的外缘上,且所述导向组件可沿所述缆索的径向方向弹性收缩。Further, the climbing robot also includes two guide assemblies, the two guide assemblies are respectively installed on the two opposite outer sides of the two open clamp assemblies, and are always clamped on the outer edge of the cable , and the guide assembly can be elastically contracted along the radial direction of the cable.
进一步地,所述导向组件包括若干导向轮部件、若干第二导向弹簧、若干销轴和若干固定座,所述固定座固定在所述开式夹持组件上,所述导向轮部件通过所述销轴可转动地安装在所述固定座上,相邻两个导向轮部件之间连接有所述第二导向弹簧。Further, the guide assembly includes several guide wheel parts, several second guide springs, several pin shafts and several fixed seats, the fixed seats are fixed on the open clamping assembly, and the guide wheel parts pass through the The pin shaft is rotatably installed on the fixed base, and the second guide spring is connected between two adjacent guide wheel parts.
进一步地,所述导向轮部件包括导向轮连接杆、固定环、导向轮座和橡胶轮,所述导向轮连接杆的底部通过所述销轴可转动地安装在所述固定座上,所述固定环固定在所述导向轮连接杆的中部,且所述固定环的两端分别开设有用于连接第二导向弹簧的连接孔;所述导向轮座绕所述导向轮连接杆的轴线可转动地安装在所述导向轮连接杆的顶部,所述橡胶轮可转动地安装在所述导向轮座上,并始终与所述缆索相接触。Further, the guide wheel component includes a guide wheel connecting rod, a fixed ring, a guide wheel seat and a rubber wheel, the bottom of the guide wheel connecting rod is rotatably mounted on the fixed base through the pin shaft, the The fixed ring is fixed on the middle part of the connecting rod of the guide wheel, and the two ends of the fixed ring are respectively provided with connecting holes for connecting the second guide spring; the guide wheel seat is rotatable around the axis of the connecting rod of the guiding wheel The rubber wheel is rotatably installed on the guide wheel seat and is always in contact with the cable.
进一步地,所述导向轮座上开设有通孔,所述通孔的一侧开设有横槽,所述导向轮连接杆穿设在所述导向轮座的通孔内,且所述导向轮连接杆上与所述横槽相对应的位置处具有螺纹孔,平圆头螺钉穿过所述横槽并螺纹连接在所述导向轮连接杆上。Further, a through hole is opened on the guide wheel seat, and a transverse groove is opened on one side of the through hole, and the guide wheel connecting rod is passed through the through hole of the guide wheel seat, and the guide wheel A threaded hole is provided at a position corresponding to the transverse groove on the connecting rod, and a flat head screw passes through the transverse groove and is threadedly connected to the connecting rod of the guide wheel.
本发明与现有技术相比,有益效果在于:本发明的一种柔性蠕动攀爬机器人,其包括两个开式夹持组件、主簧和驱动组件。驱动组件可使得主簧相应地伸长或缩短,从而实现攀爬动作,该机器人利用主簧作为传递部件,使得机器人本体具备柔性和自动适应能力,同时,利用所述开式夹持组件的开合运动可适应不同直径的缆索,变径范围较大。在攀爬过程中遇到障碍物时可以较好地越障,环境适应能力较好,同时,由于机器人本体由主簧构成,机器人本体可以弯曲,从而能够轻松应对具有曲率的缆索环境。Compared with the prior art, the present invention has beneficial effects in that: a flexible peristaltic climbing robot of the present invention includes two open clamping assemblies, a main spring and a driving assembly. The driving assembly can make the main spring extend or shorten accordingly, so as to realize the climbing action. The robot uses the main spring as a transmission part, so that the robot body has flexibility and automatic adaptability. The joint movement can adapt to cables of different diameters, and the range of diameter change is large. When encountering obstacles during the climbing process, it can better overcome obstacles and have better environmental adaptability. At the same time, because the robot body is composed of a main spring, the robot body can be bent, so that it can easily cope with the cable environment with curvature.
附图说明Description of drawings
图1是本发明实施例提供的一种柔性蠕动攀爬机器人的三维结构示意图;Fig. 1 is a three-dimensional structural schematic diagram of a flexible peristaltic climbing robot provided by an embodiment of the present invention;
图2是图1的主视结构示意图;Fig. 2 is a front view structural schematic diagram of Fig. 1;
图3是图1中除去电机的驱动组件的三维结构示意图;Fig. 3 is a three-dimensional structural schematic view of the driving assembly except the motor in Fig. 1;
图4是图3的剖面结构示意图;Fig. 4 is a schematic cross-sectional structure diagram of Fig. 3;
图5是图1中开式夹持组件的三维结构示意图;Fig. 5 is a schematic diagram of a three-dimensional structure of the open clamping assembly in Fig. 1;
图6是图5的主视结构示意图;Fig. 6 is a schematic diagram of the front view of Fig. 5;
图7是图6的另一个工作状态的结构示意图;Fig. 7 is a schematic structural diagram of another working state of Fig. 6;
图8是图5的仰视结构示意图;Fig. 8 is a schematic bottom view of Fig. 5;
图9是图5的左视结构示意图;Fig. 9 is a schematic view of the left view of Fig. 5;
图10是图5中夹持掌组件的结构示意图;Fig. 10 is a schematic structural view of the clamping palm assembly in Fig. 5;
图11是图10的局部剖视主视结构示意图;Fig. 11 is a partial cross-sectional front structural schematic diagram of Fig. 10;
图12是图1中导向组件的三维结构示意图;Fig. 12 is a schematic diagram of a three-dimensional structure of the guide assembly in Fig. 1;
图13是图12中导向轮部件的三维结构示意图。Fig. 13 is a three-dimensional structural schematic diagram of the guide wheel component in Fig. 12 .
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1和图2所示,为本发明实施例提供的一种柔性蠕动攀爬机器人100,其包括两个导向组件1、两个开式夹持组件2、主簧3和驱动组件4。As shown in FIG. 1 and FIG. 2 , a flexible crawling climbing robot 100 provided by an embodiment of the present invention includes two guiding assemblies 1 , two open clamping assemblies 2 , a main spring 3 and a driving assembly 4 .
所述两个开式夹持组件2沿缆索50的轴向方向间隔设置,并可沿所述缆索50的径向方向开合运动,从而使得所述开式夹持组件2能够夹持不同直径的缆索,变径范围较大;并且在任一时间,至少有一个开式夹持组件2夹紧所述缆索50,以保证机器人100不会下滑。所述两个导向组件1分别安装在所述两个开式夹持组件2的两相对外侧,并始终夹置在所述缆索50的外缘上,且所述导向组件1可沿所述缆索50的径向方向弹性收缩,用于对所述机器人100的运动进行导向。The two open clamping assemblies 2 are arranged at intervals along the axial direction of the cable 50, and can be opened and closed along the radial direction of the cable 50, so that the open clamping assemblies 2 can clamp different diameters. The cable has a large diameter change range; and at any time, at least one open clamping assembly 2 clamps the cable 50 to ensure that the robot 100 will not slide down. The two guide assemblies 1 are respectively installed on the two opposite outer sides of the two open clamp assemblies 2, and are always clamped on the outer edge of the cable 50, and the guide assembly 1 can move along the cable The elastic contraction of the radial direction of 50 serves to guide the movement of the robot 100 .
所述主簧3连接在所述两个开式夹持组件2的两相对内侧,且所述主簧3的一端与其中一个开式夹持组件2固定连接,其另一端与所述驱动组件4旋接,所述驱动组件4固定在另一个开式夹持组件2上。所述驱动组件4带动所述主簧3旋转,所述主簧3随着驱动组件4的转动相应地伸长或缩短,从而为机器人100的攀爬提供动力。The main spring 3 is connected to two opposite inner sides of the two open clamping assemblies 2, and one end of the main spring 3 is fixedly connected to one of the open clamping assemblies 2, and the other end thereof is connected to the drive assembly. 4 is screwed, and the driving assembly 4 is fixed on another open clamping assembly 2. The driving assembly 4 drives the main spring 3 to rotate, and the main spring 3 is extended or shortened correspondingly with the rotation of the driving assembly 4 , so as to provide power for the climbing of the robot 100 .
参照图3和图4,所述驱动组件4包括驱动电机41、第一螺旋驱动齿轮42、第二螺旋驱动齿轮43、中空的螺旋铜套44、螺旋驱动轴45、上盖板46和下盖板47。所述螺旋铜套11和螺旋驱动轴45分别可转动地安装在所述上盖板46与下盖板47之间,所述上盖板46和下盖板47分别固定在所述开式夹持组件2上,用于固定各部件的相对位置。所述第一螺旋驱动齿轮42套固在所述螺旋铜套44的外缘上,所述第二螺旋驱动齿轮43套固在所述螺旋驱动轴45的外缘上,且所述第一螺旋驱动齿轮42与第二螺旋驱动齿轮43相互啮合,用于动力传递。所述螺旋铜套44内具有内螺纹(未标注),所述主簧3与所述螺旋铜套44旋接,所述螺旋驱动轴45与所述驱动电机41的动力输出轴固定连接。3 and 4, the driving assembly 4 includes a driving motor 41, a first helical driving gear 42, a second helical driving gear 43, a hollow helical copper sleeve 44, a helical driving shaft 45, an upper cover plate 46 and a lower cover Plate 47. The spiral copper sleeve 11 and the spiral drive shaft 45 are respectively rotatably installed between the upper cover plate 46 and the lower cover plate 47, and the upper cover plate 46 and the lower cover plate 47 are respectively fixed on the open clamp On the holding assembly 2, it is used to fix the relative position of each component. The first helical driving gear 42 is sleeved on the outer edge of the helical copper sleeve 44, the second helical driving gear 43 is sleeved on the outer edge of the helical driving shaft 45, and the first helical The driving gear 42 meshes with the second helical driving gear 43 for power transmission. The helical copper sleeve 44 has an internal thread (not marked), the main spring 3 is screwed to the helical copper sleeve 44 , and the helical drive shaft 45 is fixedly connected to the power output shaft of the drive motor 41 .
具体工作时,通过所述驱动电机41带动所述螺旋驱动轴45转动,所述螺旋驱动轴45的转动会相应地带动第二螺旋驱动齿轮43转动,所述第二螺旋驱动齿轮43通过齿轮啮合带动第一螺旋驱动齿轮42转动,所述第一螺旋驱动齿轮的转动相应地带动所述螺旋铜套44转动。由于所述主簧3与螺旋铜套44旋接,因此,所述螺旋铜套44的转动会带动主簧3旋转,从而通过所述驱动电机41的正转和反转可使得所述主簧3相应地伸长或缩短。During specific work, the drive motor 41 drives the helical drive shaft 45 to rotate, and the rotation of the helical drive shaft 45 will correspondingly drive the second helical drive gear 43 to rotate, and the second helical drive gear 43 is engaged by gears The rotation of the first helical driving gear 42 is driven, and the rotation of the first helical driving gear correspondingly drives the rotation of the helical copper sleeve 44 . Since the main spring 3 is screwed with the helical copper sleeve 44, the rotation of the helical copper sleeve 44 will drive the main spring 3 to rotate, so that the forward rotation and reverse rotation of the drive motor 41 can make the main spring 3 lengthen or shorten accordingly.
参照图5至图7,所述开式夹持组件2包括固定座21、夹持轮22、两个夹持臂23以及旋转动力源24。所述夹持轮22固定在所述固定座21的顶部,所述两个夹持臂23分别可转动地安装在所述固定座21的两侧。所述旋转动力源24安装在所述固定座21上,并与所述两个夹持臂23传动连接,所述旋转动力源24带动所述两个夹持臂23相互开合运动,用于调节夹持直径,以适应不同直径的缆索。每一个所述的夹持臂23上远离所述固定座21的一端均安装有一个可弹性形变的夹持掌组件25,所述两个夹持臂23上的夹持掌组件25与夹持轮22共同夹紧缆索50,采用轮掌结合的机构可有效防止机器人100下滑,并利用所述夹持掌组件25的弹性形变实现夹持力的柔性控制。Referring to FIGS. 5 to 7 , the open clamping assembly 2 includes a fixed base 21 , a clamping wheel 22 , two clamping arms 23 and a rotating power source 24 . The clamping wheel 22 is fixed on the top of the fixing base 21 , and the two clamping arms 23 are rotatably mounted on two sides of the fixing base 21 respectively. The rotating power source 24 is installed on the fixing seat 21 and is connected to the two clamping arms 23 in transmission, and the rotating power source 24 drives the two clamping arms 23 to open and close each other for Adjust the clamping diameter to accommodate cables of different diameters. An elastically deformable clamping palm assembly 25 is installed on each of the clamping arms 23 away from the end of the fixed seat 21, and the clamping palm assembly 25 on the two clamping arms 23 is connected with the clamping palm assembly 25. The wheels 22 clamp the cable 50 together, and the combination of wheels and palms can effectively prevent the robot 100 from sliding down, and use the elastic deformation of the clamping palm assembly 25 to achieve flexible control of the clamping force.
所述夹持臂23包括转接座231、夹持座232、第一曲柄233、第二曲柄234以及连杆235。所述转接座231的一端铰接在所述固定座21的一侧,所述夹持座232的一端铰接在所述转接座231的另一端上,所述夹持掌组件25安装在所述夹持座232的另一端;所述第一曲柄233固定在所述固定座21上,所述第二曲柄234固定在所述夹持座232上,所述连杆235的两端分别与所述第一曲柄233和第二曲柄234铰接。由于第一曲柄233的位置固定不变,而连杆235的一端铰接在第一曲柄233上,因此所述连杆235只能绕着第一曲柄233的铰接点做圆弧运动。同时,由于所述第二曲柄234与夹持座232固定连接,因此,当所述转接座231转动时,所述夹持座232也会跟着转动,并利用连接在第一曲柄233和第二曲柄234之间的连杆235对夹持座232起限位作用,使夹持座232无法沿转接座231自由转动,保证夹持的稳定性。The clamping arm 23 includes an adapter base 231 , a clamping base 232 , a first crank 233 , a second crank 234 and a connecting rod 235 . One end of the adapter base 231 is hinged on one side of the fixed base 21, one end of the clamping base 232 is hinged on the other end of the adapter base 231, and the clamping palm assembly 25 is mounted on the The other end of the clamping seat 232; the first crank 233 is fixed on the fixed seat 21, the second crank 234 is fixed on the clamping seat 232, and the two ends of the connecting rod 235 are respectively connected with The first crank 233 and the second crank 234 are hinged. Since the position of the first crank 233 is fixed and one end of the connecting rod 235 is hinged on the first crank 233 , the connecting rod 235 can only move in a circular arc around the hinge point of the first crank 233 . At the same time, since the second crank 234 is fixedly connected with the clamping seat 232, when the adapter seat 231 rotates, the clamping seat 232 will also rotate accordingly, and utilize the connections between the first crank 233 and the second crank 233 to rotate. The connecting rod 235 between the two cranks 234 plays a limiting role on the clamping seat 232, so that the clamping seat 232 cannot freely rotate along the adapter seat 231, ensuring the stability of clamping.
参照图8,所述旋转动力源24的动力输出端上安装有第一直齿轮61,在本发明实施例中,所述旋转动力源24为旋转电机,所述第一直齿轮61通过联轴器62连接在所述旋转电机24的动力输出端上。所述固定座21内穿设有旋转轴63,所述旋转轴63上套固有第二直齿轮64,且所述旋转轴63的两端分别具有一个第一锥齿轮65,每一个所述夹持臂23的转接座231上均固定有一个第二锥齿轮66,所述第一直齿轮61与第二直齿轮64相互啮合,所述旋转轴63两端的两个第一锥齿轮65分别与两个转接座231上的两个第二锥齿轮66相互啮合。Referring to Fig. 8, a first spur gear 61 is installed on the power output end of the rotary power source 24. In the embodiment of the present invention, the rotary power source 24 is a rotary motor, and the first spur gear 61 is connected through a shaft coupling. The generator 62 is connected to the power output end of the rotating electrical machine 24 . The fixed seat 21 is pierced with a rotating shaft 63, the second spur gear 64 is covered on the rotating shaft 63, and the two ends of the rotating shaft 63 respectively have a first bevel gear 65, each of the clips A second bevel gear 66 is fixed on the adapter seat 231 of the holding arm 23, the first spur gear 61 and the second spur gear 64 mesh with each other, and the two first bevel gears 65 at both ends of the rotating shaft 63 are respectively It meshes with the two second bevel gears 66 on the two adapter seats 231 .
所述旋转电机24的转动会带动所述第一直齿轮61转动,所述第一直齿轮61通过与第二直齿轮64的啮合带动旋转轴63转动,所述旋转轴63的转动带动两端的两个第一锥齿轮65相应地转动,所述两个第一锥齿轮65的转动相应地带动所述第二锥齿轮66转动。由于所述第二锥齿轮66与转接座231固定连接,因此第二锥齿轮66的转动会带动转接座231相应地转动,从而通过所述旋转电机24的正转和反转可实现所述两个夹持臂3的开合运动。The rotation of the rotating motor 24 will drive the first spur gear 61 to rotate, and the first spur gear 61 will drive the rotation shaft 63 to rotate through the meshing with the second spur gear 64, and the rotation of the rotation shaft 63 will drive the rotation of the two ends. The two first bevel gears 65 rotate accordingly, and the rotation of the two first bevel gears 65 correspondingly drives the rotation of the second bevel gear 66 . Since the second bevel gear 66 is fixedly connected to the adapter base 231, the rotation of the second bevel gear 66 will drive the adapter base 231 to rotate accordingly, so that the forward rotation and reverse rotation of the rotating motor 24 can realize all The opening and closing movement of the two clamping arms 3 is described.
继续参照图9,在本发明实施例中,所述两个夹持臂23上的两个夹持掌组件25相对设置,且所述两个夹持掌组件25与所述夹持轮22沿固定座边缘间隔分布,从而使得所述两个夹持臂23上的两个夹持掌组件25位于同一个竖直平面内,且所述两个夹持掌组件25与所述夹持轮22不在同一个竖直平面内。通过将柔性的夹持掌组件25与夹持轮22偏心设置,则相当于对缆索50有一个异面剪切的作用,利用了杠杆原理,增加了抱紧压力,使得整个夹持装置100不易打滑。Continuing to refer to FIG. 9 , in the embodiment of the present invention, the two clamping palm assemblies 25 on the two clamping arms 23 are arranged oppositely, and the two clamping palm assemblies 25 and the clamping wheel 22 are arranged along the The edge of the fixed seat is distributed at intervals, so that the two clamping palm assemblies 25 on the two clamping arms 23 are located in the same vertical plane, and the two clamping palm assemblies 25 and the clamping wheel 22 not in the same vertical plane. By eccentrically setting the flexible clamping palm assembly 25 and the clamping wheel 22, it is equivalent to a different-plane shearing effect on the cable 50, utilizing the principle of leverage to increase the clamping pressure, so that the entire clamping device 100 is not easy skidding.
参照图10和图11,所述夹持掌组件25包括夹持掌251、叉架252、弹簧导向轴253、导向弹簧254、中空导向套255、压力传感器256、导销257、连接销258和至少一对回位弹簧259。所述叉架252呈U型形状,所述U型叉架252的两侧壁上均开设有通孔(未标注);所述夹持掌251的顶部具有耳板2511,所述耳板2511插接在所述U型叉架252的U型槽内,且所述耳板2511上与所述U型叉架252的通孔相对应的位置处也开设有通孔(未标注),所述连接销258依次穿过所述U型叉架252的通孔以及夹持掌耳板2511上的通孔,从而将所述夹持掌251可转动地安装在所述叉架252的底部。同时,所述至少一对回位弹簧259对称安装在所述U型叉架252与支持掌251的两侧,每一个所述的回位弹簧259的两端分别与所述U型叉架252和支持掌251连接,从而使得所述支持掌251在不受力状态下,能够利用所述回位弹簧259回归原始位置。10 and 11, the clamping palm assembly 25 includes a clamping palm 251, a fork 252, a spring guide shaft 253, a guide spring 254, a hollow guide sleeve 255, a pressure sensor 256, a guide pin 257, a connecting pin 258 and At least one pair of return springs 259 . The fork frame 252 is U-shaped, and the two side walls of the U-shaped fork frame 252 are provided with through holes (not marked); the top of the clamping palm 251 has an ear plate 2511, and the ear plate 2511 Inserted in the U-shaped groove of the U-shaped fork frame 252, and the position corresponding to the through hole of the U-shaped fork frame 252 on the ear plate 2511 is also provided with a through hole (not marked). The connecting pin 258 passes through the through hole of the U-shaped fork frame 252 and the through hole on the clamping lug plate 2511 in turn, so that the clamping palm 251 is rotatably mounted on the bottom of the fork frame 252 . At the same time, the at least one pair of return springs 259 are symmetrically installed on both sides of the U-shaped fork 252 and the support palm 251, and the two ends of each of the return springs 259 are respectively connected to the U-shaped fork 252. It is connected with the supporting palm 251, so that the supporting palm 251 can return to the original position by the return spring 259 under the unstressed state.
参照图11,所述叉架252的顶部开设有通孔(未图示),所述弹簧导向轴253的底部开设有螺纹槽2531,所述弹簧导向轴253与所述叉架252螺栓连接,从而将所述弹簧导向轴253的底部固定在所述叉架252的顶部。所述弹簧导向轴253和导向弹簧254均安装在所述中空导向套255内,所述中空导向套255内设置有用于防止所述弹簧导向轴253掉出的限位台阶2551,所述弹簧导向轴253的周缘上相应地设置有限位凸起2532,所述弹簧导向轴253可沿所述导向套255上下移动,所述限位凸起2532相应地与所述限位台阶2551相互分离或相互抵顶。Referring to Fig. 11, the top of the fork frame 252 is provided with a through hole (not shown), the bottom of the spring guide shaft 253 is provided with a threaded groove 2531, and the spring guide shaft 253 is bolted to the fork frame 252, Thus the bottom of the spring guide shaft 253 is fixed on the top of the fork 252 . Both the spring guide shaft 253 and the guide spring 254 are installed in the hollow guide sleeve 255, the hollow guide sleeve 255 is provided with a limit step 2551 for preventing the spring guide shaft 253 from falling out, and the spring guide A limit protrusion 2532 is correspondingly provided on the periphery of the shaft 253, the spring guide shaft 253 can move up and down along the guide sleeve 255, and the limit protrusion 2532 is separated from or mutually separated from the limit step 2551 accordingly. top.
所述压力传感器256安装在所述中空导向套255的顶部,所述导销257穿插在所述导向弹簧254的顶部,且所述导销257的顶部始终与所述压力传感器256相接触;当然,也可以直接将所述导向弹簧254的一端始终与所述压力传感器256相接触,以保证所述压力传感器256上时刻有压力数值。所述导向弹簧254的另一端套设在所述弹簧导向轴253上,并相应地抵顶在所述弹簧导向轴253的限位凸起2532上,所述弹簧导向轴253沿所述导向套255的上下移动,带动所述导销257挤压所述压力传感器256,所述压力传感器256也可以替换成具有相同功能的压强传感器等。The pressure sensor 256 is mounted on the top of the hollow guide sleeve 255, the guide pin 257 is inserted on the top of the guide spring 254, and the top of the guide pin 257 is always in contact with the pressure sensor 256; of course Alternatively, one end of the guide spring 254 may always be in contact with the pressure sensor 256 to ensure that there is a pressure value on the pressure sensor 256 at all times. The other end of the guide spring 254 is sheathed on the spring guide shaft 253, and correspondingly abuts against the limit protrusion 2532 of the spring guide shaft 253, and the spring guide shaft 253 moves along the guide sleeve. 255 moves up and down to drive the guide pin 257 to squeeze the pressure sensor 256, and the pressure sensor 256 can also be replaced with a pressure sensor having the same function.
参照图12,所述导向组件1包括若干导向轮部件11、若干第二导向弹簧12、若干销轴13和若干固定座14。所述固定座14固定在所述开式夹持组件2上,所述导向轮部件通11过所述销轴13可转动地安装在所述固定座14上,相邻两个导向轮部件11之间连接有所述第二导向弹簧12。利用所述第二导向弹簧12使得所述若干导向轮部件11可沿缆索50的径向方向弹性收缩,从而能够在不同直径的缆索50上进行运动导向,并能够自动适应缆索直径的变化。Referring to FIG. 12 , the guide assembly 1 includes several guide wheel parts 11 , several second guide springs 12 , several pin shafts 13 and several fixed seats 14 . The fixed seat 14 is fixed on the open clamping assembly 2, the guide wheel part is rotatably mounted on the fixed seat 14 through the pin shaft 13, and two adjacent guide wheel parts 11 The second guide spring 12 is connected therebetween. Utilizing the second guide spring 12 enables the guide wheel parts 11 to elastically shrink along the radial direction of the cable 50, so as to be able to conduct motion guidance on cables 50 of different diameters and automatically adapt to changes in cable diameter.
参照图13,所述导向轮部件11包括导向轮连接杆111、固定环112、导向轮座113和橡胶轮114。所述导向轮连接杆111的底部通过所述销轴13可转动地安装在所述固定座14上,所述固定环112固定在所述导向轮连接杆111的中部,且所述固定环112的两端分别开设有连接孔1121,用于与第二导向弹簧12进行连接。Referring to FIG. 13 , the guide wheel component 11 includes a guide wheel connecting rod 111 , a fixing ring 112 , a guide wheel seat 113 and a rubber wheel 114 . The bottom of the guide wheel connecting rod 111 is rotatably mounted on the fixed base 14 through the pin shaft 13, the fixed ring 112 is fixed on the middle part of the guide wheel connecting rod 111, and the fixed ring 112 Connecting holes 1121 are respectively opened at both ends of the two ends for connecting with the second guide spring 12 .
所述导向轮座113上开设有通孔(未标注),所述通孔的一侧开设有横槽1131,所述导向轮连接杆111穿设在所述导向轮座113的通孔内,且所述导向轮连接杆111上与所述横槽1131相对应的位置处具有螺纹孔(未图示)。通过平圆头螺钉115穿过所述横槽1131后,螺纹连接在所述导向轮连接杆111上,使得所述导向轮座113绕所述导向轮连接杆111的轴线可转动地安装在所述导向轮连接杆的顶部,其转动范围即为所述横槽1131的长度。所述橡胶轮114可转动地安装在所述导向轮座113上,并始终与所述缆索50相接触,用以抱紧缆索50,并通过所述橡胶轮114与缆索50的相对滚动实现运动导向。The guide wheel seat 113 is provided with a through hole (not marked), and one side of the through hole is provided with a transverse groove 1131, and the guide wheel connecting rod 111 is penetrated in the through hole of the guide wheel seat 113, And there is a threaded hole (not shown) at the position corresponding to the transverse groove 1131 on the guide wheel connecting rod 111 . After the flat head screw 115 passes through the transverse groove 1131, it is threaded on the guide wheel connecting rod 111, so that the guide wheel seat 113 is rotatably installed on the guide wheel connecting rod 111 around the axis of the guide wheel. The top of the guide wheel connecting rod, its rotation range is the length of the transverse groove 1131. The rubber wheel 114 is rotatably mounted on the guide wheel seat 113, and is always in contact with the cable 50, so as to hold the cable 50 tightly, and achieve movement through the relative rolling of the rubber wheel 114 and the cable 50 guide.
具体工作时,在初始状态下,所述两个开式夹持组件2同时抱紧缆索50,所述主簧3在零位;第一步,远离驱动组件4一端的开式夹持组件2张开,所述驱动电机41旋转,并带动主簧3伸长;第二步,所述张开的开式夹持组件2抱紧缆索50;第三步,另一个开式夹持组件2张开,所述驱动电机41反向旋转,并带动主簧3缩短;第四步,所述另一个张开的开式夹持组件2抱紧缆索5。以此循环往复,实现所述机器人100的蠕动爬升。During specific work, in the initial state, the two open clamping assemblies 2 hold the cable 50 tightly at the same time, and the main spring 3 is at the zero position; in the first step, the open clamping assembly 2 at one end away from the drive assembly Open, the drive motor 41 rotates and drives the main spring 3 to elongate; in the second step, the opened open clamping assembly 2 hugs the cable 50; in the third step, another open clamping assembly 2 Open, the drive motor 41 reversely rotates, and drives the main spring 3 to shorten; in the fourth step, the other open clamping assembly 2 hugs the cable 5 tightly. In this way, the crawling and climbing of the robot 100 is realized.
综上所述,本发明实施例提供的一种柔性蠕动攀爬机器人100,其利用主簧3作为传递部件,使得机器人100本体具备柔性和自动适应能力,同时,利用所述开式夹持组件2的开合运动可适应不同直径的缆索,变径范围较大。在攀爬过程中遇到障碍物时可以较好地越障,环境适应能力较好,同时,由于机器人本体由主簧3构成,机器人本体可以弯曲,从而能够轻松应对具有曲率的缆索环境。To sum up, the embodiment of the present invention provides a flexible crawling climbing robot 100, which uses the main spring 3 as a transmission component, so that the body of the robot 100 has flexibility and automatic adaptability, and at the same time, uses the open clamping assembly The opening and closing movement of 2 can be adapted to cables of different diameters, and the range of variable diameters is relatively large. When encountering obstacles during the climbing process, it can overcome obstacles better, and has better environmental adaptability. At the same time, because the robot body is composed of the main spring 3, the robot body can be bent, so that it can easily cope with the cable environment with curvature.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711397738.6A CN108216409B (en) | 2017-12-21 | 2017-12-21 | A flexible creeping climbing robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711397738.6A CN108216409B (en) | 2017-12-21 | 2017-12-21 | A flexible creeping climbing robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108216409A true CN108216409A (en) | 2018-06-29 |
CN108216409B CN108216409B (en) | 2023-10-27 |
Family
ID=62648389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711397738.6A Active CN108216409B (en) | 2017-12-21 | 2017-12-21 | A flexible creeping climbing robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108216409B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109176398A (en) * | 2018-11-12 | 2019-01-11 | 山东豪迈机械制造有限公司 | A power unit and installation equipment |
CN109630806A (en) * | 2019-02-21 | 2019-04-16 | 中国人民解放军陆军工程大学 | Pipeline robot capable of being screwed, grabbed and detected |
CN110345335A (en) * | 2019-07-11 | 2019-10-18 | 江苏科技大学 | Climbing robot and its control method in imitative looper gait pipe |
CN112030738A (en) * | 2020-08-24 | 2020-12-04 | 宁波职业技术学院 | Stay cable robot cable climbing system and method based on load switching mechanism |
CN112075198A (en) * | 2020-09-27 | 2020-12-15 | 张旭 | Efficient and convenient coconut picking equipment |
CN112197141A (en) * | 2020-09-28 | 2021-01-08 | 深圳市人工智能与机器人研究院 | Motion control method of cable robot and cable robot |
CN112803301A (en) * | 2021-02-25 | 2021-05-14 | 邵桐 | Anti-falling device of power transmission line inspection robot |
CN113020937A (en) * | 2021-03-29 | 2021-06-25 | 武汉理工大学 | Peristaltic installation robot with variable-rigidity cloth clips and control method of peristaltic installation robot |
CN113430927A (en) * | 2021-07-22 | 2021-09-24 | 深圳市人工智能与机器人研究院 | Cable climbing detection robot and movement method thereof |
CN113756204A (en) * | 2021-09-28 | 2021-12-07 | 江苏中矿大正表面工程技术有限公司 | Automatic creeping device with strong adaptability for construction of outer protective layer of bridge steel cable |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2041879A (en) * | 1979-02-07 | 1980-09-17 | Central Electr Generat Board | Remotely Controllable Mobile Robot and Control Apparatus Therefor |
US6202774B1 (en) * | 1996-02-08 | 2001-03-20 | Mannesmann Rexroth Ag | Transport module for the moving of heavy loads |
CN1383412A (en) * | 2000-06-09 | 2002-12-04 | 岛津麦库泰姆株式会社 | Walker |
CN101214412A (en) * | 2008-01-15 | 2008-07-09 | 东南大学 | Spiral Cable Inspection Robot |
JP2010215082A (en) * | 2009-03-16 | 2010-09-30 | Kyushu Institute Of Technology | Omnidirectional moving device of sphere driving type |
US20110073386A1 (en) * | 2008-05-15 | 2011-03-31 | Provancher William R | Climbing Robot Using Pendular Motion |
CN102632937A (en) * | 2012-05-04 | 2012-08-15 | 安徽工业大学 | Crawling mechanism for peristaltic cable robot |
CN103895723A (en) * | 2012-12-26 | 2014-07-02 | 上海建冶科技工程股份有限公司 | Multi-wheel elastic extrusion flexible climbing robot for cable maintenance |
JP2014172427A (en) * | 2013-03-06 | 2014-09-22 | Jfe Steel Corp | Wall surface traveling dolly |
CN104527361A (en) * | 2014-12-22 | 2015-04-22 | 华南理工大学 | Device and method for automatically adjusting height of vehicle body of mobile robot |
CN104652263A (en) * | 2015-02-10 | 2015-05-27 | 西南交通大学 | Cable climbing robot |
CN104674655A (en) * | 2015-02-27 | 2015-06-03 | 西南交通大学 | Cable climbing robot |
CN204530471U (en) * | 2015-02-10 | 2015-08-05 | 西南交通大学 | Climb cable robot |
CN105239504A (en) * | 2015-09-01 | 2016-01-13 | 东南大学 | Cable inspection robot |
CN105346620A (en) * | 2015-12-11 | 2016-02-24 | 吉林大学 | Energy-saving walking leg mechanism simulating ostrich hindlimb movement function characteristic |
CN105346615A (en) * | 2015-10-29 | 2016-02-24 | 南京邮电大学 | Closed high-altitude cable rope climbing robot |
CN205412109U (en) * | 2015-11-20 | 2016-08-03 | 国家电网公司 | Automatic mechanism of scrambleing of pole |
KR20160103920A (en) * | 2016-01-28 | 2016-09-02 | 김희섭 | Intelligent safety device |
CN106143668A (en) * | 2016-08-12 | 2016-11-23 | 香港中文大学(深圳) | Omnidirectional of a kind of robot pawl |
CN106510850A (en) * | 2016-11-25 | 2017-03-22 | 东莞市天合机电开发有限公司 | Clamping device applied to main manipulator of laparoscope operational robot |
CN106737621A (en) * | 2016-12-30 | 2017-05-31 | 河南理工大学 | A kind of compound humanoid robot of utilization auxiliary rod pole-climbing |
CN107009174A (en) * | 2017-05-11 | 2017-08-04 | 北京圣非凡电子系统技术开发有限公司 | Frock clamping device and frock apparatus for fastening |
CN107021144A (en) * | 2017-05-23 | 2017-08-08 | 湖南沄耀中创科技有限公司 | A kind of magnetic track climbing robot adaptively contacted |
US20170297589A1 (en) * | 2015-07-02 | 2017-10-19 | China University Of Mining And Technology | Vertical Rope Climbing Inspection Robot for Ultra-Deep Vertical Shaft Steel-Rope Guide |
CN207860309U (en) * | 2017-12-21 | 2018-09-14 | 香港中文大学(深圳) | A kind of flexible wiggle climbing robot |
-
2017
- 2017-12-21 CN CN201711397738.6A patent/CN108216409B/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2041879A (en) * | 1979-02-07 | 1980-09-17 | Central Electr Generat Board | Remotely Controllable Mobile Robot and Control Apparatus Therefor |
US6202774B1 (en) * | 1996-02-08 | 2001-03-20 | Mannesmann Rexroth Ag | Transport module for the moving of heavy loads |
CN1383412A (en) * | 2000-06-09 | 2002-12-04 | 岛津麦库泰姆株式会社 | Walker |
CN101214412A (en) * | 2008-01-15 | 2008-07-09 | 东南大学 | Spiral Cable Inspection Robot |
US20110073386A1 (en) * | 2008-05-15 | 2011-03-31 | Provancher William R | Climbing Robot Using Pendular Motion |
JP2010215082A (en) * | 2009-03-16 | 2010-09-30 | Kyushu Institute Of Technology | Omnidirectional moving device of sphere driving type |
CN102632937A (en) * | 2012-05-04 | 2012-08-15 | 安徽工业大学 | Crawling mechanism for peristaltic cable robot |
CN103895723A (en) * | 2012-12-26 | 2014-07-02 | 上海建冶科技工程股份有限公司 | Multi-wheel elastic extrusion flexible climbing robot for cable maintenance |
JP2014172427A (en) * | 2013-03-06 | 2014-09-22 | Jfe Steel Corp | Wall surface traveling dolly |
CN104527361A (en) * | 2014-12-22 | 2015-04-22 | 华南理工大学 | Device and method for automatically adjusting height of vehicle body of mobile robot |
CN204530471U (en) * | 2015-02-10 | 2015-08-05 | 西南交通大学 | Climb cable robot |
CN104652263A (en) * | 2015-02-10 | 2015-05-27 | 西南交通大学 | Cable climbing robot |
CN104674655A (en) * | 2015-02-27 | 2015-06-03 | 西南交通大学 | Cable climbing robot |
US20170297589A1 (en) * | 2015-07-02 | 2017-10-19 | China University Of Mining And Technology | Vertical Rope Climbing Inspection Robot for Ultra-Deep Vertical Shaft Steel-Rope Guide |
CN105239504A (en) * | 2015-09-01 | 2016-01-13 | 东南大学 | Cable inspection robot |
CN105346615A (en) * | 2015-10-29 | 2016-02-24 | 南京邮电大学 | Closed high-altitude cable rope climbing robot |
CN205412109U (en) * | 2015-11-20 | 2016-08-03 | 国家电网公司 | Automatic mechanism of scrambleing of pole |
CN105346620A (en) * | 2015-12-11 | 2016-02-24 | 吉林大学 | Energy-saving walking leg mechanism simulating ostrich hindlimb movement function characteristic |
KR20160103920A (en) * | 2016-01-28 | 2016-09-02 | 김희섭 | Intelligent safety device |
CN106143668A (en) * | 2016-08-12 | 2016-11-23 | 香港中文大学(深圳) | Omnidirectional of a kind of robot pawl |
CN106510850A (en) * | 2016-11-25 | 2017-03-22 | 东莞市天合机电开发有限公司 | Clamping device applied to main manipulator of laparoscope operational robot |
CN106737621A (en) * | 2016-12-30 | 2017-05-31 | 河南理工大学 | A kind of compound humanoid robot of utilization auxiliary rod pole-climbing |
CN107009174A (en) * | 2017-05-11 | 2017-08-04 | 北京圣非凡电子系统技术开发有限公司 | Frock clamping device and frock apparatus for fastening |
CN107021144A (en) * | 2017-05-23 | 2017-08-08 | 湖南沄耀中创科技有限公司 | A kind of magnetic track climbing robot adaptively contacted |
CN207860309U (en) * | 2017-12-21 | 2018-09-14 | 香港中文大学(深圳) | A kind of flexible wiggle climbing robot |
Non-Patent Citations (4)
Title |
---|
何振勇;孙洪超;魏武;: "大直径缆索检测蛇形机器人单环攀爬研究与实现", 机械与电子, no. 07, pages 79 - 82 * |
宋伟等: "铁塔攀爬机器人欠驱动手爪研制", 仪器仪表学报, pages 148 - 153 * |
李想;邓斌;吴文海;于兰英;: "氮气弹簧在爬缆机器人中的应用", 现代机械, no. 05, pages 57 - 59 * |
王国志;李想;邓斌;吴文海;: "一种新型爬缆机器人的越障能力及夹紧机构分析", 机械设计与制造, no. 06, pages 36 - 39 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109176398A (en) * | 2018-11-12 | 2019-01-11 | 山东豪迈机械制造有限公司 | A power unit and installation equipment |
CN109630806A (en) * | 2019-02-21 | 2019-04-16 | 中国人民解放军陆军工程大学 | Pipeline robot capable of being screwed, grabbed and detected |
CN109630806B (en) * | 2019-02-21 | 2024-02-27 | 中国人民解放军陆军工程大学 | Pipeline robot capable of being screwed, grabbed and detected |
CN110345335A (en) * | 2019-07-11 | 2019-10-18 | 江苏科技大学 | Climbing robot and its control method in imitative looper gait pipe |
CN112030738B (en) * | 2020-08-24 | 2022-04-01 | 宁波职业技术学院 | Stay cable robot cable climbing system and method based on load switching mechanism |
CN112030738A (en) * | 2020-08-24 | 2020-12-04 | 宁波职业技术学院 | Stay cable robot cable climbing system and method based on load switching mechanism |
CN112075198A (en) * | 2020-09-27 | 2020-12-15 | 张旭 | Efficient and convenient coconut picking equipment |
CN112197141A (en) * | 2020-09-28 | 2021-01-08 | 深圳市人工智能与机器人研究院 | Motion control method of cable robot and cable robot |
CN112803301A (en) * | 2021-02-25 | 2021-05-14 | 邵桐 | Anti-falling device of power transmission line inspection robot |
CN112803301B (en) * | 2021-02-25 | 2021-12-14 | 钱小英 | Anti-falling device of power transmission line inspection robot |
CN113020937A (en) * | 2021-03-29 | 2021-06-25 | 武汉理工大学 | Peristaltic installation robot with variable-rigidity cloth clips and control method of peristaltic installation robot |
CN113430927A (en) * | 2021-07-22 | 2021-09-24 | 深圳市人工智能与机器人研究院 | Cable climbing detection robot and movement method thereof |
CN113430927B (en) * | 2021-07-22 | 2024-07-05 | 深圳市人工智能与机器人研究院 | Cable climbing detection robot and movement method thereof |
CN113756204A (en) * | 2021-09-28 | 2021-12-07 | 江苏中矿大正表面工程技术有限公司 | Automatic creeping device with strong adaptability for construction of outer protective layer of bridge steel cable |
CN113756204B (en) * | 2021-09-28 | 2023-02-03 | 江苏中矿大正表面工程技术有限公司 | Automatic creeping device with strong adaptability for construction of outer protective layer of bridge steel cable |
Also Published As
Publication number | Publication date |
---|---|
CN108216409B (en) | 2023-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108216409A (en) | A kind of flexible wiggle climbing robot | |
CN108086150B (en) | Cable detection robot | |
CN207860309U (en) | A kind of flexible wiggle climbing robot | |
CN207987729U (en) | A kind of cable detecting robot | |
CN108086151A (en) | A kind of reducing clamping device | |
CN102655314B (en) | Broken strand crimping work robot mechanism of super-high-voltage power transmission line | |
CN205345108U (en) | Multi -functional pole -climbing robot based on double claw fixture | |
CN201332238Y (en) | Inspection robot mechanism with lifting and clamping function | |
CN108252211B (en) | Climbing inspection robot | |
WO2018081510A3 (en) | Site light | |
CN104659706B (en) | A kind of palm closing device | |
CN207039062U (en) | Composite clamping device and cable inspection robot used by cable inspection robot | |
CN103659815B (en) | A kind ofly be applicable to narrow inspection robot mechanism of patrolling and examining working space | |
CN103887734A (en) | Four-connecting-rod mass-center-adjustable patrol robot mechanism | |
CN109217167B (en) | Composite clamping device and cable inspection robot used by cable inspection robot | |
CN108044598A (en) | A kind of shaft, cable, rope climbing detection obstacle removing robot | |
CN202014061U (en) | Broken-strand crimping operation robot mechanism for ultrahigh voltage power transmission line | |
CN102962834B (en) | A kind of inspection robot for high-voltage transmission lines mechanism | |
CN100551642C (en) | Underactuated robotic finger device with crossed tendon ropes | |
CN202111413U (en) | Transmission line obstacle removal robot arm | |
CN103692432A (en) | Tower climbing robot | |
CN103978354B (en) | Well logging inserting tube radioactive source handling chuck clamps | |
CN207987731U (en) | A kind of reducing clamping device | |
CN103921270A (en) | Line patrol robot and obstacle crossing method | |
EP3375387A3 (en) | Adapter with centering mechanism for articulation joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |