CN108016606A - Unmanned plane undercarriage and unmanned plane - Google Patents

Unmanned plane undercarriage and unmanned plane Download PDF

Info

Publication number
CN108016606A
CN108016606A CN201610932230.0A CN201610932230A CN108016606A CN 108016606 A CN108016606 A CN 108016606A CN 201610932230 A CN201610932230 A CN 201610932230A CN 108016606 A CN108016606 A CN 108016606A
Authority
CN
China
Prior art keywords
unmanned plane
undercarriage
latch
platform
pilot hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610932230.0A
Other languages
Chinese (zh)
Other versions
CN108016606B (en
Inventor
杜淼森
赵自强
王悦
赵炳根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201610932230.0A priority Critical patent/CN108016606B/en
Priority to PCT/CN2017/108553 priority patent/WO2018077299A1/en
Publication of CN108016606A publication Critical patent/CN108016606A/en
Application granted granted Critical
Publication of CN108016606B publication Critical patent/CN108016606B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/04Arrangement or disposition on aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/06Vehicles adapted to transport, to carry or to comprise special loads or objects for carrying vehicles
    • B60P3/11Vehicles adapted to transport, to carry or to comprise special loads or objects for carrying vehicles for carrying aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/007Helicopter portable landing pads

Abstract

This disclosure relates to a kind of unmanned plane undercarriage and unmanned plane, wherein, unmanned plane undercarriage includes the lockable mechanism (2200) for being used to be arranged on the undercarriage body (2100) of the bottom of unmanned plane (1000) and being contained in undercarriage body, the side wall of undercarriage body offers pilot hole (2110), the outer wall of undercarriage body is protruded formed with block (2130), block is spaced on the top of pilot hole, the driving mechanism that lockable mechanism includes latch (2210) and drives latch to be extended and retracted from pilot hole.When unmanned plane is dropped on landing platform, upper positioning is carried out to unmanned plane by the block of undercarriage body outer wall, lower positioning is carried out to unmanned plane by latch, improve stability of the unmanned plane when stopping, and latch can be extended and retracted from undercarriage body, locking and unlock to unmanned plane can be realized respectively.

Description

Unmanned plane undercarriage and unmanned plane
Technical field
This disclosure relates to unmanned air vehicle technique field, and in particular, to a kind of unmanned plane undercarriage and unmanned plane.
Background technology
At present, many unmanned planes are equipped with undercarriage, for adaptively dropping to landing platform, in correlation technique In, unmanned plane is not steady enough when landing, and stabilization can not be made to rest on landing platform, further, since when landing to unmanned plane Positioning accuracy request is higher, it is necessary to which zero-deviation is landed, and operation is complex.And due to being frequently necessary to increase intelligent control system System, cost are higher.In addition, current unmanned plane landing platform can only adapt to the unmanned plane of single model, a variety of machines can not be adapted to Type, and multiple unmanned planes can not be stopped at the same time.
The content of the invention
One purpose of the disclosure is to provide a kind of unmanned plane undercarriage, with solve unmanned plane landing when stop it is unstable Problem.
Another object of the present disclosure is to provide a kind of unmanned plane, unstable to solve the problems, such as to stop in landing.
To achieve these goals, the disclosure provides a kind of unmanned plane undercarriage, including for being arranged on the bottom of unmanned plane The undercarriage body in portion and the lockable mechanism being contained in the undercarriage body, the side wall of the undercarriage body, which offers, leads Xiang Kong, the outer wall of the undercarriage body are protruded formed with block, and the block is spaced on the top of the pilot hole, institute State the driving mechanism that lockable mechanism includes latch and drives the latch to be extended and retracted from the pilot hole.
Alternatively, the pilot hole is three row being circumferentially evenly arranged, and the block and the latch are formed respectively For corresponding three row.
Alternatively, it is outwardly formed with guide groove, the both ends of the latch on the hole wall at the both ends of the pilot hole There is the protrusion being slidably matched with the guide groove.
Alternatively, the driving mechanism includes rotatable central shaft, and first be fixedly connected on the central shaft connects Bar, and the second connecting rod being hinged on the latch, the first connecting rod are hinged with second connecting rod, the latch at least portion It is contained in the pilot hole with dividing.
Alternatively, the latch includes upper matrix, lower substrate and the fastening for connecting the upper matrix and lower substrate Component, the second connecting rod are rotatably connected on the fastening assembly.
Alternatively, the inner wall of the upper matrix is inwardly projecting the first platform, and the inner wall of the lower substrate is inwardly projecting to be had Second platform, the fastening assembly are included in the first mating installation that first platform and the second platform are oppositely arranged Column and the second mounting post, formed with installation set, the installation set is set in first mounting post for one end of the second connecting rod With the periphery of the second mounting post, and it is formed between first platform and the second platform.
Alternatively, the first driving means for driving the central axis are provided with above the central shaft.
Alternatively, the lockable mechanism further includes the torsionspring being set on the central shaft, the torsionspring Both ends are separately fixed on the undercarriage body and the central shaft.
Alternatively, on the direction away from the central shaft, the thickness of the latch is gradually reduced and causes the lock The bottom surface of stops is formed as arc.
Alternatively, the bottom of the undercarriage body is provided with plug.
According to another aspect of the disclosure, there is provided a kind of unmanned plane, the bottom of the unmanned plane are provided with according to this public affairs The unmanned plane undercarriage that the first aspect opened provides.
Through the above technical solutions, when unmanned plane is dropped on landing platform, pass through the block of undercarriage body outer wall Upper positioning is carried out to unmanned plane, lower positioning is carried out to unmanned plane by latch, improves stability of the unmanned plane when stopping, And latch can be extended and retracted from undercarriage body, locking and unlock to unmanned plane can be realized respectively.
Other feature and advantage of the disclosure will be described in detail in subsequent specific embodiment part.
Brief description of the drawings
Attached drawing is for providing further understanding of the disclosure, and a part for constitution instruction, with following tool Body embodiment is used to explain the disclosure together, but does not form the limitation to the disclosure.In the accompanying drawings:
Fig. 1 is the structure diagram of undercarriage body in the unmanned plane undercarriage according to an embodiment of the disclosure;
Fig. 2 is the structure diagram of lockable mechanism in the unmanned plane undercarriage according to an embodiment of the disclosure;
Fig. 3 is the structure diagram of the latch in the embodiment shown in Fig. 2;
Fig. 4 is the structure diagram according to the unmanned plane of an embodiment of the disclosure;
Fig. 5 is the structure diagram according to the unmanned plane landing platform of an embodiment of the disclosure;
Fig. 6 is the explosive view of supporting mechanism in the unmanned plane landing platform according to an embodiment of the disclosure;
Fig. 7 is the internal structure schematic diagram of the jacking sleeve of supporting mechanism in Fig. 6;
Fig. 8 is the sectional view after supporting mechanism assembling in Fig. 6;
Fig. 9 is the cooperation schematic diagram of the unmanned plane according to an embodiment of the disclosure and landing platform;
Figure 10 is the structure diagram according to the unmanned plane lifting gear of an embodiment of the disclosure;
Figure 11 is the structure diagram according to the unmanned plane lifting gear of the another embodiment of the disclosure;
Figure 12 is the application scenario diagram according to the unmanned plane lifting gear of an embodiment of the disclosure.
Description of reference numerals
1000 unmanned plane, 3,313 first groove
2000 unmanned plane undercarriage, 2100 undercarriage body
2110 pilot hole, 2111 guide groove
2120 installing plate, 2200 lockable mechanism
2210 latch 2211 is raised
2213 lower substrate of matrix on 2212
2214 first platform, 2,215 second platform
2216 first mounting post, 2,217 second mounting post
2220 torsionspring, 2230 central shaft
2240 first connecting rod, 2250 second connecting rod
2300 first driving means, 2400 plug
3000 landing platform, 3100 pedestal
3110 socket, 3120 protective cover
3200 upper mounting plate, 3210 guide and limit part
3300 supporting mechanism, 3310 jacking sleeve
3311 3312 guide pads of annular jacking block
3320 elevating lever, 3,321 first key
3322 first securing rod, 3,323 second elastic component
3324 first steering wheel, 3,325 second steering wheel
3326 second securing rod, 3,330 first elastic component
3340 pilot sleeve, 3350 guide rod
4000 installation frame, 5000 base
Embodiment
The embodiment of the disclosure is described in detail below in conjunction with attached drawing.It should be appreciated that this place is retouched The embodiment stated is only used for describing and explaining the disclosure, is not limited to the disclosure.
In the disclosure, in the case where not making conversely explanation, the noun of locality such as " upper and lower " used typically refers to unmanned plane Upper and lower under smooth flight state and when landing, " inside and outside " is for profile of corresponding parts itself.
The landing platform and lifting gear coordinated present disclose provides a kind of unmanned plane undercarriage and with the undercarriage.Such as Shown in Fig. 1 and Fig. 2, the unmanned plane undercarriage 2000 that the disclosure provides includes rising and falling for the bottom for being arranged on unmanned plane 1000 Frame body 2100 and the lockable mechanism 2200 being contained in undercarriage body 2100, the side wall of undercarriage body 2100, which offers, leads To hole 2110, the outer wall of undercarriage body 2100 is protruded is spaced on pilot hole 2110 formed with block 2130, block 2130 Top, when unmanned plane is dropped on landing platform, by the block 2130 of 2100 outer wall of undercarriage body to unmanned plane into Positioned on row, lower positioning is carried out to unmanned plane by the latch 2210 in lockable mechanism 2200, utilizes simple mechanical structure Improve stability when unmanned plane 1000 is stopped.Lockable mechanism 2200 includes latch 2210 and driving latch 2210 from leading The driving mechanism extended and retracted into hole 2110, action is extended and retracted by latch 2210, can be realized respectively pair The locking positioning and unlock of unmanned plane.
Further, pilot hole 2110 can be the multiple row being circumferentially evenly arranged, and latch 2210 is formed as corresponding Multiple row so that lockable mechanism 2200 circumferentially equably can position unmanned plane 1000, avoid unmanned plane 1000 from stopping Radially play afterwards, improves integrally-built stability.Alternatively, in the disclosure, as depicted in figs. 1 and 2, pilot hole 2110 It can be respectively three row with latch 2210, meet the circumferentially positioned requirement to unmanned plane 1000, and structure is with higher The problem of compactedness, avoids the processing difficulties brought when columns is excessive, parts Xiang Hu Gan Wataru.
In order to which latch 2210 is positioned in pilot hole 2110 and latch 2210 is slidably matched with pilot hole 2110, As shown in Figure 1, could be formed with guide groove 2111 on the hole wall at the both ends of pilot hole 2110, as shown in Fig. 2, latch 2210 Both ends are outwardly the protrusion 2211 being slidably matched with guide groove 2111.In this way, latch 2210 is sliding in pilot hole 2110 When dynamic, it can be only engaged by protrusion 2211 with guide groove 2111, avoid the contact with pilot hole 2110 of latch 2210 from grinding Damage and cause service life to reduce.
In addition, as shown in Fig. 2, above-mentioned driving mechanism can include rotatable central shaft 2230, in being fixedly connected on First connecting rod 2240 in mandrel 2230, the second connecting rod 2250 being hinged on latch 2210, in addition, first connecting rod 2240 with Second connecting rod 2250 is hinged, and latch 2210 is at least partially recessed into pilot hole 2110.That is, driving mechanism, locking Be formed as crank block slider structure between block 2210 and pilot hole 2110, wherein, central shaft 2230 and first connecting rod 2240 are song Crank in handle slide block structure, second connecting rod 2250 are the connecting rod in crank block slider structure, and latch 2210 is slide crank agllutination Sliding block in structure, pilot hole 2110 are the rack in crank block slider structure, and by this structure, the revolution of central shaft 2230 is transported Turn becomes the straight reciprocating motion of latch 2210, and then can realize the locking and unlocking function of latch 2210.
Specifically, as shown in figure 3, latch 2210 can include upper matrix 2212, lower substrate 2213 and for connection The fastening assembly of matrix 2212 and lower substrate 2213, second connecting rod 2250 are rotatably connected on fastening assembly.Wherein, fasten Component can be that screw element connects, such as connect upper matrix 2212 and lower substrate 2213, upper matrix from short transverse using screw Gap is left between 2212 and lower substrate 2213, one end of second connecting rod 2215 is set with screw in the gap.Or such as Shown in Fig. 3, the inner wall of upper matrix 2212 is inwardly projecting the first platform 2214, and the inner wall of lower substrate 2213 is inwardly projecting second Platform 2215, fastening assembly are included in the first mating installation that the first platform 2214 and the second platform 2215 are oppositely arranged 2216 and second mounting post 2217 of column, formed with installation set, installation set is set in the first mounting post for one end of second connecting rod 2250 2216 and second mounting post 2217 periphery, and be formed between the first platform 2214 and the second platform 2215, so that Two connecting rods 2215 can be rotated relative to latch 2210.
Further, as shown in figure 4, the top of central shaft 2230 is provided with first for driving the rotation of central shaft 2230 Driving device 2300, in the present embodiment, first driving means 2300 can be the first motor, which is fixed on nothing Man-machine 1000 bottom, and be contained in undercarriage body 2100.First motor exports rotary motion to drive above-mentioned crank Slide block structure.
Further, with reference to shown in Fig. 2 and Fig. 4, lockable mechanism 2200 further includes the torsion being set on central shaft 2230 Spring 2220, the both ends of torsionspring 2220 are separately fixed on undercarriage body 2100 and central shaft 2230, in this way, at center During axis 2230 rotates, torsionspring 2220 is fixed on one end under tension on central shaft 2230 so that torsionspring 2220 main part has the trend outwards opened or inwardly received, and torsionspring 2220 has different size of under two states Elastic force.Specifically, in the state of latch 2210 is stretched out from pilot hole 2120, the elastic force of torsionspring 2220 is less than lock The elastic force of torsionspring 2220 in the state of stops 2210 is retracted from pilot hole 2120, i.e. torsionspring 2220 have all the time by The trend that latch 2210 outwards drives.During latch 2210 is stretched out from pilot hole 2120 with retraction, bullet is reversed Spring completes stretching and the action resetted, its specific course of work will land with being retouched in take-off process in following unmanned plane State.
Further, as shown in Figures 2 and 3, on the direction away from central shaft 2230, the thickness of latch 2210 It is gradually reduced and so that the bottom surface of latch 2210 is formed as arc, in this way, during unmanned plane lands, latch 2210 When upper mounting plate 3200 described as follows with example contacts, latch 2210 is inwardly retracted in the slide-and-guide by lower arcuate surface, Its specific action process equally will also land with being described in take-off process in following unmanned plane.
Further, as shown in figure 4, the bottom of undercarriage body 2100 can be provided with plug 2400, the plug 2400 Be arranged on the bottom of undercarriage body 2100, unmanned plane 1000 landing after, plug 2500 can with landing platform 3000 Socket 3110 carry out it is mating.In order to which test plug 2400 is contacted with landing platform 3000 (being specifically as follows socket 3110) When pressure condition, pressure sensor (not shown) can be integrated with plug 2400, it is ensured that plug 2400 is after grafting Pressure limit in rational region, it is ensured that plug 2400 and socket 3110 connect normally, while avoid the impact of parts Destroy.
In addition, the disclosure also provides a kind of unmanned plane, the bottom of the unmanned plane 1000 is provided with above-mentioned unmanned plane and rises and falls Frame 2000.Specifically, the top of undercarriage body 2100 can have an installing plate 2120 so that compartment of terrain is outwardly, on installing plate 2120 Mounting hole is offered so that undercarriage body 2100 is fixed on unmanned plane 1000 by fastener, lockable mechanism 2200 is formed in The bottom of unmanned plane 1000 can be fixed in undercarriage body 2100 and by first driving means 2300.
As shown in figure 5, the unmanned plane landing platform that the disclosure provides includes pedestal 3100, upper mounting plate 3200 and by upper mounting plate 3200 compartment of terrain are supported on the supporting mechanism 3300 of the top of pedestal 3100, the supporting mechanism 3300 along telescopic in height so that on Platform 3200 has:First operating position, supporting mechanism 3300 is in stretches out state upwards;With the second operating position, machine is supported Structure 3300 is in downward retracted mode.After unmanned plane is dropped on landing platform 3000, it can be locked on upper mounting plate, due to Upper mounting plate has two operating positions, can be adjusted in height into row position, can be steadily placed at unmanned plane undercarriage In landing platform.Specifically, unmanned plane makes unmanned plane undercarriage 2000 be locked on upper mounting plate 3200 first in landing, and In the first operating position, upper mounting plate 3200 is further pressed down on, upper mounting plate 3200 is moved towards the second operating position, nothing Man-machine undercarriage 2000 is closer to pedestal 3100, so that the stability with higher.
In order to enable upper mounting plate 3200 to be stably formed two operating positions, supporting mechanism 3300 has position limiting structure, So that supporting mechanism 3000 is limited in the first operating position or the second operating position.
Specifically, supporting mechanism 3300 can include the first sleeve assembly, as shown in figure 5, first sleeve assembly can be with Including the jacking sleeve 3310 being fixed on pedestal 3100 and the elevating lever 3320 being fixed on upper mounting plate 3200, jacking sleeve 3310 and elevating lever 3320 be slidably matched, position limiting structure include be arranged on 3310 inner wall of jacking sleeve and up and down it is spaced on Structure and lower locking structure are engaged, when elevating lever 3320 is locked on locking structure so that upper mounting plate 3200 is positioned at the first work Position;When elevating lever 3320 is locked on lower locking structure so that upper mounting plate 3200 is located at the second operating position.
More specifically, as shown in fig. 6, the first sleeve assembly further includes the first elastic component 3330, the first elastic component 3330 is set Put in jacking sleeve 3310, and outside elasticity is supported on the bottom of elevating lever 3320 and pedestal 3100 respectively at both ends, First operating position, the first elastic component 3330 support elevating lever 3320 in upper locking structure;When pressing down on elevating lever When 3320, elevating lever 3320 is unlocked from upper locking structure and rotated to enter the second operating position;In the second operating position, One elastic component 3330 supports elevating lever 3320 in lower locking structure;When pressing down on elevating lever 3320, elevating lever 3320 Unlock and rotated to enter the first operating position from lower locking structure.Explanation is needed exist for, the first elastic component 3330 begins There is the trend extended to both ends eventually, i.e. both ends can support on the bottom of elevating lever 3320 and pedestal 3100 all the time, this One elastic component 3330 can be compression spring.
Further, as shown in fig. 7, upper locking structure is included from the inwardly projecting circular top of the inner wall of jacking sleeve 3310 Block 3311, lower locking structure are included from the inwardly projecting guide pad 3312 in the inner wall compartment of terrain of jacking sleeve 3310, guide pad 3312 are formed in the lower section of annular jacking block 3311, are formed as the first groove 3313, elevating lever between adjacent two guide pads 3312 3320 outer wall is protruding with the first key 3321 being slidably matched with the first groove 3313, and in the first operating position, the first key 3321 holds It is contained in the first groove 3313, and top is supported in the bottom of annular jacking block 3311;From the first operating position to the second work Position move during, the first key 3321 slide down to first depart from the first groove 3313 and depart from when can be with liter Drop bar 3320 rotates, and the second operating position is then entered under the pressure of the first elastic component 3330, wherein elevating lever 3320 rotates Driving force can come from example and misplace described as follows the cooperation of sawtooth;In the second operating position, the top of the first key 3321 is supported In the bottom of guide pad 3312;During being moved from the second operating position to the first operating position, the first key 3321 is first Slide downward is simultaneously rotated with elevating lever 3320, and the first operating position is then entered under the pressure of the first elastic component 3330, similar Ground, here the driving force of the rotation of elevating lever 3320 misplace described as follows also from example the cooperation of sawtooth.
Further, the top of the first key 3321 and the bottom of guide pad 3312 are respectively formed as mutually sliding oblique Face, in this way, being moved from the first operating position to the second operating position, or is moved from the second operating position to the first operating position When, the first key 3321 can have the trend for being ramped up movement under the promotion of the first elastic component 3330, may finally engage In upper locking structure or lower locking structure.In addition, for, first key spacing to the first key 3321 in the second operating position One of 3321 top and the bottom of guide pad 3312 are formed as step surface, spacing and can pass through with the slip to the two Rotation unlock, such as in the embodiment shown in Fig. 7, step surface is formed in the bottom of guide pad 3312, in the second working position Put, the corner in ledge structure is supported at the top of the first key 3321., can be with embodiment not shown in another figure Step surface is arranged on to the top of the first key 3321, the bottom of guide pad 3312 is formed as plane at this time, can also equally play Locking acts on.
In order to realize the rotation of above-mentioned elevating lever 3320, as shown in Figure 6 and Figure 8, elevating lever 3320 can be included from upper The first steering wheel 3324 and the second steering wheel 3325 being coaxially disposed under, the first key 3321 are arranged on the second steering wheel 3325 Periphery, is formed as the jigsaw fit that misplaces, so that the first steering wheel between the first steering wheel 3324 and the second steering wheel 3325 3324 when pushing down on the second steering wheel 3325, and the second steering wheel 3325 can rotate.Wherein dislocation jigsaw fit refer to, No matter in the first operating position, during the second operating position is still changed two operating positions, the first steering wheel 3324 And second corresponding sawtooth between steering wheel 3325 will not be at a fully engaged, i.e., the tooth top of one steering wheel will not withstand on another The tooth root of steering wheel.By taking the process that the first operating position is changed to the second operating position as an example, the first steering wheel 3324 promotes the Two steering wheels 3325 move downward, and the first key 3321 slides in the first groove 3313 first, there is opposite slip between the sawtooth that misplaces Trend, can produce the component of radial direction on inclined-plane, the second steering wheel 3325 is had the trend of rotation, but the limit of the first groove 3313 Position is so that the second steering wheel 3325 will not rotate.Depart from when the second steering wheel 3325 drops to the first key 3321 with the first groove 3313 When, the rotation of the first key 3321 limits from the first groove 3313, in this way, the first key 3321 is able to the pressure in the first elastic component 3330 Supported under power in the bottom of guide pad 3312, other similar procedures turn for example from the second operating position to the first operating position Change and no longer repeat herein.
Further, elevating lever 3320 includes first the 3322, second elasticity of securing rod sequentially coaxially set from top to bottom Part 3323, the first above-mentioned steering wheel 3324, above-mentioned the second steering wheel 3325 and the second securing rod 3326, the second securing rod 3326 pass through the first steering wheel 3324 and the second steering wheel 3325 and are fixed on the first securing rod 3322, the second elastic component 3323 Both ends elasticity support on the first securing rod 3322 and the first steering wheel 3324.In this way, the top of the first securing rod 3322 is The top of elevating lever 3320, the bottom of the second securing rod 3326 are the bottom of elevating lever 3320, and the total length of elevating lever 3320 is not Become, spinning movement is simply produced by the cooperation of two steering wheels when moving up and down, to realize the lock two operating positions Only and unlocking function.Similar first elastic component 3330, the second elastic component 3323 can also be compression spring, it is ensured that distinguish at its both ends Support on the first securing rod 3322 and the first steering wheel 3324.In addition, the first steering wheel 3324 is rotated so as to shadow in order to prevent Its opposite slip with the second steering wheel 3325 is rung, is formed as between the first steering wheel 3324 and the second securing rod 3326 along height The keyway in direction coordinates.
Further, the second securing rod 3326 can be to be threadedly coupled with the form that is fixedly connected of the first securing rod 3322, Such as in the embodiment shown in Fig. 8, the bottom of the first securing rod 3322 concaves formed with blind hole, is formed on the inner wall of blind hole There is internal thread, the periphery at the top of the second securing rod 3326 is formed with the external screw thread with screw-internal thread fit.
In order to stably support upper mounting plate 3200, the first sleeve assembly is equably set in the circumferential direction of landing platform 3000. In addition, supporting mechanism 3300 further includes the second sleeve component for being oriented to the lifting of upper mounting plate 3200, second sleeve component includes The pilot sleeve 3340 being fixed on pedestal 3100, and the guide rod 3350 being fixed on upper mounting plate 3200, guide rod 3350 with Pilot sleeve 3340 is slidably matched.I.e. second sleeve component only plays guiding role when upper mounting plate 3200 moves up and down so that Upper mounting plate 3200 can be moved stably.
Further, the first sleeve assembly and second sleeve component are respectively multiple, and circumferentially equably alternately arrange Row, ensure enough driving forces to drive upper mounting plate 3200, set the second sleeve component only slidably coordinated, it is not necessary to adopt completely With the structure type of the first sleeve assembly, cost is significantly reduced.
Further, upper mounting plate 3200 and pedestal 3100 are formed with the center for passing through unmanned plane undercarriage 2000 Hole, upper mounting plate 3200 include edge and guide and limit part 3210, and guide and limit part 3210 is extended downwardly from edge, led It is arranged at intervals to the inner of locating part 3210 with pedestal 3100 along short transverse and is formed as the side wall of centre bore.That is, unmanned plane Undercarriage 2000 passes through above-mentioned centre bore, and latch 2210 passes through the pilot hole 2110 on undercarriage body 2100, from And unmanned plane 1000 can be fixed on upper mounting plate 3200 with 2130 collective effect of block.Upper mounting plate 3200 include edge and Guide and limit part 3210, the wherein edge of upper mounting plate 3200 are the outer rim of the upper mounting plate 3200.As shown in figure 5, in this implementation In mode, guide and limit part 3210 is platy structure, and the locking form of unmanned plane undercarriage 2000 and landing platform 3000 is lock Stops 2210 clamps guide and limit part 3210 with block 2130, to carry out the positioning in height to unmanned plane 1000.
Further, guide and limit part 3210 is extended downwardly from edge, in this way, unmanned plane 1000 is landing When, just positioning, effect of the unmanned plane undercarriage 2000 in inclined guide and limit part 3210 can be carried out by the ramp structure Under, progressively slide to the central area of landing platform 3000, so that follow-up is accurately positioned.I.e. in first positioning, unmanned plane As long as 1000 positioned at the top in 3000 region of landing platform, it is accurately fixed to be carried out by inclined guide and limit part 3210 Position.In addition, as shown in figure 5, on the inner of guide and limit part 3210 and pedestal 3100 be arranged at intervals and be formed as along short transverse The side wall for the centre bore stated, so so that unmanned plane undercarriage 2000 is formed between pedestal 3100 and upper mounting plate 3200.
In order to ensure the overall uniformity of landing platform 3000, each position when unmanned plane 1000 lands of landing platform 3000 It can be subject to uniform impact force, the edge of upper mounting plate 3200 and guide and limit part 3210 can be respectively just more in the disclosure The centrosymmetric structure such as side shape or circular ring shape, such as in Fig. 5, the edge of upper mounting plate 3200 is formed as regular hexagon, is oriented to limit Position part 3210 substantially circular ring shape.
Further, should as shown in figure 5, socket 3110 corresponding with central hole location can also be set on pedestal 3100 The underface in 3110 centrally disposed hole of socket, with mating with the plug 2400 on above-mentioned undercarriage body 2100.Tool Body can be to be plugged in the second operating position, plug 2400 in socket 3110, in the first operating position, the two disengaging.More into One step, the periphery of socket 3110 is provided with protective cover 3120, which is spaced apart and arranged in the periphery of socket 3110, Socket 3110 is avoided to be subject to the impact failure of external device (ED).
The landing of the unmanned plane 1000 in an embodiment of the disclosure is simply introduced with reference to Fig. 1 to Fig. 9 and is risen Fly over journey.
Unmanned plane 1000 is under state of flight, and under the action of torsionspring 2220, latch 2210 stretches out undercarriage sheet Body 2100.
After unmanned plane 1000 receives landing instruction, the top of landing platform 3000 is just navigated to first, it is specifically, just fixed The upper area of guide and limit part 3210 is arrived in position.The first motor is in relaxation state at this time, i.e. central shaft 2230 can be from The control of one motor, latch 2210 stretch out undercarriage body 2100 under the action of torsionspring 2220.In guide and limit part Under 3210 inclined-plane guiding role, unmanned plane 1000 further declines the centre bore up to reaching upper mounting plate 3200, works as unmanned plane During 1000 pass through under the action of gravity or decline driving force from centre bore, latch 3210 is because being subject in centre bore The extruding of wall and inwardly retract, using the principle of crank block slider structure, central shaft 2230 rotates, while torsionspring 2220 Rotate and compressed with central shaft 2230.When unmanned plane 1000 continues to drop to latch 2210 and passes through centre bore, bullet is reversed The return under the action of elastic force of spring 2220, drive central shaft 2230 rotate so that latch 2210 stretches out again, tabular it is upper Platform 3210 is locked between latch 2210 and block 2130, it is achieved thereby that unmanned plane is accurately positioned.At this time, upper mounting plate 3200 are located at the first operating position, i.e. the first elastic component 3330 has enough elastic force support unmanned planes 1000, specifically, the First key 3321 of elevating lever 3320 is locked on the annular jacking block 3311 in pilot sleeve 3310 by one elastic component 3330.Continue When applying downward driving force to unmanned plane 1000, unmanned plane 1000 can be caused together with the further compression first of upper mounting plate 3200 Elastic component 3330, until when make it that the first key 3321 and the first groove 3313 depart from, the second steering wheel 3325 in elevating lever 3320 Rotate, the first key 3321 rotates with an angle, reduce above-mentioned driving force at this time so that the first elastic component 3330 can be to On upspring and support the first key 3321 in the bottom of guide pad 3312.At this time, upper mounting plate 3200 is located at the second operating position, and And at this moment, plug 2400 and socket 3110 are mating.It should be noted that the first positioning of unmanned plane 1000 can use people Work straighforward operation, can also be carried out self-positioning by alignment system that unmanned plane 1000 carries, be not specifically limited here, depending on use Depending on environment is specific.
The take-off process of unmanned plane 1000 and descent are reverse operating process, are only briefly described here.Unmanned plane After 1000 receive the signal that takes off, drive upper mounting plate 3200 to rise first, specifically, apply downward driving to unmanned plane 1000 Power, compresses the first elastic component 3330 so that the first key 3321 departs from from lower locking structure, such as can be from 3312 bottom of guide pad Step corner depart from, the second steering wheel 3325 in elevating lever 3320 rotates, and the first key 3321 rotates with an angle, Reduce above-mentioned driving force at this time so that the first elastic component 3330 can pop up and the first key 3321 is pushed into the first groove In 3313, the first elastic component 3330 jacks up the first key 3321 further up so that the first key 3321 is supported in annular jacking block 3311 bottom, that is, reach the first operating position, and plug 2400 departs from socket 3110.Further, the first electric motor starting, drives Dynamic central shaft 2230 rotates, and using the principle of crank block slider structure, latch 2210 is retracted, and locking structure 2200 is from upper mounting plate Unlocked on 3200, unmanned plane can take off at this time.After unmanned plane takes off, the first motor returns to relaxation state, torsionspring 2220 Reset and stretch out latch 2210, so far, complete the landing of unmanned plane and the overall process taken off.
In above embodiment, unmanned plane 1000 first rises upper mounting plate 3200 when taking off, and then unmanned plane rises Fall frame 2000 to unlock to let unmanned plane 1000 fly away, in another embodiment, in emergency situations, can not have to make first Platform 3200 rises.Specifically, latch 2210 can be controlled to retract first, then controls unmanned plane 1000 in undercarriage 2000 With rollinging takeoff under the inserting state of landing platform 3000.
As shown in Figure 10 to Figure 12, the disclosure also provides a kind of unmanned plane lifting gear, including the groove profile of upper opening Installation frame 4000, and the multiple landing platforms 3000 being fixed in installation frame 4000, wherein landing platform 3000 can be The landing platform 3000 described in detail above, for coordinating with the undercarriage of corresponding unmanned plane 1000.This design can be with Meet requirement taken off, landed of a large amount of unmanned planes etc., also allow for unified protection and management.Especially upper mounting plate 3200 can more than When lower mobile, adjacent two landing platforms 3000 can park unmanned plane 1000 at the same time, by being staggered in height, make Obtaining two frame unmanned planes 1000 will not influence each other.In addition, landing platform 3000 includes pedestal 3100 and is connected on pedestal 3100 Side upper mounting plate 3200, unmanned plane undercarriage 2000 can pass through upper mounting plate 3200 and enter and it is spacing in 3200 He of upper mounting plate Between pedestal 3100, unmanned plane undercarriage 2000 is contained between upper mounting plate 3200 and pedestal 3100, unmanned plane can be improved Stability after stop.
Further, at least one landing platform in the plurality of landing platform is different from other landing platform sizes, this The sample lifting gear can coordinate the unmanned plane 1000 and unmanned plane undercarriage 2000 of a variety of different models at the same time.
Specifically, landing platform 3000 is fixed on the bottom surface of installation frame 4000 by pedestal 3100, in order to make pedestal 3100 stably support other assemblies, and facilitate the installation of multiple landing platforms 3000, in a landing platform 3000, base The outer contour of seat 3100, in this way, when installing landing platform 3000, can only be needed as the outer contour of the entirety of landing platform 3000 Consider the cooperation between multiple pedestals 3100, avoid interference with.In addition, pedestal 3100 can use the shape of bolt or buckle Formula is fixed in installation frame 4000, its specific fixed form is not specifically limited here.
In one embodiment, as shown in Figure 10, pedestal 3100 can be formed as regular hexagon, multiple landing platforms The edge fitting of 3000 pedestal 3100 is set to form honeycomb structure.In embodiment as shown in Figure 11, pedestal 3100 are formed as rectangle, and the edge fitting of the pedestal 3100 of multiple landing platforms 3000 is set to form matrix structure, both Structure can cause the compact-sized of lifting gear.Among other embodiment party, pedestal 3100 can also be other shapes, example It such as can be equilateral triangle.It also should be noted that due to possible different, the above-mentioned bee of the size of landing platform 3000 Nest structure can be approximate honeycomb, and matrix structure can be approximate matrix structure, such as in Figure 10, be set in the embodiment The landing platform of three kinds of sizes has been put, has been formed as approximate honeycomb structure between pedestal 3100.
Further, in order to improve space availability ratio, large-sized landing platform 3000 is arranged on installation frame 4000 Center, the landing platform 3000 of small size are arranged on the landing platform of the periphery of large-sized landing platform 3000, i.e. small size 3000 are arranged in the less region of the edge of installation frame 4000, such as in embodiment illustrated in fig. 10, small size Landing platform be arranged in four corners of installation frame 4000.
Further, the bottom of installation frame 4000 is provided with base 5000, with mounted externally by the base 5000 Platform, wherein, mounting platform can be mobile car, warship or be fixed base etc..In other implementations, also may be used To regard car, warship or base as above-mentioned base 5000 in itself.
The disclosure also provides a kind of electric automobile, and above-mentioned unmanned plane lifting gear is provided with the top of the electric automobile. As shown in figure 12, electric automobile can realize that multiple no-manned plane provides reconnaissance mission to vehicle as the base of unmanned plane 1000.
The preferred embodiment of the disclosure is described in detail above in association with attached drawing, still, the disclosure is not limited to above-mentioned reality The detail in mode is applied, in the range of the technology design of the disclosure, a variety of letters can be carried out to the technical solution of the disclosure Monotropic type, these simple variants belong to the protection domain of the disclosure.
It is further to note that each particular technique feature described in above-mentioned embodiment, in not lance In the case of shield, can be combined by any suitable means, in order to avoid unnecessary repetition, the disclosure to it is various can The combination of energy no longer separately illustrates.
In addition, it can also be combined between a variety of embodiments of the disclosure, as long as it is without prejudice to originally Disclosed thought, it should equally be considered as content disclosed in this invention.

Claims (11)

1. a kind of unmanned plane undercarriage, it is characterised in that include the undercarriage sheet of the bottom for being arranged on unmanned plane (1000) Body (2100) and the lockable mechanism (2200) being contained in the undercarriage body (2100), the undercarriage body (2100) Side wall offers pilot hole (2110), and the outer wall of the undercarriage body (2100) is protruded formed with block (2130), the gear Block (2130) is spaced on the top of the pilot hole (2110), the lockable mechanism (2200) include latch (2210) and The driving mechanism for driving the latch (2210) to be extended and retracted from the pilot hole (2110).
2. unmanned plane undercarriage according to claim 1, it is characterised in that the pilot hole (2110) is circumferentially uniform Three row of arrangement, the block (2130) and the latch (2210) are respectively formed as corresponding three row.
3. unmanned plane undercarriage according to claim 1, it is characterised in that the hole wall at the both ends of the pilot hole (2110) On formed with guide groove (2111), the both ends of the latch (2210) are outwardly to be had to slide with the guide groove (2111) and matches somebody with somebody The protrusion (2211) of conjunction.
4. unmanned plane undercarriage according to claim 1, it is characterised in that the driving mechanism includes rotatable center Axis (2230), the first connecting rod (2240) being fixedly connected on the central shaft (2230), and it is hinged on the latch (2210) second connecting rod (2250) on, the first connecting rod (2240) is hinged with second connecting rod (2250), the latch (2210) it is at least partially recessed into the pilot hole (2110).
5. unmanned plane undercarriage according to claim 4, it is characterised in that the latch (2210) includes upper matrix (2212), lower substrate (2213) and the fastening assembly for connecting the upper matrix (2212) and lower substrate (2213), described Two connecting rods (2250) are rotatably connected on the fastening assembly.
6. unmanned plane undercarriage according to claim 5, it is characterised in that the inner wall of the upper matrix (2212) is to convex Go out to have the first platform (2214), the inner wall of the lower substrate (2213) is inwardly projecting the second platform (2215), the fastening group The first mating mounting post that part is included in first platform (2214) and the second platform (2215) is oppositely arranged (2216) it is arranged with the second mounting post (2217), one end of the second connecting rod (2250) formed with installation set, the installation set In first mounting post (2216) and the periphery of the second mounting post (2217), and be formed in first platform (2214) and Between second platform (2215).
7. unmanned plane undercarriage according to claim 4, it is characterised in that be provided with above the central shaft (2230) For the first driving means (2300) for driving the central shaft (2230) to rotate.
8. unmanned plane undercarriage according to claim 7, it is characterised in that the lockable mechanism (2200), which further includes, to be arranged Torsionspring (2220) on the central shaft (2230), the both ends of the torsionspring (2220) are separately fixed at described rise Fall on frame body (2100) and the central shaft (2230).
9. unmanned plane undercarriage according to claim 8, it is characterised in that in the direction away from the central shaft (2230) On, the thickness of the latch (2210) is gradually reduced and so that the bottom surface of the latch (2210) is formed as arc.
10. according to the unmanned plane undercarriage described in claim 1, it is characterised in that the bottom of the undercarriage body (2100) Portion is provided with plug (2400).
11. a kind of unmanned plane, it is characterised in that the bottom of the unmanned plane (1000) is provided with appoints according in claim 1-10 Unmanned plane undercarriage (2000) described in meaning one.
CN201610932230.0A 2016-10-31 2016-10-31 Unmanned aerial vehicle undercarriage and unmanned aerial vehicle Active CN108016606B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610932230.0A CN108016606B (en) 2016-10-31 2016-10-31 Unmanned aerial vehicle undercarriage and unmanned aerial vehicle
PCT/CN2017/108553 WO2018077299A1 (en) 2016-10-31 2017-10-31 Landing gear for unmanned aerial vehicle, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610932230.0A CN108016606B (en) 2016-10-31 2016-10-31 Unmanned aerial vehicle undercarriage and unmanned aerial vehicle

Publications (2)

Publication Number Publication Date
CN108016606A true CN108016606A (en) 2018-05-11
CN108016606B CN108016606B (en) 2020-03-20

Family

ID=62023139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610932230.0A Active CN108016606B (en) 2016-10-31 2016-10-31 Unmanned aerial vehicle undercarriage and unmanned aerial vehicle

Country Status (2)

Country Link
CN (1) CN108016606B (en)
WO (1) WO2018077299A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111688941A (en) * 2020-05-11 2020-09-22 清华大学 Unmanned aerial vehicle landing and docking device based on controllable adhesion and unmanned aerial vehicle with same
WO2023272600A1 (en) * 2021-06-30 2023-01-05 深圳市大疆创新科技有限公司 Take-off and landing platform, unmanned aerial vehicle, take-off and landing system, accommodating device, and take-off and landing control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111017219B (en) * 2019-12-10 2021-04-23 江西泛爱众网络科技有限公司 A5G unmanned aerial vehicle for commodity circulation distribution's dismouting is convenient
CN113602329B (en) * 2021-08-03 2022-05-13 海门市帕源路桥建设有限公司 Walking vehicle capable of automatically adjusting posture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480108A (en) * 1993-02-19 1996-01-02 Etat Francais As Represented By The Delegue General Pour L'armement Harpoon heads and harpoons provided with such heads for the anchoring of helicopters to platforms
CN102378720A (en) * 2009-04-03 2012-03-14 Dcns公司 Anchoring harpoon intended in particular for an aircraft and anchoring system including one such harpoon
US20140291442A1 (en) * 2011-03-31 2014-10-02 Saab Ab Aerial vehicle hold-down harpoon
US20160144982A1 (en) * 2014-05-07 2016-05-26 Deere & Company Uav docking system and method
CN106004626A (en) * 2016-06-14 2016-10-12 郭永 Vehicle-mounted multifunctional platform of unmanned aerial vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1773657B1 (en) * 2004-06-18 2008-08-20 Goodrich Corporation Landing gear with locking steering system
CN203681866U (en) * 2013-04-24 2014-07-02 成都飞机设计研究所 Side lock mechanism of unmanned aircraft landing gear
CN203996890U (en) * 2014-05-30 2014-12-10 深圳一电科技有限公司 Many rotor wing unmanned aerial vehicles
CN104627366B (en) * 2015-02-10 2016-05-11 曹兵 The moving varying pitch four rotor multifunctional fire-fighting unmanned planes of oil
CN204713422U (en) * 2015-03-31 2015-10-21 深圳一电科技有限公司 Unmanned Aircraft Systems (UAS) and unmanned plane thereof
CN204674820U (en) * 2015-04-30 2015-09-30 湖北猎隼智能科技有限公司 A kind of manual operation of landing gear
CN205327394U (en) * 2016-02-17 2016-06-22 沈阳天颐联和科技有限责任公司 Unmanned aerial vehicle safety arrangement and undercarriage
CN105966605B (en) * 2016-05-19 2017-11-24 亳州沃野知识产权服务有限公司 A kind of six rotorcraft based on delta parallel institutions
CN107856841A (en) * 2016-05-19 2018-03-30 周杰 Using the aircraft of four-degree-of-freedom symmetric parallel mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480108A (en) * 1993-02-19 1996-01-02 Etat Francais As Represented By The Delegue General Pour L'armement Harpoon heads and harpoons provided with such heads for the anchoring of helicopters to platforms
CN102378720A (en) * 2009-04-03 2012-03-14 Dcns公司 Anchoring harpoon intended in particular for an aircraft and anchoring system including one such harpoon
US20140291442A1 (en) * 2011-03-31 2014-10-02 Saab Ab Aerial vehicle hold-down harpoon
US20160144982A1 (en) * 2014-05-07 2016-05-26 Deere & Company Uav docking system and method
CN106004626A (en) * 2016-06-14 2016-10-12 郭永 Vehicle-mounted multifunctional platform of unmanned aerial vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111688941A (en) * 2020-05-11 2020-09-22 清华大学 Unmanned aerial vehicle landing and docking device based on controllable adhesion and unmanned aerial vehicle with same
WO2023272600A1 (en) * 2021-06-30 2023-01-05 深圳市大疆创新科技有限公司 Take-off and landing platform, unmanned aerial vehicle, take-off and landing system, accommodating device, and take-off and landing control method

Also Published As

Publication number Publication date
WO2018077299A1 (en) 2018-05-03
CN108016606B (en) 2020-03-20

Similar Documents

Publication Publication Date Title
CN108016630A (en) Unmanned plane landing platform
CN108016606A (en) Unmanned plane undercarriage and unmanned plane
CN108016629A (en) Unmanned plane landing platform
CN108016608A (en) Unmanned plane undercarriage and unmanned plane
CN108016605A (en) Unmanned plane lifting gear and electric automobile
CN106494370A (en) Tripper, change electromigration moving platform and quick-change system
KR20110122469A (en) The lift mechanical apparatus for unmanned aerial vehicle imaging detector
CN109573032B (en) Unmanned aerial vehicle airborne equipment vertical retraction mechanism and unmanned aerial vehicle
CN203391590U (en) Automatic lifting device for AGV (automatic guided vehicle) drive unit
EP3875260A1 (en) Post cure inflator for tyres
CN105150884B (en) A kind of lifting rotation pedestal
CN108016607B (en) Unmanned aerial vehicle take-off and landing device
CN102902163B (en) Illumination module movement device
CN210071096U (en) Following lifting type weighing system of AGV car
CN107571987A (en) Automatic telescopic foot stool
CN212194961U (en) Portable pinch roller child device
JP5313070B2 (en) Tire inflator for vehicle
JP3337457B2 (en) Screw type jack device
CN209190185U (en) Press-loading device
CN211081386U (en) Front hatch cover supporting structure for vehicle and vehicle
CN108149987A (en) Rotating type stereo parking device
CN219714721U (en) Lockset testing device
CN108001697A (en) Electric automobile
JP3519073B2 (en) Trailer support jack
KR20140071434A (en) Method and apparatus for mounting a tire

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant