CN108155254A - Two-dimensional material flexible substrate structure, focal plane optical detector array and manufacturing method thereof - Google Patents

Two-dimensional material flexible substrate structure, focal plane optical detector array and manufacturing method thereof Download PDF

Info

Publication number
CN108155254A
CN108155254A CN201611111160.9A CN201611111160A CN108155254A CN 108155254 A CN108155254 A CN 108155254A CN 201611111160 A CN201611111160 A CN 201611111160A CN 108155254 A CN108155254 A CN 108155254A
Authority
CN
China
Prior art keywords
layer
flexible substrate
material
dimensional
surface
Prior art date
Application number
CN201611111160.9A
Other languages
Chinese (zh)
Inventor
王庶民
Original Assignee
超晶科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超晶科技(北京)有限公司 filed Critical 超晶科技(北京)有限公司
Priority to CN201611111160.9A priority Critical patent/CN108155254A/en
Publication of CN108155254A publication Critical patent/CN108155254A/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infra-red, visible or ultraviolet radiation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

The invention provides a two-dimensional material flexible substrate structure, a focal plane optical detector array and a manufacturing method thereof. The two-dimensional material flexible substratestructure comprises a support substrate, a two-dimensional material layer positioned on the surface of the support substrate, and a patterned flexible substrate positioned on the surface of the two-dimensional material layer. The patterned flexible substrate comprises a plurality of pattern units spaced at intervals. According to the two-dimensional material flexible substrate structure providedby the invention, the patterned flexible substrate is combined with the two-dimensional material layer, attraction between upper and lower atoms is greatly weakened by Van der Waals bonding at an interface between the patterned flexible substrate and the two-dimensional material, strength of a Van der Waals force formed at the interface is far less than bond energy of a covalent bond, and the patterned flexible substrate can completely self-control strain absorption and release stress, eliminate or reduce threading dislocation and other lattice structural defects to the greatest extent, and has extremely high absolute flexibility.

Description

二维材料柔性衬底结构、焦平面光抹测器阵列及制作方法 Dimensional structure of the flexible substrate material, a light applicator focal plane detector array and production method

技术领域 FIELD

[0001] 本发明属于半导体技术领域,涉及一种二维材料柔性衬底结构、焦平面光探测器阵列及制作方法。 [0001] The present invention belongs to the technical field of semiconductors, is directed to a flexible substrate material is a two-dimensional structure, the focal plane array of photodetectors and production methods.

背景技术 Background technique

[0002] 短波红外(SWIR,1-3微米)InGaAs焦平面探测器阵列可以满足“全天时、多天候”的应用需求,在情报侦察识别、军用夜视、光电对抗和激光制导等军事装备领域以及在安全检测、防火预警、工业检测和驾驶视觉增强等民用领域具有广泛并且重要应用价值1-3。 [0002] Shortwave Infrared (SWIR, 1-3 micron) InGaAs focal plane array detector to meet the "all-time, multi-weather" application requirements, identify intelligence reconnaissance, military night vision, photoelectric and laser-guided combat and other military equipment in in the field of security and a detection, fire alarm, industrial inspection and driver's vision enhancement and other civilian areas widely and important applications 1-3. InGaAs材料量子效率高,材料稳定性好,能在室温工作,在相同短波红外波段器件性能超越了碲镉汞器件。 InGaAs material of high quantum efficiency, good stability of the material, can work at room temperature, than the same MCT devices shortwave infrared device performance. InGaAs探测器成像对比度高,目标细节清晰,在目标识别方面具有高识别度。 InGaAs detector imaging high contrast, clear details target, the target having a high degree of recognition in the recognition. 由于InGaAs吸收相应光谱和夜间大气辉光辐亮度波段完美匹配,在微光夜视具有得天独厚优势,比传统技术获得更为丰富的目标成像信息。 Since the respective absorption spectra of InGaAs and night atmospheric radiance glow band perfect match, a unique advantage in night vision, the imaging target by a richer information than the conventional art. 短波红外受大气散射作用小,透雾霾、烟尘等大气障碍能力与热红外相似,但不存在热成像受环境热交叉的制约,成像更加清晰。 SWIR atmospheric scattering by small, transparent haze, smoke and other air barriers infrared heat capacity similar, but restricted by environmental thermal imaging intersects the absence of heat, clearer image. 另外,短红外InGaAs焦平面探测器还可以匹配1.06微米和1.5x微米军用激光实现隐秘的主动成像技术用于光电对抗和光电制导。 Further, the short infrared focal plane detector may also be matched InGaAs microns and 1.06 microns 1.5x realize covert military laser imaging technique for optoelectronic active and optically guided against.

[0003]短波红外目前主要采用InP基与衬底匹配的InQ.53GaQ.47AS材料,其吸收波长范围在0 • 9-1 • 7微米,通过采用衬底减薄到0 • 2微米,其探测波长低限可延伸至可见光区域,在〇. 7, 0.5和0• 3微米对应量子效率分别为50%,20%和10%。 [0003] SWIR material currently used mainly InQ.53GaQ.47AS yl InP substrate matched in its absorption wavelength range 0 • 9-1 • 7 microns, thinned to 0 • 2 microns through the use of a substrate, which detects It may extend to the lower limit of the wavelength of the visible region, in the square. 7, 0.5, and 0 • 3 microns corresponding to a quantum efficiency of 50%, 20% and 10%, respectively. 经过20多年从原型器件到产品的发展,美国FLIR和SUI已经实现1920x1280面阵,预计未来五年面阵尺寸可达到2560x2048。 After 20 years of development from prototype device to the product, and the United States FLIR SUI area array 1920x1280 been achieved, the next five years plane array size can reach 2560x2048. 通过增加InGaAs材料中In的含量,吸收波长理论上可以达到2.5微米(铟组分0 • 82)和3.5微米(InAs),这种拓展波长InGaAs探测器主要用于航天遥感和满足多谱成像。 By increasing the content of In in InGaAs material, the absorption wavelength can theoretically reach 2.5 microns (indium composition 0 • 82) and 3.5 microns (InAs), this expansion space wavelength InGaAs detector is mainly used for remote sensing and satisfy multispectral imaging. 但受制于衬底限制,高铟组分InGaAs随着铟浓度增大材料性能急剧下降,目前仅有中国台湾CLPT开发了截至波长为2 •2微米的320x256阵列产品,在253K制冷条件下峰值探测率在lxl012Jones水平, 比截止波长在I.7微米的InQ.53Ga().47As探测器室温最好峰值探测率低了两个数量级。 But subject to substrate limitation, InGaAs high indium composition increases as the concentration of indium sharp decline in the material properties, there are only developed as of China Taiwan CLPT wavelength 2 • 2 microns 320x256 array of products, the peak detecting refrigerant conditions at 253K lxl012Jones rate level than the cutoff wavelength InQ.53Ga I.7 microns (). 47As preferably at room temperature detector detecting a peak rate two orders of magnitude.

[0004]从原理上讲,当异质外延材料与衬底晶格常数不匹配时,外延材料存在一个临界厚度,在小于临界厚度以内,外延异质材料可以实现完全应变没有晶格缺陷。 [0004] In principle, when the hetero-epitaxial material does not match the lattice constant of the substrate, there is a critical thickness of epitaxial material, within less than a critical thickness, the epitaxial heterogeneous material may not be completely strained lattice defects. 根据Matthews 模型4,对于InP衬底上外延生长InxGai—xAs材料,临界厚度,hc,与晶格失配,f,存在如下关系: The Matthews model 4, for the material, the critical thickness of the InxGai-xAs epitaxially grown on an InP substrate, HC, and the lattice mismatch, f, the following relationship exists:

[0005] hc=A [In (hc/b) +1] /f (1) [0005] hc = A [In (hc / b) +1] / f (1)

[0006]其中b是Burgers矢量,A是常数。 [0006] where b is the Burgers vector, A is a constant. 当晶格失配大于0.5%时,临界厚度只有纳米量级,而普通探测器吸收层厚度在微米量级,当外延材料大于临界厚度时,会产生大量失配和穿透位错,这些位错导致严重的暗电流使探测器性能急剧下降。 When the lattice mismatch greater than 0.5%, the critical thickness of only nanometers, while the average thickness of the detector on the order of micrometers absorber, when the epitaxial material is greater than the critical thickness, will produce a large mismatch and threading dislocations, these bits wrong cause serious dark current of the detector performance dramatically. 吸收波长达到2.5微米(铟组分0 • 8¾和3 •5微米(InAs)时InGaAs相对于InP失配度分别为2%和3.2%。目前InP基拓展InGaAs波长探测器一般的思路是采用异变缓冲层,即在InP衬底和高铟组分inGaAs吸收层之间外延生长铟组分递变的异变缓冲层,这种缓冲层能够将穿透位错弯曲从而起到抑制穿透位错密度的作用,但即使通过这种方法,穿透位错密度还在106cnf2左右,比InP衬底位错密度高出四个量级,相应的InGaAs探测器暗电流还是很高,探测率低。 When the absorption wavelength of 2.5 microns (0 • 8¾ indium composition and 3 • 5 microns (InAs) with respect to InP InGaAs mismatch of 2% and 3.2%, respectively. The general idea of ​​the current detector wavelength InP InGaAs group expansion is using iso change buffer layer, the buffer layer is epitaxially grown mutation i.e. the indium composition between the graded layer and the substrate is absorbed in a high indium composition InP InGaAs, this buffer layer can be bent so that the threading dislocations serves to suppress threading dislocations dislocation density effect, but even by this method, the threading dislocation density is still about 106cnf2, four order of magnitude higher than the dislocation density of the InP substrate, InGaAs detector corresponding dark current is very high, the detection rate .

[0007] 柔性衬底是YHLo于1991年提出的另一种解决衬底失配的外延技术6。 [0007] The flexible substrate is a substrate YHLo another solution mismatched epitaxial technique proposed in 1991 6. 其原理见图5。 The principle is shown in Figure 5. 在一个能自由延伸的薄虚拟衬底上生长与虚拟衬底晶格失配的外延材料,其弹性应变由虚拟衬底和外延材料共同分担,当外延材料厚度超过临界厚度并且该厚度远大于虚拟衬底厚度时,释放应力的位错形成于虚拟衬底的下表面并滑移至界面形成失配位错,失配位错两端的穿透位错出现在虚拟衬底而不是外延材料里。 Grown on the dummy substrate a thin freely epitaxial material extending dummy substrate lattice mismatch, which is shared by the virtual elastic strain of the substrate and the epitaxial material, when the thickness exceeds the critical thickness of epitaxial material and the thickness is much greater than the virtual when the thickness of the substrate, the release of the stress on the dummy substrate dislocations and slides to the lower surface of misfit dislocations formed at the interface, misfit dislocations are threading dislocations appear in the virtual dislocation across the substrate rather than in the epitaxial material. 薄虚拟衬底一般通过将外延生长的虚拟材料键合到支撑衬底然后采用选择性腐蚀去除外延衬底来实现,用这种方法已经成功实现GaAs基上晶格失配达14.6%的高质量InSb柔性衬底及其上面的外延材料。 Thin dummy substrate typically accomplished by epitaxial growth of the virtual key material bonded to a support substrate and then selectively removed by etching using the epitaxial substrate, this method has been successfully implemented on a GaAs-based lattice mismatch of 14.6% of high-quality the above flexible substrate and InSb epitaxial material. 但是键合面上存在的悬挂键会阻碍柔性衬底的自由延伸,只有横向尺寸小的柔性衬底才能完全实现自由延伸,如果尺寸太大,会产生表面皱褶或其他晶格缺陷。 However, the presence of dangling bonds bonding surface extending hinder free flexible substrate, only a small lateral size of the flexible substrate to fully extend freedom, if the size is too large, the surface will produce wrinkles or other lattice defects.

发明内容 SUMMARY

[0008] 鉴于以上所述现有技术的缺点,本发明的目的在于提供一种二维材料柔性衬底结构、焦平面光探测器阵列及制作方法,用于解决现有技术中的的大面阵光探测器遇到的晶格失配这一外延生长技术瓶颈,以及采用常规手段制备的柔性衬底无法完全吸纳和释放应力,不能满足绝对柔性度的问题。 [0008] In view of the foregoing disadvantages of the prior art, an object of the present invention to provide a two-dimensional structure of a flexible substrate material, focal plane array of photodetectors and a manufacturing method for solving the large area of ​​the prior art the photodetector array lattice mismatch encountered the bottleneck epitaxial growth techniques, and the use of a flexible substrate prepared by conventional means and can not fully absorb the stress release, can not meet the problem of the absolute degree of flexibility.

[0009] 为实现上述目的及其他相关目的,本发明提供一种二维材料柔性衬底结构,所述二维材料柔性衬底结构包括: [0009] To achieve the above objects and other related objects, the present invention provides a two-dimensional structure of a flexible substrate material, the two-dimensional structure of the flexible substrate material comprises:

[0010] 支撑衬底; [0010] support a substrate;

[0011] 二维材料层,位于所述支撑衬底表面; [0011] The two-dimensional material layer on the support substrate surface;

[0012]图形化柔性衬底,位于所述二维材料层表面;所述图形化柔性衬底为包括若干个间隔分布的图形单元。 [0012] The patterned flexible substrate, layer of material located in said two-dimensional surface; patterning said flexible substrate including a plurality of spaced graphics unit.

[0013]作为本发明的二维材料柔性衬底结构的一种优选方案,所述二维材料层为石墨烯层、硅烯层、锗烯层、锡烯层、BN层、MqS2层、WS2层或GaSe层。 [0013] As a preferred embodiment of the two-dimensional structure of a flexible substrate material of the present invention, the material layer is a two-dimensional graphene layer, a silicon layer alkenyl, alkenyl germanium layer, a tin layer alkenyl, BN layer, MqS2 layer, WS2 GaSe layer or layers.

[00M]作为本发明的二维材料柔性衬底结构的一种优选方案,所述图形化柔性衬底的厚度小于或等于50nm。 [00M] As a preferred embodiment of the two-dimensional structure of a flexible substrate material of the present invention, a patterned flexible substrate thickness less than or equal to 50nm.

[0015] 作为本发明的二维材料柔性衬底结构的一种优选方案,所述图形单元在所述二维材料层表面呈周期性分布。 [0015] As a preferred embodiment of the two-dimensional structure of a flexible substrate material of the present invention, the graphics unit is distributed periodically on the surface layer of the two-dimensional material.

[0016]作为本发明的二维材料柔性衬底结构的一种优选方案,所述图形单元的横向尺寸为0• lMi〜100M1。 [0016] As a preferred embodiment of the two-dimensional structure of a flexible substrate material of the present invention, the lateral dimension of the pattern units is 0 • lMi~100M1.

[0017]本发明还提供一种二维材料柔性衬底结构的制作方法,所述二维材料柔性衬底结构的制作方法包括以下步骤: [0017] The present invention also provides a method for manufacturing a two-dimensional structure of a flexible substrate material, manufacturing method of the two-dimensional structure of a flexible substrate material comprising the steps of:

[0018] 1)提供一种支撑衬底; [0018] 1) providing a support substrate;

[0019] 2)在所述支撑衬底的表面形成二维材料层; [0019] 2) a two-dimensional material layer on the surface of the substrate support;

[0020] 3)在所述二维材料层表面形成图形化柔性衬底,所述图形化柔性衬底为包括若干个间隔分布的图形单元。 [0020] 3) a flexible substrate forming a patterned material layer on the surface of a two-dimensional, flexible substrate to the patterning includes a plurality of graphical elements spaced.

[0021]作为本发明的二维材料柔性衬底结构的制作方法的一种优选方案,在步骤2)中, 所述二维材料层为石墨烯层、硅烯层、锗烯层、锡烯层、BN层、MoS2层、WS2层或GaSe层。 [0021] As a preferred embodiment of the method for manufacturing a two-dimensional structure of a flexible substrate material of the present invention, in the step 2), the two-dimensional layer material is a graphene layer, a silicon layer alkenyl, alkenyl germanium layer, a tin-ene layer, BN layer, MoS2 layer, WS2 GaSe layer or layers.

[0022]作为本发明的二维材料柔性衬底结构的制作方法的一种优选方案,在步骤3)中, 在所述二维材料层表面形成图形化柔性衬底包括以下步骤: [0022] As a preferred embodiment of the method for manufacturing a two-dimensional structure of a flexible substrate material of the present invention, in the step 3), forming a patterned flexible substrate comprising the steps of two-dimensional material on a surface of the layer:

[0023] 3-1)提供一种生长衬底; [0023] 3-1) providing a growth substrate;

[0024] 3_2)在所述生长衬底上形成缓冲层; [0024] 3_2) forming a buffer layer on the growth substrate;

[0025] 3-¾在所述缓冲层上形成牺牲层; [0025] 3-¾ forming a sacrificial layer on the buffer layer;

[0026] 3-4)在所述牺牲层上形成柔性衬底材料层; [0026] 3-4) formed in the flexible substrate material layer on the sacrificial layer;

[0027] 3-f5)将所述柔性衬底材料层进行图形化处理,以得到所述图形化柔性衬底; [0027] 3-f5) the flexible substrate material layer patterning process, to obtain the patterned flexible substrate;

[0028] 3_6)将步骤3_5)得到的结构键合至所述二维材料层的表面,所述图形化柔性衬底的表面为键合面; [0028] 3_6) of step 3_5) bond structure bonded to a surface of the obtained two-dimensional material layer, the patterned surface of the flexible substrate is bonded to the surface;

[0029] 3_7)将所述图形化柔性衬底与所述牺牲层相分离,将所述图形化柔性衬底转移至所述二维材料层的表面。 [0029] 3_7) to the flexible substrate and patterning the sacrificial layer separated, the patterned surface of the flexible substrate is transferred to a two-dimensional material layer.

[0030]作为本发明的二维材料柔性衬底结构的制作方法的一种优选方案,在步骤3-5)与步骤3-6)之间,还包括对所述图形化柔性衬底的表面进行钝化处理的步骤。 [0030] As a preferred embodiment of the method for fabricating a two-dimensional structure of the flexible substrate material of the present invention, between the step 3-5) and the step 3-6), further comprising a patterned surface of the flexible substrate passivation treatment step.

[0031]作为本发明的二维材料柔性衬底结构的制作方法的一种优选方案,在步骤3)中, 在所述二维材料层表面形成图形化柔性衬底包括以下步骤: [0031] As a preferred embodiment of the method for manufacturing a two-dimensional structure of a flexible substrate material of the present invention, in the step 3), forming a patterned flexible substrate comprising the steps of two-dimensional material on a surface of the layer:

[0032] 3-1)提供一种生长衬底; [0032] 3-1) providing a growth substrate;

[0033] 3-2)在所述生长衬底上形成缓冲层; [0033] 3-2) forming a buffer layer on the growth substrate;

[0034] 3-3)在所述缓冲层上形成牺牲层; [0034] 3-3) forming a sacrificial layer on the buffer layer;

[0035] 3-4)在所述牺牲层上形成柔性衬底材料层; [0035] 3-4) formed in the flexible substrate material layer on the sacrificial layer;

[0036] 3-5)将步骤3-4)得到的结构键合至所述二维材料层的表面,所述柔性衬底材料层的表面为键合面; [0036] 3-5) The structure of the key steps 3-4) to give the two-dimensional material bonded to a surface of the layer, the surface of the flexible substrate material surface layer is bonded;

[0037] 3-6)将所述柔性衬底材料层与所述牺牲层相分离,将所述柔性衬底材料层转移至所述二维材料层的表面; [0037] 3-6) to the flexible substrate material layer and the sacrificial layer is separated, the flexible substrate material layer was transferred to a two-dimensional surface of the material layer;

[0038] 3-7)将转移至所述二维材料层表面的所述柔性衬底材料层进行图形化处理,以得到所述图形化柔性衬底。 The flexible substrate material layer [0038] 3-7) will be transferred to the surface of the material layer is a two-dimensional graphic processing to obtain the patterned flexible substrate.

[0039] 本发明还提供一种焦平面光探测器阵列,所述焦平面光探测器阵列包括: [0039] The present invention also provides a focal plane array of photodetectors, said photodetector focal plane array comprising:

[0040] 如上述任一方案中所述的二维材料柔性衬底结构; [0040] As in the preceding embodiment a two-dimensional structure of the flexible substrate material;

[0041] 光探测器结构,位于所述图形化衬底中各图形单元的表面。 [0041] The photodetector structure, located on the surface of the substrate of each unit of the graphical pattern.

[0042]作为本发明的焦平面光探测器阵列的一种优选方案,所述焦平面光探测器阵列还包括: [0042] As a preferred embodiment of the present invention, focal plane photodetector array, said photodetector array focal plane further comprises:

[0043] 铟柱,位于各所述光探测器结构表面; [0043] The indium bumps, the light emitting structure located on the surface of each of said detector;

[0044] 读出电路,位于所述铟柱表面。 [0044] The readout circuit, the indium in said cylindrical surface.

[0045]本发明还提供一种焦平面光探测器阵列的制作方法,所述焦平面光探测器阵列的制作方法包括以下步骤: [0045] The present invention also provides a method for manufacturing a photodetector focal plane array, said focal plane array of optical detector manufacturing method comprising the steps of:

[0046] 1)采用如上述任一方案中所述的二维材料柔性衬底结构的制作方法制作所述二维材料柔性衬底结构; [0046] 1) The production method according to any preceding embodiment in the configuration of a flexible substrate in a two-dimensional structure of the flexible substrate material two-dimensional material;

[0047] 2)所述图形化衬底中各图形单元的表面形成光探测器结构。 The [0047] 2) forming a light pattern detector structured surface pattern portion of each substrate.

[0048]作为本发明的焦平面光探测器阵列的制作方法的一种优选方案,在步骤2)之后还包括在各所述光探测器表面形成铟柱,并在所述铟柱表面形成读出电路的步骤。 [0048] As a preferred embodiment of the method for fabricating a focal plane of the photodetector array of the present invention, after the step 2) further includes forming indium bumps on the surface of each photodetector, and is formed on the indium bumps reading surface the step circuit.

[0049]如上所述,本发明的二维材料柔性衬底结构、焦平面光探测器阵列及制作方法,具有以下有益效果: [0049] As described above, the two-dimensional structure of the flexible substrate material of the present invention, the optical focal plane detector array and production method, has the following advantages:

[0050] D本发明的二维材料柔性衬底结构将图形化柔性衬底与二维材料层相结合,图形化柔性衬底与二维材料层界面的范德瓦尔斯键大大削弱了上下原子之间的吸引力,界面处形成的范德瓦尔斯力的强度远远小于共价键键能,图形化柔性衬底可以完全自我调节应变吸纳和释放应力,可以最大程度消除或降低穿透位错等晶格结构缺陷,具有很大的绝对柔性度; [0050] D-dimensional structure of a flexible substrate material of the present invention the patterned flexible substrate material layer and the two-dimensional combination, a flexible substrate and patterning the material layer of the two-dimensional interface van der Waals greatly weakened vertical atoms attraction between the strength of van der Waals forces is formed at the interface is much smaller than the covalent bond energy, patterning can be completely self-regulating flexible substrate to absorb strain and stress release, can eliminate or reduce the maximum degree of penetration of the bit dislocation defects like lattice structure, having a great absolute degree of flexibility;

[0051] 2)本发明的焦平面光探测阵列基于图形化柔性衬底,对于焦平面光探测器阵列来说,没有阵列尺寸限制,很容易实现lkX lk甚至更大的面阵;所述焦平面光探测阵列具有大幅度消除位错缺陷、降低器件暗电流、提高面阵器件尺寸、拓展波长、降低成本及增加器件集成功能等优点; [0051] 2) focal plane array of the present invention, a light detection based graphical flexible substrate, focal plane array of photodetectors, the array size is not limited, it is easy to implement lkX lk even greater area array; the focal having a substantially planar light detector array to eliminate dislocation defects, the dark current reducing device, increase the size of the area array device to expand the wavelength, and reduce the cost of the device increases the advantages of integration;

[0052] 3)本发明的制作方法可以应用到晶圆级尺寸,适于产业化生产,降低了生产成本。 [0052] 3) Production method of the present invention can be applied to the wafer-level size, suitable for industrial production, reducing production costs.

[0053] 4)本发明对实现高性能异质结材料提供了很大的灵活性,适用于多种材料体系, 可以实现很宽波段范围的各种大尺寸焦平面光探测器阵列。 [0053] 4) The present invention is to achieve high performance heterojunction material provides great flexibility for a variety of material systems, can achieve a variety of large-sized focal plane array of photodetectors a wide wavelength range.

附图说明 BRIEF DESCRIPTION

[0054]图1显示为本发明实施例一中提供的二维材料柔性衬底结构的结构示意图。 [0054] FIG. 1 shows a schematic structure of a two-dimensional structure of the flexible substrate material provided in an embodiment of the present embodiment of the invention.

[0055]图2显示为本发明实施例二中提供的二维材料柔性衬底结构的制作方法的流程图。 [0055] FIG. 2 shows a flowchart of a method for manufacturing a flexible substrate according to a second configuration of a two-dimensional material provided in the embodiment of the present invention.

[0056]图3至图14显示为本发明实施例二中提供的二维材料柔性衬底结构的制作方法在各步骤中的结构示意图。 [0056] Figures 3 to 14 show a schematic view of a configuration of a flexible substrate manufacturing method according to a second two-dimensional material is provided in each step of the embodiment of the present invention.

[0057]图15显示为本发明实施例三中提供的焦平面光探测器阵列的结构示意图。 [0057] Figure 15 shows a schematic view of an optical detector array focal plane III according to an embodiment of the present invention.

[0058]图16显示为本发明实施例四中提供的二维材料柔性衬底结构的制作方法的流程图。 [0058] Figure 16 shows a flowchart of a method for manufacturing a two-dimensional configuration of a flexible substrate material according to a fourth embodiment of the present invention is provided.

[0059] 图17至图18显示为本发明实施例四中提供的二维材料柔性衬底结构的制作方法在各步骤中的结构示意图。 [0059] Figures 17 to 18 show a schematic view of a configuration of a flexible substrate manufacturing method according to a fourth dimensional material provided in each step of the embodiment of the present invention.

[0060] 元件标号说明 [0060] DESCRIPTION OF REFERENCE NUMERALS element

[0061] 10 支撑衬底 [0061] The supporting substrate 10

[0062] 11 二维材料层 [0062] 11 two-dimensional material layer

[0063] 12 图形化柔性衬底 [0063] The flexible substrate 12 patterned

[0064] 121 图形单元 [0064] The pattern units 121

[0065] 13 生长衬底 [0065] The growth substrate 13

[0066] 14 缓冲层 [0066] The buffer layer 14

[0067] 15 牺牲层 [0067] The sacrificial layer 15

[0068] 16 柔性衬底材料层 [0068] The flexible substrate material layer 16

[0069] 17 光探测器结构 [0069] The structure of the photodetector 17

[0070] 18 铟柱 [0070] The indium bumps 18

[0071] 19 读出电路 [0071] The readout circuit 19

具体实施方式 Detailed ways

[0072]以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。 [0072] Hereinafter, an embodiment of the present invention by certain specific examples, those skilled in the art disclosed in this specification may readily understand the content of other advantages and effects of the present invention. 本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。 The present invention may also be implemented or applied through other different specific embodiments, the details of the specification may be carried out in various modified or changed without departing from the spirit of the invention based on various concepts and applications.

[0073]请参阅图1至图18。 [0073] Please refer to FIGS. 1 to 18. 需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。 Incidentally, the present embodiment illustrates a schematic manner only examples provided to illustrate the basic idea of ​​the invention, although the illustration of the display only, not in accordance with the present invention, the components in actual embodiments the number of components, and shape drawn to scale, its actual implementation of each component type, number and proportion of changes may be as a free, and the layout of the components may also be more complex patterns.

[0074] 实施例一 [0074] Example a

[0075]请参阅图1,本发明提供一种二维材料柔性衬底结构,所述二维材料柔性衬底结构包括:支撑衬底10;二维材料层11,所述二维材料层11位于所述支撑衬底10表面;图形化柔性衬底12,所述图形化柔性衬底12位于所述二维材料层11表面;所述图形化柔性衬底12为包括若干个间隔分布的图形单元121。 [0075] Referring to FIG. 1, the present invention provides a two-dimensional structure of a flexible substrate material, the two-dimensional structure of a flexible substrate material comprising: a support substrate 10; two-dimensional material layer 11, the two-dimensional material layer 11 said support surface of the substrate 10; patterning a flexible substrate 12, a patterned flexible substrate 12 is located in the two-dimensional surface of the material layer 11; the flexible substrate 12 patterned to include a plurality of spaced pattern 121 unit. 本发明的所述二维材料柔性衬底结构将所述图形化柔性衬底12与所述二维材料层11相结合,所述图形化柔性衬底12与所述二维材料层11界面的范德瓦尔斯键大大削弱了上下原子之间的吸引力,界面处形成的范德瓦尔斯力的强度远远小于共价键键能,所述图形化柔性衬底12可以完全自我调节应变吸纳和释放应力,可以最大程度消除或降低穿透位错等晶格结构缺陷,具有很大的绝对柔性度;所述二维材料柔性衬底可以用于大面阵焦平面光探测器阵列的衬底结构,在其上制备的焦平面光探测器阵列具有大幅度消除位错缺陷、降低器件暗电流、提高面阵器件尺寸、拓展波长、降低成本及增加器件集成功能等优点。 The flexible substrate material is a two-dimensional structure of the present invention the patterned flexible substrate 1211 in combination with the two-dimensional material layer, patterning the material layer 12 with the two-dimensional interface 11 of the flexible substrate Van der Waals attractive forces between the weakened vertical atoms, strength of van der Waals forces is formed at the interface is much smaller than the covalent bond energy, the patterned flexible substrate 12 can be completely self-regulating absorb strain and relieve the stress, the maximum extent possible to eliminate or reduce structural defects penetrate lattice dislocations, having a large absolute degree of flexibility; two-dimensional material of the flexible substrate may be used for large-array substrate of the photodetector array focal plane bottom structure, the focal plane array of photodetectors thereon prepared having substantially eliminate dislocation defects, the dark current of the device to reduce, increase the size of the area array device to expand the wavelength, and reduce the cost of the device increases the advantages of integration.

[0076] 作为示例,所述支撑衬底10可以为半导体衬底、半绝缘体衬底、绝缘体衬底、导热材料衬底或金属衬底。 [0076] As an example, the support substrate 10 may be a semiconductor substrate, a semi-insulator substrate, an insulator substrate, the thermally conductive material of the substrate or a metal substrate. 优选地,本实施例中,所述支撑衬底10为Si衬底。 Preferably, in this embodiment, the support substrate 10 is a Si substrate.

[0077] 作为示例,所述二维材料层11可以为石墨烯层、硅烯层、锗烯层、锡烯层、BN层、 MoS2层、WS2层或GaSe层。 [0077] As an example, the layer 11 may be two-dimensional material graphene layer, a silicon layer alkenyl, alkenyl germanium layer, a tin layer alkenyl, BN layer, a layer of MoS2, WS2 layer or GaSe layer. 优选地,本实施例中,所述二维材料层11为石墨烯层。 Preferably, in this embodiment, the material layer 11 is a two-dimensional graphene layer.

[0078] 作为示例,所述柔性衬底12的晶格常数与要形成于其表面的半导体发光器件材料层的晶格常数相匹配或适配;所述柔性衬底I2的材料可以是和半导体衬底晶格匹配或晶格失配的IV族,III-V族,II-VI族、IV-VI族或其它半导体晶体材料;在示例中,所述柔性衬底12可以为但不仅限于n型InGaAs柔性衬底,更为具体的,所述柔性衬底12可以为n型Ino. 7Gao. 3As柔性衬底或n型Ino. Kao. sAs柔性衬底。 [0078] As an example, the flexible substrate 12 and the lattice constant of the lattice constant of the light emitting material layer of a semiconductor device to be formed thereon or the surface adapted to match; I2 of the flexible substrate and the semiconductor material may be a substrate lattice matched or lattice mismatched group IV, III-V group, II-VI group, IV-VI group semiconductor crystal, or other material; in an example, the flexible substrate 12 may be, but not limited to n type InGaAs flexible substrate, more specifically, the flexible substrate 12 can 7Gao. 3As flexible substrate or n-type to n-type Ino Ino.. Kao. sAs flexible substrate.

[0079] 作为示例,所述图形化柔性衬底I2的厚度可以根据实际需要进行选择,优选地,本实施例中,所述图形化柔性衬底12的厚度小于或等于50nm。 [0079] As an example, the thickness of the flexible substrate patterning I2 may be selected, preferably according to actual needs, in the present embodiment, the thickness of the patterned flexible substrate 12 is less than or equal to 50nm.

[0080] 作为示例,所述图形单元121在所述二维材料层11表面呈周期性分布。 [0080] As an example, the pattern units 121 is distributed periodically on the surface of the two-dimensional material layer 11. 当然,在其他示例中,所述图形单元121还可以在所述二维材料层11表面非周期性分布。 Of course, in other examples, the pattern units 121 may further two-dimensional material surface layer 11 of the non-periodically distributed.

[0081] 作为示例,所述图形单元121的横向尺寸可以根据实际需要进行设定,优选地,所述图形单元121的横向尺寸为〇• iMi〜lOOurn;相邻所述图形单元m之间的间距可以根据实际需要设定,此处不做限定。 [0081] As an example, the transverse dimension of the pattern units 121 may be set according to actual needs, preferably, the transverse dimension of the pattern units 121 is square • iMi~lOOurn; between the adjacent pattern units of m spacing may be set according to actual needs, not limited here. 在一示例中,所述图形单元121的横向尺寸为27Wn,相邻所述图形单元121的中心之间的间距为3〇Wi。 In one example, the transverse dimension of the pattern units 121 is 27Wn, the distance between the centers of adjacent pattern units 121 is 3〇Wi.

[0082] 作为示例,所述图形单元121的形状可以根据实际需要进行设定,所述图形单元121的形状可以为圆柱形、矩形柱形、梯台形、倒梯台形等等,优选地,本实施例中,所述图形单元121的形状为矩形柱形。 [0082] As an example, the shape of the pattern unit 121 may be set according to actual needs, the shape of the pattern unit 121 may be cylindrical, rectangular, cylindrical, trapezoidal, inverted trapezoidal, etc., preferably, the embodiment, the shape of the pattern unit 121 is rectangular cylindrical shape.

[0083] 实施例二 [0083] Second Embodiment

[0084]请参阅图2,本发明还提供一种二维材料柔性衬底结构的制作方法,所述二维材料柔性衬底结构的制作方法包括以下步骤: [0084] Referring to FIG. 2, the present invention also provides a method for manufacturing a two-dimensional structure of a flexible substrate material, manufacturing method of the two-dimensional structure of a flexible substrate material comprising the steps of:

[0085] 1)提供一种支撑衬底; [0085] 1) providing a support substrate;

[0086] 2)在所述支撑衬底的表面形成二维材料层; [0086] 2) a two-dimensional material layer on the surface of the substrate support;

[0087] 3)在所述二维材料层表面形成图形化柔性衬底,所述图形化柔性衬底为包括若千个间隔分布的图形单元。 [0087] 3) a flexible substrate forming a patterned material layer on the two-dimensional surface, said flexible substrate including a patterned if one thousand units spaced pattern.

[0088]执行步骤1),请参阅图2中的S1步骤及图3,提供一种支撑衬底10。 [0088] step 1), see step S1 in FIG. And FIG. 23, there is provided a support substrate 10.

[0089]作为示例,所述支撑衬底1〇可以为半导体衬底、半绝缘体衬底、绝缘体衬底、导热材料衬底或金属衬底。 [0089] As an example, the support substrate may be a semiconductor substrate 1〇, semi-insulator substrate, an insulator substrate, the thermally conductive material of the substrate or a metal substrate. 优选地,本实施例中,所述支撑衬底10为Si衬底。 Preferably, in this embodiment, the support substrate 10 is a Si substrate.

[0090]执行步骤2),请参阅图2中的S2步骤及图4,在所述支撑衬底10的表面形成二维材料层11。 [0090] step 2), see step S2 in FIG. 2 and FIG. 4, a two-dimensional material layer 11 is formed on the surface of the supporting substrate 10.

[0091]作为不例,所述二维材料层11可以为石墨稀层、娃烯层、锗炼层、锡炼层、BN层、 MoS2层、WS2层或GaSe层。 [0091] As embodiments not, the material layer 11 may be a two-dimensional graphene layer, baby alkenyl layer, a germanium layer smelting, refining a tin layer, BN layer, a layer of MoS2, WS2 GaSe layer or layers. 优选地,本实施例中,所述二维材料层11为石墨燦层。 Preferably, in this embodiment, the two-dimensional material layer 11 is a graphite layer Chan.

[0092]执行步骤3),请参阅图2中的S3步骤及图5至图14,在所述二维材料层表U面形成图形化柔性衬底12,所述图形化柔性衬底12为包括若干个间隔分布的图形单元丨2!。 [0092] step 3), see step S3 in FIG. 2 and FIG. 5 to FIG. 14, the U-plane two-dimensional sheet material layer forming a patterned flexible substrate 12, a patterned flexible substrate 12 is Shu comprises several graphical elements spaced 2 !.

[0093]在一示例中,在所述二维材料层11表面形成所述图形化柔性衬底12包括以下步骤: [0093] In an example, forming the patterned flexible substrate 12 including the steps of the two-dimensional surface of the material layer 11:

[0094] 3_ 1)提供一种生长衬底13,如图5所示;所述生长衬底13的材料可以为Si、Ge、 GaAs、InP、GaSb、InAs、InSb、SiC、AlN、GaN 或蓝宝石等; [0094] 3_ 1) providing a growth substrate 13, as shown in FIG. 5; the growth substrate 13 material may be Si, Ge, GaAs, InP, GaSb, InAs, InSb, SiC, AlN, GaN, or sapphire;

[0095] 3-2)在所述生长衬底13上形成缓冲层14,如图6所示; 14, as shown in FIG 6 [0095] 3-2) is formed on the buffer layer 13 grown on the substrate;

[0096] 3-3)在所述缓冲层14上形成牺牲层15,如图7所示;所述牺牲层15的材料为可以通过选择性腐蚀或氧化而容易被去除的材料; The sacrificial layer 15 is formed [0096] 3-3) in the buffer layer 14, as shown in FIG. 7; the sacrificial layer material 15 is a material may be easily removed by etching or selective oxidation;

[0097] 3-4)在所述牺牲层15上形成柔性衬底材料层16,如图8所示;具体的,可以采用外延分子束外延工艺(Molecular Beam Epitaxy)或金属有机物化学气相沉积工艺(Metalorganic Vapor Phase Epitaxy)在所述牺牲层15表面形成所述柔性衬底材料层16; 具体的,所述柔性衬底材料层I6的晶格常数与要形成于其表面的半导体发光器件材料层的晶格常数相匹配或适配;所述柔性衬底材料层16的材料可以是和半导体衬底晶格匹配或晶格失配的IV族,III-V族,II-VI族、IV-VI族或其它半导体晶体材料;在本示例中,所述柔性衬底材料层16可以为掺杂的柔性衬底材料层,也可以为不掺杂的柔性衬底材料层;所述柔性衬底材料层16的厚度可以根据实际需要进行选择,优选地,本实施例中,所述柔性衬底材料层I6的厚度小于或等于5〇nm; [0097] 3-4) is formed on the sacrificial layer 15 of the flexible substrate material layer 16, as shown in FIG. 8; in particular, the epitaxial process can be molecular beam epitaxy (Molecular Beam Epitaxy) or metal-organic chemical vapor deposition process the flexible substrate material layer 16 (metalorganic Vapor Phase Epitaxy) is formed on a surface of the sacrificial layer 15; specifically, the flexible substrate material layer and the lattice constant of the light emitting material layer I6 of the semiconductor device to be formed in the surface thereof lattice constant matched or adapted; material of the flexible substrate layer 16 may be a group IV semiconductor substrate and lattice-matched or lattice mismatched, III-V group, II-VI group, IV- VI group semiconductor crystal, or other material; in this example, the flexible substrate material layer of flexible substrate material layer 16 may be a flexible substrate material doped layers, or may be undoped; the flexible substrate the thickness of the material layer 16 may be selected according to actual needs, preferably, in the present embodiment, the thickness of the flexible substrate material layer is less than or equal 5〇nm I6;

[0098] 3-5)将所述柔性衬底材料层16进行图形化处理,以得到所述图形化柔性衬底12, 如图9所示;具体的,先采用光刻工艺定义成所述图形化柔性衬底12的形状,然后采用刻蚀工艺去除部分所述柔性衬底材料层16以得到所述图形化柔性衬底12;优选地,刻蚀工艺过程中的刻蚀停止层为所述生长衬底I3,即刻蚀工艺中,去除部分所述缓冲层14及部分牺牲层15,只保留位于所述图形单元121正下方的所述缓冲层14及所述牺牲层15,如图9所示;具体的,图形化处理后得到的所述图形单元121在所述二维材料层11表面呈周期性分布;当然,在其他示例中,所述图形单元121还可以在所述二维材料层11表面非周期性分布;所述图形单元121的横向尺寸可以根据实际需要进行设定,优选地,所述图形单元的横向尺寸为O.lwn〜100M1;相邻所述图形单元121之间的间距可以根据实际需要设定,此 [0098] 3-5) to the flexible substrate material layer 16 is patterned, so as to obtain a patterned flexible substrate 12, shown in Figure 9; in particular, the first use of the photolithography process is defined as patterning the shape of the flexible substrate 12 and flexible substrate using an etching process to remove the portion of layer 16 to obtain the patterned flexible substrate 12; preferably, an etching process as the etching stop layer It said growth substrate I3, i.e. the etching process, removing a portion of the buffer layer 14 and a portion of the sacrificial layer 15, leaving only the pattern unit 121 is located below the n-buffer layer 14 and the sacrificial layer 15, as shown in FIG 9 shown; specifically, the pattern obtained after the patterning process unit 121 in the two-dimensional material surface layer 11 is distributed periodically; of course, in other examples, the pattern unit 121 may further the two-dimensional non-periodically distributed surface material layer 11; transverse dimension of the pattern units 121 may be set according to actual needs, preferably, the lateral size of the unit pattern is O.lwn~100M1; pattern units 121 of the adjacent the spacing between the set according to actual needs, this 不做限定。 Which is not limited. 在一示例中,所述图形单元121的横向尺寸为27wn,相邻所述图形单元121的中心之间的间距为30wn;所述图形单元121的形状可以根据实际需要进行设定,所述图形单元121的形状可以为圆柱形、矩形柱形、梯台形、倒梯台形等等,优选地,本实施例中,所述图形单元121 的形状为矩形柱形; In one example, the transverse dimension of the pattern units 121 is 27wn, the distance between the centers of adjacent pattern units 121 is 30wn; shape of the pattern unit 121 may be set according to actual needs, the pattern shape unit 121 may be cylindrical, rectangular, cylindrical, trapezoidal, inverted trapezoidal, etc., preferably, in the present embodiment, the shape of the pattern unit 121 is rectangular column;

[0099] 3-6)将步骤3-5)得到的结构键合至所述二维材料层11的表面,所述图形化柔性衬底12的表面为键合面,如图10所示; [0099] 3-6) Step 3-5) to give the bond structure of the two-dimensional material bonded to a surface of layer 11, the patterned surface of the flexible substrate 12 is bonded to the surface, shown in Figure 10;

[0100] 3-7)采用湿法腐蚀工艺将所述图形化柔性衬底12与所述牺牲层15相分离,将所述图形化柔性衬底12转移至所述二维材料层11的表面,如图11所示。 [0100] 3-7) a wet etching process using the patterned flexible substrate 12 with the sacrificial layer 15 is separated from the surface of the flexible substrate 12 is transferred to the two-dimensional material layer 11 is patterned , as shown in FIG.

[0101] 作为示例,在步骤3-5)与步骤3-6)之间,还包括对所述图形化柔性衬底12的表面进行钝化处理的步骤。 [0101] By way of example, between the step 3-5) and the step 3-6), further comprising patterning the surface of the flexible substrate 12 is a step of passivation.

[0102] 请参阅图12至图14,在另一示例中,还可以先将柔性衬底材料层16转移至所述二维材料层11表面之后再讲所述柔性衬底材料层16进行图形化处理,以得到所述图形化柔性衬底12。 After [0102] Please refer to FIG. 12 to FIG. 14, in another example, the flexible substrate may also be transferred first material layer 16 to the surface 11 of the two-dimensional material layer repeat the flexible substrate material layer 16 is patterned treatment, to obtain a patterned flexible substrate 12.

[0103] 下面,以一个具体的示例来进一步说明本实施例中所述的二维材料柔性衬底结构的制作方法,具体包括如下步骤: [0103] Next, a specific example in order to further illustrate the method for manufacturing a two-dimensional structure of a flexible substrate material of the present embodiment specifically includes the following steps:

[0104] (1)采用分子束外延在n型InP衬底上生长200ntn InP缓冲层,生长温度520°C ; [0104] (1) using molecular beam epitaxy 200ntn InP buffer layer on the n-type InP substrate, a growth temperature of 520 ° C;

[0105] (2)在InP缓冲层上外延生长lOOnm晶格匹配的In〇.52Al〇.48As牺牲层,生长温度520 °C; [0105] (2) epitaxially grown on an InP buffer layer is lattice matched lOOnm In〇.52Al〇.48As sacrificial layer, the growth temperature of 520 ° C;

[0106] (3)在InQ.52Alo.48As牺牲层上外延生长15nm掺桂n型InQ.7GaQ.3As薄膜,掺杂浓度在2x1018Cnf3量级,生长温度480°C ; [0106] (3) on the sacrificial layer is epitaxially grown 15nm InQ.52Alo.48As Gui-doped n-type InQ.7GaQ.3As film, the doping concentration in the order of 2x1018Cnf3, the growth temperature of 480 ° C;

[0107] ⑷采用光刻实现lk x lk、中心间距为30微米、台面边长为27微米的正方形面阵, 刻蚀深度止于InP衬底界面; [0107] ⑷ implemented using photolithography lk x lk, center spacing of 30 microns, the mesa square planar array of edge length of 27 m, the etching depth beyond the InP substrate interface;

[0108] (5)在硅基上实现单原子层石墨烯; [0108] (5) to achieve a single atomic layer graphene on a silicon substrate;

[0109] (6)将带有Ino.52Alo.48As牺牲层的n型Ino.7Gao.3As柔性衬底面阵键合到硅基石墨烯上; [0109] (6) The flexible substrate with an n-type area array Ino.7Gao.3As key Ino.52Alo.48As sacrificial silicon layer is bonded to the graphene;

[0110] ⑺采用选择性湿法腐蚀,分离InP衬底形成n型Ino.7Gao.3As柔性衬底阵列。 [0110] ⑺ selective wet etching, the n-type InP substrate separated flexible substrate Ino.7Gao.3As array.

[0111] 实施例三 [0111] Example three

[0112] 请参阅图15,本发明还提供一种焦平面光探测器阵列,所述焦平面光探测器阵列包括:如实施例一中所述的二维材料柔性衬底结构,所述二维材料柔性衬底结构的具体结构请参阅实施例一,此处不再类似;光探测器结构17,所述光电探测器结构17位于所述图形化衬底12中各图形单元121的表面,即所述光探测器结构17为呈周期性阵列分布的结构。 [0112] Referring to FIG. 15, the present invention also provides a focal plane array of photodetectors, said photodetector focal plane array comprising: two-dimensional structure of a flexible substrate material as the example 1 embodiment, the two DETAILED dimensional structure of the flexible substrate structure materials on an embodiment, where no similar; structure photodetector 17, the photodetector 17 is the structure of the patterned surface 12 of each pattern portion 121 substrate, i.e., the light detector structure 17 is a periodic array structure was distributed. [0113] 作为示例,所述光电探测器结构17可以为但不仅限于包括In〇.82Gao.18As吸收层的2.5微米的光探测器结构。 [0113] As an example, the structure of the photodetector 17 may be, but is not limited to the structure including a light detector In〇.82Gao.18As 2.5 microns absorbing layer. 作为示例,所述光电探测器结构17可以为上下电极结构,也可以为共面电极结构。 By way of example, the photodetector 17 may be a vertical structure of the electrode structure, the electrode structure may be coplanar. [0115] 作为示例,所述焦平面光探测器阵列还包括:铟柱18,所述铟柱18位于各所述光探测器结构17表面;读出电路19,所述读出电路19位于所述铟柱18表面。 [0115] As an example, the focal plane photodetector array further comprising: indium columns 18, 18 located on the indium bumps 17 of the surface of each photodetector structure; readout circuit 19, the readout circuitry 19 is located in the indium surface of said column 18.

[0116] 实施例四 [0116] Fourth Embodiment

[0117] 请参阅图16,本发明还提供一种焦平面光探测器阵列的制作方法,所述焦平面光探测器阵列的制作方法包括以下步骤: [0117] Referring to FIG. 16, the present invention also provides a method for manufacturing a photodetector focal plane array, said focal plane array of optical detector manufacturing method comprising the steps of:

[0118] 1)采用如实施例二所述的二维材料柔性衬底结构的制作方法制作所述二维材料柔性衬底结构; [0118] 1) prepared as described in example two-dimensional structure of the flexible substrate material manufacturing method of the two-dimensional structure of the flexible substrate material;

[0119] 2)所述图形化衬底中各图形单元的表面形成光探测器结构。 The [0119] 2) forming a light pattern detector structured surface pattern portion of each substrate.

[0120] 执行步骤1),请参阅图中的si步骤,采用如实施例二所述的二维材料柔性衬底结构的制作方法制作所述二维材料柔性衬底结构。 [0120] step 1), see Figure in step si, employed as a flexible substrate manufacturing method according to the structure of two embodiments of two-dimensional material made a two-dimensional structure of the flexible substrate material.

[0121] 作为示例,制作所述二维材料柔性衬底结构的具体方法请参阅实施例二,此次不再累述。 [0121] As an example, a specific method of making the flexible structure of the two-dimensional substrate material according to the second embodiment, please refer to, this is no longer tired.

[0122] 执行步骤2),请参阅图16中的S2步骤及图17至图18,所述图形化衬底12中各图形单元121的表面形成光探测器结构17。 [0122] step 2), see step S2 in FIG. 16 and FIG. 17 to FIG. 18, the photodetector structure is formed the patterned surface 17 of the substrate 12 in each of the pattern units 121.

[0123] 作为不例,可以米用外延分子束外延工艺(Molecular Beam Epitaxy)或金属有机物化学气相沉积工艺(Metalorganic Vapor Phase Epitaxy)在所述图形化衬底12中各图形单元121的表面形成所述光探测器结构17。 Formation [0123] As no examples meters epitaxial molecular beam epitaxy process (Molecular Beam Epitaxy) or metal-organic chemical vapor deposition process (Metalorganic Vapor Phase Epitaxy) on the surface of each pattern unit 121 in the patterned substrate 12 said photodetector structure 17.

[0124] 作为示例,可以采用上下电极或共面电极的工艺制备所述光探测器结构17。 [0124] As an example, the upper and lower electrodes or preparation of the process may be coplanar electrodes employing the photodetector structure 17.

[0125] 作为示例,步骤2)之后还包括在各所述光探测器17表面形成铟柱18,并在所述铟柱18表面形成读出电路19的步骤。 [0125] As an example, after the step 2) further comprises indium bumps 18 are formed on the surface of each photodetector 17, and the step of readout circuit 19 is formed on a surface of the indium bumps 18.

[0126] 下面,以一个具体的示例来进一步说明本实施例中所述的焦平面光探测器阵列的制作方法,具体包括如下步骤: [0126] Next, a specific example to further illustrate the present method for manufacturing an optical focal plane detector array described in the embodiment, includes the following steps:

[0127] (1)采用分子束外延在n型InP衬底上生长200nm InP缓冲层,生长温度52(TC; [0127] (1) 200 nm molecular beam epitaxy on the n-InP buffer layer type InP substrate, the growth temperature 52 (TC;

[0酬⑵在InP缓冲层上外延生长100nm晶格匹配的lnQ.52AlQ.48As牺牲层,生长温度520 °C; [0 ⑵ paid on the InP buffer layer is epitaxially grown 100nm lnQ.52AlQ.48As sacrificial layer is lattice-matched, the growth temperature of 520 ° C;

[0129] ⑶在In〇.52Alo.48As牺牲层上外延生长15nm掺娃n型Ino.7Gao.3As薄膜,掺杂浓度在2xl018cm—3量级,生长温度480°C ; [0129] ⑶ in In〇.52Alo.48As 15nm sacrificial layer is epitaxially grown on an n-type doped baby Ino.7Gao.3As film, the doping concentration in the order of 2xl018cm-3, the growth temperature of 480 ° C;

[0130] (4)采用光刻实现lk x lk、中心间距为3〇微米、台面边长为27微米的正方形面阵, 刻蚀深度止于InP衬底界面; [0130] (4) using photolithography to achieve lk x lk, m 3〇 center spacing of the mesa side length of square planar array of 27 microns, the etching depth beyond the InP substrate interface;

[0131] (5)在硅基上实现单原子层石墨烯; [0131] (5) to achieve a single atomic layer graphene on a silicon substrate;

[0132] ⑹将带有InQ.52Al().48As牺牲层的n型ImuGauAs柔性衬底面阵键合到硅基石墨烯上; [0132] ⑹ with the InQ.52Al () n-type surface of the flexible substrate ImuGauAs 48As key array is bonded to the sacrificial silicon layer graphene.;

[0133] ⑺采用选择性湿法腐蚀,分离InP衬底形成n型Ino.7Gao.3As柔性衬底阵列; [0133] ⑺ selective wet etching, the n-type InP separating Ino.7Gao.3As flexible substrate array substrate;

[0134] ⑻在n型In〇.7Ga0.3As柔性衬底阵列上采用分子束外延生长含有In〇82Gao 18As吸收层的2.5微米光探测器结构; [0134] ⑻ In〇.7Ga0.3As employed on n-type flexible substrate containing an array of molecular beam epitaxy 2.5 micron photodetector structure In〇82Gao 18As absorbing layer;

[0135] (9)在各所述光探测器表面形成铟柱,并在所述铟柱表面形成读出电路。 [0135] (9) forming indium bumps on the surface of each photodetector, and the readout circuitry are formed in the surface of the indium bumps.

[0136]综上所述,本发明提供一种二维材料柔性衬底结构、焦平面光探测器阵列及制作方法,所述二维材料柔性衬底结构包括:支撑衬底;二维材料层,位于所述支撑衬底表面;图形化柔性衬底,位于所述二维材料层表面;所述图形化柔性衬底为包括若干个间隔分布的图形单元。 [0136] In summary, the present invention provides a flexible substrate material is a two-dimensional structure, the focal plane array of photodetectors and the manufacturing method, the two-dimensional structure of a flexible substrate material comprising: a support substrate; two-dimensional material layer , said support surface of the substrate; patterning a flexible substrate, a layer of the two-dimensional material surface; patterning said flexible substrate including a plurality of graphical elements spaced. 本发明的二维材料柔性衬底结构将图形化柔性衬底与二维材料层相结合,图形化柔性衬底与二维材料层界面的范德瓦尔斯键大大削弱了上下原子之间的吸引力,界面处形成的范德瓦尔斯力的强度远远小于共价键键能,图形化柔性衬底可以完全自我调节应变吸纳和释放应力,可以最大程度消除或降低穿透位错等晶格结构缺陷,具有很大的绝对柔性度。 Dimensional structure of the flexible substrate material of the present invention the patterned flexible substrate material layer and the two-dimensional combination, a flexible substrate and patterning the layer interface of the two-dimensional material greatly weakened key van der Waals attraction between the upper and lower atoms force, the strength of van der Waals forces is formed at the interface is much smaller than the covalent bond energy, patterning can be completely self-regulating flexible substrate to absorb strain and stress release, can eliminate or reduce the maximum penetration extent of lattice dislocations structural defects, absolutely great degree of flexibility. 、 ' '

[0137]上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。 [0137] the above-described embodiments are only to illustrate the principle and efficacy of the present invention, the present invention is not intended to be limiting. 任何熟悉此技术的人士皆可在不违R本发明的精神及范畴下,对上述实施例进行修饰或改变。 Any person skilled in this art can be made at without violating the spirit and scope of the present invention the R of the above-described embodiments can be modified or changed. 因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。 Thus, one skilled in the art that whenever all having ordinary knowledge in the technical ideas and spirit of the present invention is disclosed without departing from the completed equivalent modified or altered, yet the claims shall be encompassed by the present invention.

Claims (14)

1. 一种二维材料柔性衬底结构,其特征在于,包括: 支撑衬底; 二维材料层,位于所述支撑衬底表面; 图形化柔性衬底,位于所述二维材料层表面;所述图形化柔性衬底为包括若干个间隔分布的图形单元。 1. A two-dimensional structure of a flexible substrate material, characterized by comprising: a support substrate; two-dimensional material layer on the surface of the support substrate; patterning a flexible substrate, a layer of the two-dimensional material surface; the patterned flexible substrate including a plurality of graphical elements spaced.
2.根据权利要求1所述的二维材料柔性衬底结构,其特征在于:所述二维材料层为石墨如层、桂稀层、错稀层、锡稀层、BN层、M0S2层、WS2层或GaSe层。 The flexible substrate material is a two-dimensional structure according to claim 1, wherein: said layer is a two-dimensional material such as a graphite layer, a layer Gui dilute, dilute the wrong layer, a tin layer dilute, BN layer, M0S2 layer, GaSe WS2 layer or layers.
3.根据权利要求1所述的二维材料柔性衬底结构,其特征在于:所述图形化柔性衬底的厚度小于或等于50nm。 The flexible substrate material is a two-dimensional structure according to claim 1, wherein: said patterned flexible substrate thickness less than or equal to 50nm.
4. 根据权利要求1所述的二维材料柔性衬底结构,其特征在于:所述图形单元在所述二维材料层表面呈周期性分布。 The flexible substrate material is a two-dimensional structure according to claim 1, wherein: said graphics element is distributed periodically on the surface layer of the two-dimensional material.
5. 根据权利要求1所述的二维材料柔性衬底结构,其特征在于:所述图形单元的横向尺寸为0• lwn 〜lOOwn。 The flexible substrate material is a two-dimensional structure according to claim 1, characterized in that: the lateral dimension of the pattern units is 0 • lwn ~lOOwn.
6.—种二维材料柔性衬底结构的制作方法,其特征在于:包括以下步骤: 1) 提供一种支撑衬底; 2) 在所述支撑衬底的表面形成二维材料层; 3) 在所述二维材料层表面形成图形化柔性衬底,所述图形化柔性衬底为包括若干个间隔分布的图形单元。 6.- The method of fabricating a two-dimensional structure of a flexible substrate material, characterized by: comprising the steps of: a) providing a support substrate; 2) forming a two-dimensional material layer on a surface of said support substrate; 3) forming a patterned flexible substrate material on the surface layer of the two-dimensional, flexible substrate to the patterning includes a plurality of graphical elements spaced.
7. 根据权利要求6所述的二维材料柔性衬底结构的制作方法,其特征在于:在步骤2) 中,所述二维材料层为石墨烯层、硅烯层、锗烯层、锡烯层、BN层、MoS2层、WS2层或GaSe层。 The manufacturing method of the flexible substrate 6 in a two-dimensional structure of material according to claim, wherein: in step 2), the two-dimensional layer material is a graphene layer, a silicon layer alkenyl, alkenyl germanium layer, a tin alkenyl layer, BN layer, MoS2 layer, WS2 GaSe layer or layers.
8. 根据权利要求6所述的二维材料柔性衬底结构的制作方法,其特征在于:在步骤3) 中,在所述二维材料层表面形成图形化柔性衬底包括以下步骤: 3-1)提供一种生长衬底; 3-2)在所述生长衬底上形成缓冲层; 3-3)在所述缓冲层上形成牺牲层; 3-4)在所述牺牲层上形成柔性衬底材料层; 3-5)将所述柔性衬底材料层进行图形化处理,以得到所述图形化柔性衬底; 3-6)将步骤3-5)得到的结构键合至所述二维材料层的表面,所述图形化柔性衬底的表面为键合面; 3-7)将所述图形化柔性衬底与所述牺牲层相分离,将所述图形化柔性衬底转移至所述二维材料层的表面。 The manufacturing method of the flexible substrate 6 in a two-dimensional structure material according to claim, wherein: in step 3), patterning a flexible substrate comprising the steps of forming a surface layer of said two-dimensional material: 3- 1) providing a growth substrate; 3-2) forming a buffer layer on the growth substrate; 3-3) forming a sacrificial layer on the buffer layer; 3-4) is formed on the sacrificial layer a flexible a substrate layer of material; 3-5) layer of the flexible substrate material patterning process, to obtain the patterned flexible substrate; key structure 3-6) step 3-5) bonded to the obtained two-dimensional material surface layer, the patterned surface is a flexible substrate bonding surface; 3-7) the flexible substrate and patterning the sacrificial layer separated, the flexible substrate patterned transfer to the two-dimensional material surface layer.
9.根据权利要求8所述的二维材料柔性衬底结构的制作方法,其特征在于:在步骤3-5) 与步骤3_6)之间,还包括对所述图形化柔性衬底的表面进行钝化处理的步骤。 The method of making a flexible two-dimensional material substrate structure according to claim 8, wherein: between the step 3-5) and the step 3_6), further comprising patterning the surface of the flexible substrate the passivation step process.
10.根据权利要求6所述的二维材料柔性衬底结构的制作方法,其特征在于:在步骤3) 中,在所述二维材料层表面形成图形化柔性衬底包括以下步骤: 3-1)提供一种生长衬底; 3-2)在所述生长衬底上形成缓冲层; 3-3)在所述缓冲层上形成牺牲层; 3-4)在所述牺牲层上形成柔性衬底材料层; 3 -5)将步骤3_4)得到的结构键合至所述二维材料层的表面,所述柔性衬底材料层的表面为键合面; 3-6)将所述柔性衬底材料层与所述牺牲层相分离,将所述柔性衬底材料层转移至所述二维材料层的表面; 3-7)将转移至所述二维材料层表面的所述柔性衬底材料层进行图形化处理,以得到所述图形化柔性衬底。 The method of making a flexible two-dimensional material 10. The substrate structure according to claim 6, wherein: in step 3), patterning a flexible substrate comprising the steps of forming a surface layer of said two-dimensional material: 3- 1) providing a growth substrate; 3-2) forming a buffer layer on the growth substrate; 3-3) forming a sacrificial layer on the buffer layer; 3-4) is formed on the sacrificial layer a flexible layer of substrate material; structure of the key 3-5) step 3_4) obtained in the two-dimensional material bonded to the surface layer, the surface of the flexible substrate material surface layer is bond; 3-6) the flexible substrate material layer and the sacrificial layer is separated, the flexible substrate material layer was transferred to a two-dimensional surface of the material layer; 3-7) will be transferred to the two-dimensional surface of the flexible liner material layer patterning the bottom layer of treated material in order to obtain the patterned flexible substrate.
11.一种焦平面光探测器阵列,其特征在于,包括: 如权利要求1至5中任一项所述的二维材料柔性衬底结构; 光探测器结构,位于所述图形化衬底中各图形单元的表面。 A focal plane array of photodetectors, characterized in that, comprising: a flexible substrate material is a two-dimensional structure of any one of 1 to 5 according to claim 1; photodetector structure, located in the patterned substrate the surface of each pattern unit.
12. 根据权利要求11所述的焦平面光探测器阵列,其特征在于:所述焦平面光探测器阵列还包括: 铟柱,位于各所述光探测器结构表面; 读出电路,位于所述铟柱表面。 The focal plane 12. The photodetector array as claimed in claim 11, wherein: said focal plane photodetector array further comprising: indium bumps, the light emitting structure located on the surface of each detector; readout circuit is located in the indium said cylindrical surface.
13. —种焦平面光探测器阵列的制作方法,其特征在于:包括以下步骤: 1) 采用如权利要求6至1〇中任一项所述的二维材料柔性衬底结构的制作方法制作所述二维材料柔性衬底结构; 2) 所述图形化衬底中各图形单元的表面形成光探测器结构。 13. - kind of the focal plane of the photodetector array manufacturing method, characterized by: comprising the steps of: 1) a flexible substrate manufacturing method as claimed in configuration of a two-dimensional material 6 to the production of any of claims 1〇 the flexible substrate material is a two-dimensional structure; 2) the pattern forming surface of the substrate photodetector structure of each picture cell.
14. 根据权利要求13所述的焦平面光探测器阵列的制作方法,其特征在于:在步骤2)之后还包括在各所述光探测器表面形成铟柱,并在所述铟柱表面形成读出电路的步骤。 14. The manufacturing method of the focal plane 13 of photodetector array as claimed in claim, wherein: after the step 2) further includes forming indium bumps on the surface of each photodetector, and indium is formed in the cylindrical surface step readout circuit.
CN201611111160.9A 2016-12-06 2016-12-06 Two-dimensional material flexible substrate structure, focal plane optical detector array and manufacturing method thereof CN108155254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611111160.9A CN108155254A (en) 2016-12-06 2016-12-06 Two-dimensional material flexible substrate structure, focal plane optical detector array and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611111160.9A CN108155254A (en) 2016-12-06 2016-12-06 Two-dimensional material flexible substrate structure, focal plane optical detector array and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN108155254A true CN108155254A (en) 2018-06-12

Family

ID=62467786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611111160.9A CN108155254A (en) 2016-12-06 2016-12-06 Two-dimensional material flexible substrate structure, focal plane optical detector array and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN108155254A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981400A (en) * 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
TW201113940A (en) * 2009-05-12 2011-04-16 Univ Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US20160204196A1 (en) * 2013-03-21 2016-07-14 International Business Machines Corporation Self-formation of high-density arrays of nanostructures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981400A (en) * 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
TW201113940A (en) * 2009-05-12 2011-04-16 Univ Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US20160204196A1 (en) * 2013-03-21 2016-07-14 International Business Machines Corporation Self-formation of high-density arrays of nanostructures

Similar Documents

Publication Publication Date Title
Gunapala et al. 640$\,\times\, $512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array
US7687871B2 (en) Reduced dark current photodetector
Gunapala et al. 1024× 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications
CN101689581B (en) Nanowire photodiodes and methods of making nanowire photodiodes
Wang et al. Ge-photodetectors for Si-based optoelectronic integration
Park et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption
US5518934A (en) Method of fabricating multiwavelength infrared focal plane array detector
EP2584397A1 (en) Optical electro-absorption modulator including two graphene sheets
US8035184B1 (en) Broadband imaging device
CN1855552A (en) High efficiency inorganic nanorod-enhanced photovoltaic devices
Bie et al. A MoTe 2-based light-emitting diode and photodetector for silicon photonic integrated circuits
US20110079796A1 (en) Nano structured leds
Huang et al. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications
JP2007324572A (en) Light receiving element array, method for manufacturing the same, and optical measurement system
JP2002324911A (en) Avalanche photodiode and method of manufacturing the same
US6326654B1 (en) Hybrid ultraviolet detector
Jain et al. III–V multijunction solar cell integration with silicon: Present status, challenges and future outlook
Pospischil et al. Optoelectronic devices based on atomically thin transition metal dichalcogenides
US7001794B2 (en) Focal plane arrays in type II-superlattices
Lei et al. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors
US7659536B2 (en) High performance hyperspectral detectors using photon controlling cavities
US9263612B2 (en) Heterojunction wire array solar cells
Razeghi et al. Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices
US7282777B1 (en) Interband cascade detectors
Razeghi et al. Advances in mid-infrared detection and imaging: a key issues review

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination