CN107944434A - 一种基于旋转摄像头的报警方法及终端 - Google Patents

一种基于旋转摄像头的报警方法及终端 Download PDF

Info

Publication number
CN107944434A
CN107944434A CN201711405316.9A CN201711405316A CN107944434A CN 107944434 A CN107944434 A CN 107944434A CN 201711405316 A CN201711405316 A CN 201711405316A CN 107944434 A CN107944434 A CN 107944434A
Authority
CN
China
Prior art keywords
expressive
alarm
terminal
rotating camera
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711405316.9A
Other languages
English (en)
Inventor
张强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN201510320908.5A priority Critical patent/CN104933827B/zh
Priority to CN201711405316.9A priority patent/CN107944434A/zh
Publication of CN107944434A publication Critical patent/CN107944434A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/174Facial expression recognition
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for recognising patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification

Abstract

本发明提供了一种基于旋转摄像头的报警方法,包括:当检测到跟踪指令时,开启旋转摄像头;根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述旋转摄像头获取所述第一人脸的图像;根据所述第一人脸的图像得到第一表情特征;判断所述第一表情特征是否符合报警提示的条件;若判断为是,则发出报警提示。本发明实施例还公开了一种终端。采用本发明,可通过旋转摄像头跟踪人脸,当识别出人脸的表情为伤心、哭泣或痛苦等表情时及时发出报警提示。

Description

一种基于旋转摄像头的报警方法及终端
技术领域
[0001] 本发明涉及电子技术领域,尤其涉及一种基于旋转摄像头的报警方法及终端。
背景技术
[0002] 随着智能终端的功能越来越多元化,在用户的生活中占据不可磨灭的位置,如今 智能终端不仅能实现通话功能以及发送短信功能,还可识别人脸,甚至可识别人脸的表情。 然而,目前的智能终端还没有利用识别人脸表情的功能执行监控功能。例如,如何保护儿童 的安全是目前家长最关心的问题,由于家长无法时刻监控儿童,若家长与儿童不在同一个 空间(例如家长在厨房,儿童在房间),当儿童的表情出现变化(例如儿童在房间内活动时, 若身体受到伤害会做出痛苦的表情)时由于没有相应的监控装置监控儿童,更没有装置能 够发出报警提示,因此家长可能无法及时查看儿童当前是否发生危险,则容易导致儿童错 过应急治疗的最佳时机。因此,对于监控儿童的安全状况的相关技术还需要给予更多的关 注。
发明内容
[0003] 本发明提供一种基于旋转摄像头的报警方法及终端,可通过旋转摄像头跟踪人 脸,当识别出人脸的表情为伤心、哭泣或痛苦等表情时及时发出报警提示。
[0004]本发明第一方面提供一种基于旋转摄像头的报警方法,包括:
[0005]当检测到跟踪指令时,开启旋转摄像头;
[0006]根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述旋转摄像头获取 所述第一人脸的图像;
[0007]根据所述第一人脸的图像得到第一表情特征;
[0008]判断所述第一表情特征是否符合报警提示的条件;
[0009]若判断为是,则发出报警提示。
[0010]结合本发明第一方面的实现方式,在本发明第一方面的第一种可能的实现方式 中,所述根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸之前,所述方法还包括:
[0011]通过所述旋转摄像头识别所述第一人脸,判断所述第一人脸是否为预先存储的需 要跟踪的人脸;
[0012]若判断为是,则确定跟踪所述第一人脸。
[0013]结合本发明第一方面的第一种可能的实现方式,在本发明第一方面的第二种可能 的实现方式中,所述报警提示的条件为所述第一表情特征与预设的第二表情特征相同,所 述第二表情特征为用于发出报警提示的表情特征。
[0014]结合本发明第一方面的第二种可能的实现方式,在本发明第一方面的第三种可能 的实现方式中,所述发出报警提示之前,所述方法还包括:
[0015]根据所述第一表情特征获取对应的报警提示;
[0016]则所述发出报警提示,包括:
[0017] 发出与所述第一表情特征对应的报警提示。
[0018] 结合本发明第一方面至第一方面的第三种中任一种可能的实现方式,在本发明第 一方面的第四种可能的实现方式中,所述报警提示为语音提示和/或音乐提示。
[0019] 结合本发明第一方面至第一方面的第四种中任一种可能的实现方式,在本发明第 一方面的第五种可能的实现方式中,所述第二表情特征包括恐惧的表情特征、悲伤的表情 特征以及愤怒的表情特征中的任意一种。
[0020] 结合本发明第一方面至第一方面的第五种中任一种可能的实现方式,在本发明第 一方面的第六种可能的实现方式中,所述根据所述第一人脸的图像得到第一表情特征之 后,还包括:通过包括人工神经网络、支持向量机以及AdaBoost算法在内的表情分类方法对 所述第一表情特征进行分类以确定所述第一表情特征的类型,所述第一表情特征的类型包 括惊奇、恐惧、悲伤、愤怒、高兴以及厌恶。
[0021]本发明第二方面提供一种终端,包括:
[0022]开启模块,用于当检测到跟踪指令时,开启旋转摄像头;
[0023]第一获取模块,用于根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过 所述旋转摄像头获取所述第一人脸的图像;
[0024]得到模块,用于根据所述第一获取模块获取的第一人脸的图像得到第一表情特 征;
[0025]第一判断模块,用于判断所述得到模块得到的第一表情特征是否符合报警提示的 条件;
[0026]发出模块,用于当所述第一判断模块的判断结果为是时,则发出报警提示。
[0027]结合本发明第二方面的实现方式,在本发明第二方面的第一种可能的实现方式 中,所述终端还包括:
[0028]第二判断模块,用于通过所述旋转摄像头识别所述第一人脸,判断所述第一人脸 是否为预先存储的需要跟踪的人脸;
[0029]确定模块,用于当所述第二判断模块的判断结果为是时,则确定跟踪所述第一人 脸。
[0030] 结合本发明第二方面的第一种可能的实现方式,在本发明第二方面的第二种可能 的实现方式中,所述报警提示的条件为所述第一表情特征与预设的第二表情特征相同,所 述第二表情特征为用于发出报警提示的表情特征。
[0031] 结合本发明第二方面的第二种可能的实现方式,在本发明第二方面的第三种可能 的实现方式中,所述终端还包括:
[0032] 第二获取模块,用于根据所述第一表情特征获取对应的报警提示;
[0033] 则所述发出模块,具体用于:
[0034] 发出与所述第一表情特征对应的报警提示。
[0035]结合本发明第二方面至第二方面的第三种中任一种可能的实现方式,在本发明第 二方面的第四种可能的实现方式中,所述报警提示为语音提示和/或音乐提示。
[0036]结合本发明第二方面至第二方面的第四种中任一种可能的实现方式,在本发明第 二方面的第五种可能的实现方式中,所述第二表情特征包括恐惧的表情特征、悲伤的表情 特征以及愤怒的表情特征中的任意一种。
[0037]结合本发明第二方面至第二方面的第五种中任一种可能的实现方式,在本发明第 二方面的第六种可能的实现方式中,所述得到模块还用于通过包括人工神经网络、支持向 量机以及AdaBoost算法在内的表情分类方法对所述第一表情特征进行分类以确定所述第 一表情特征的类型,所述第一表情特征的类型包括惊奇、恐惧、悲伤、愤怒、高兴以及厌恶。 [0038]本发明第三方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有 程序指令,所述程序指令供计算机调用后执行一种报警方法,所述报警方法包括:当检测到 跟踪指令时,开启旋转摄像头;根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过 所述旋转摄像头获取所述第一人脸的图像;根据所述第一人脸的图像得到第一表情特征; 判断所述第一表情特征是否符合报警提示的条件;若判断为是,则发出报警提示。
[0039]采用本发明,当检测到跟踪指令时,开启旋转摄像头,根据跟踪指令控制旋转摄像 头跟踪第一人脸,通过旋转摄像头获取第一人脸的图像,根据第一人脸的图像得到第一表 情特征,判断第一表情特征是否符合报警提示的条件,若判断为是,则发出报警提示,可通 过旋转摄像头跟踪人脸,当识别出人脸的表情为伤心、哭泣或痛苦等表情时及时发出报警 提示,能够及时提示监护人前往查看,能够实现监控功能,提升用户体验感。
附图说明
[0040]为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用 的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域 普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附 图。
[0041]图1是本发明实施例的一种基于旋转摄像头的报警方法的一实施例的流程示意 图;
[0042]图2是本发明实施例的一种基于旋转摄像头的报警方法的另一实施例的流程示意 图;
[0043]图3是本发明实施例的一种基于旋转摄像头的报警方法的另一实施例的流程示意 图;
[0044]图4是本发明实施例的一种终端的结构示意图;
[0045]图5是本发明实施例的另一种终端的结构示意图。
具体实施方式
[0046]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施 例,都属于本发明保护的范围。
[0047]采用本发明实施例,可根据旋转摄像头识别的人脸表情发出报警提示。
[0048]本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三,,和“第 四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它 们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系 统、产品或设备没有限定于己列出的步骤或单元,而是可选地还包括没有列出的步骤或单 元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
[0049] 请参阅图1,图1是本发明实施例的一种基于旋转摄像头的报警方法的一实施例的 流程图。本发明实施例可由终端实现以下实施步骤,其中,终端例如可以是手机、平板电脑、 笔记本电脑、掌上电脑、移动互联网设备(MID,mobile internet device)或其他能够识别 人脸表情的终端设备。此外,终端包括旋转摄像头,由于旋转摄像头具备在预设方向上旋转 预设角度的功能,因此能够跟踪活动中的人脸。例如,若儿童在旋转摄像头的拍摄范围内活 动,则终端可通过控制旋转摄像头旋转跟踪移动中的人脸。
[0050] 如图1所示,本发明实施例的一种基于旋转摄像头的报警方法的一实施例可以包 括以下步骤。
[0051] S100,当检测到跟踪指令时,开启旋转摄像头。
[0052]具体实现中,用户可能与儿童处于不同的空间,例如,用户在厨房或者在离房屋不 远处的户外活动,儿童在房间内活动,用户可将终端安置在儿童活动的房间内。当终端检测 到用户输入的跟踪指令时,终端则开启旋转摄像头开始跟踪第一人脸,其中,第一人脸为儿 童的人脸。
[0053] S101,根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述旋转摄像 头获取所述第一人脸的图像。
[0054]具体实现中,由于儿童会在房间内移动,因此终端可根据用户输入的跟踪指令控 制摄像头旋转,从而跟踪第一人脸,并且在跟踪第一人脸时获取第一人脸的图像。具体的, 在跟踪第一人脸之前需要对人脸进行识别,识别人脸包括四个组成部分,分别为:人脸图像 采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。其中,人脸图像采集对 于不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不 同表情等方面都可以得到很好的采集。当儿童在旋转摄像头的拍摄范围内时,旋转摄像头 会自动搜索并拍摄儿童的第一人脸的图像。人脸检测在实际中主要用于人脸识别的预处 理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直 方图特征、颜色特征、模板特征以及结构特征等。人脸检测就是提取上述特征的信息,利用 这些特征的信息实现人脸检测。人脸图像预处理是基于人脸检测结果,对图像进行处理并 最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰, 往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处 理,其预处理过程主要包括人脸图像的补偿、灰度变换、直方图均衡化、归一化、几何校正、 滤波以及锐化等。人脸图像特征提取是针对人脸的某些特征进行的。它是对人脸进行特征 建模的过程。人脸特征提取的方法分为基于指示的表征方法和基于代数特征或统计学习的 表征方法。人脸图像匹配用于将提取人脸图像的特征数据与数据库中存储的特征模板进行 搜索匹配,将待识别的人脸图像与已得到的特征模板进行比较,根据相似程度对人脸的身 份信息进行判断。这一过程分为两类,一类是确认,是一对一进行图像比较的过程,另一类 是辨认,是一对多进行图像匹配对比的过程。对于识别人脸的过程为现有技术,本实施例则 不再赘述。
[0055] 作为一种可实施的方式,终端检测到的跟踪指令可为跟踪任意用户的人脸。
[0056] 作为一种可实施的方式,终端检测到的跟踪指令可为跟踪预先设定的用户的人 脸。例如,终端可预先存储儿童的人脸,当接收到的跟踪指令为跟踪儿童的人脸时,终端可 将识别到的第一人脸与终端预先存储的儿童的人脸进行比较,判断跟踪的第一人脸是否为 儿童的人脸。若识别到的第一人脸与预先存储的儿童的人脸相同,则确定继续跟踪第一人 脸。
[0057] S102,根据所述第一人脸的图像得到第一表情特征。
[0058]具体实现中,当终端获取到第一人脸的图像之后,通过第一人脸的图像识别第一 表情特征,其中需要先从第一人脸的图像中提取第一表情特征,最后对第一表情特征进行 分类。具体的,表情特征提取可分为两大类,基于静态图像的表情特征提取和基于动态图像 序列的表情特征提取。其中表情特征提取方法有:主成分分析法、活动外观模型法以及光流 法等等。其中,主成分分析法可根据像素件的二阶相关性,将包含表情人脸的图像区域看作 一个随机向量,采用主成分分析法得到正交变换基,其中较大的特征值对应的基底(特征 脸)就组成了表情特征空间的一组基,然后利用这组基底的线性组合就可以描述、表达人脸 表情。活动外观模型法是目前广泛应用的基于混合特征的特征提取方法。它结合形状和纹 理信息建立对人脸的参数化描述。光流法是运动特征提取法中的一种,所谓光流法是指亮 度模式引起的表观运动,理想的情况是这种表观运动反映了实际的运动。光流法利用光流 进行运动估计,并使用面部肌肉运动模型描述了面部的运动,对眉毛、眼睛、嘴唇的等区域 的运动单元进行分辨,提出了面部的局部参数运动模型,同时构建了面部运动的中级描述, 并使用启发式规则对各种表情进行分类。
[0059]表情特征的分类是指定义一组类别,并涉及相应的分类机制对表情进行识别,归 入相应类别。用于表情分类的方法主要有人工神经网络、支持向量机以及AdaBoost (Adaptive Boosting,自适应增强)算法等表情分类方法。其中人工神经网络是一种模拟人 脑神经元细胞的网络结构,它是由大量简单的基本原件(神经元)相互连接成的自适应非线 性动态系统。支持向量机是在统计学习理论的基础上发展起来的一种分类方法,在解决小 样板、非线性和高维问题上有很多优势。AdaBoost算法将多个弱分类器结合起来训练形成 强分类器,不同分类器针对不同的特征,通过训练可以达到特征选择的目的,在模式识别领 域如图像检索和人脸检测中都有成功的应用。对于第一表情特征的提取和分类是现有技 术,本实施例则不再赘述。
[0060]作为一种可实施的方式,终端可每隔预设时间段获取第一人脸的图像,再根据当 前获取的第一人脸的图像得到第一表情特征。
[0061] S103,判断所述第一表情特征是否符合报警提示的条件。
[0062]具体实现中,由于表情产生的原因、表情表现的程度、用户对表情的控制能力和表 情的倾向等诸多方面的原因,使表情的变化细微而复杂,对表情特点的概括也显得复杂,依 据最基本的分类方法,本发明实施例列举了以下6中基本表情特征,分别是惊奇、恐惧、悲 伤、愤怒、高兴以及厌恶。在本发明实施例中,终端可设定恐惧的表情特征、悲伤的表情特征 以及愤怒的表情特征为发出报警提示的条件。当终端根据第一人脸的图像得到第一表情特 征之后,通过确定第一表情特征是否为恐惧的表情特征、悲伤的表情特征以及愤怒的表情 特征中的任一种来判断第一表情特征是否符合报警提示的条件。
[0063] S104,若判断为是,则发出报警提示。
[0064]具体实现中,若第一表情特征为恐惧的表情特征、悲伤的表情特征以及愤怒的表 情特征中的任一种,则终端发出报警提示,表明儿童当前的安全状况出现异常,以及时提示 用户前往儿童所处的空间查看。
[0065] 作为一种可实施的方式,报警提示可为语音提示或者音乐提示。终端可以通过预 设的音量播放出语音提示,语音内容可为“您的孩子出现危险”等报警内容,语音内容还可 为用户录制的语音内容。终端可以通过预设的音量播放出音乐提示,音乐可为鸣笛声、警报 声或者为用户设置的音乐中的任一种。
[0066] 作为一种可实施的方式,当终端发出报警提示之后,可根据检测到的关闭指令关 闭发出的报警提示。
[0067] 采用本发明,当检测到跟踪指令时,开启旋转摄像头,根据跟踪指令控制旋转摄像 头跟踪第一人脸,通过旋转摄像头获取第一人脸的图像,根据第一人脸的图像得到第一表 情特征,判断第一表情特征是否符合报警提示的条件,若判断为是,则发出报警提示,可通 过旋转摄像头跟踪人脸,当识别出人脸的表情为伤心、哭泣或痛苦等表情时及时发出报警 提示,能够及时提示监护人前往查看,能够实现监控功能,提升用户体验感。
[0068] 请参阅图2,图2是本发明实施例的一种基于旋转摄像头的报警方法的另一实施例 的流程示意图。本发明实施例可由终端实现以下实施步骤,其中,终端例如可以是手机、平 板电脑、笔记本电脑、掌上电脑、移动互联网设备或其他能够识别人脸表情的终端设备。此 夕卜,终端包括旋转摄像头,由于旋转摄像头具备在预设方向上旋转预设角度的功能,因此能 够跟踪活动中的人脸。例如,若儿童在旋转摄像头的拍摄范围内活动,则终端可通过控制旋 转摄像头旋转跟踪移动中的人脸。
[0069]如图2所示,本发明实施例的一种基于旋转摄像头的报警方法的另一实施例可以 包括以下步骤。
[0070] S200,当检测到跟踪指令时,开启旋转摄像头。
[0071]具体实现中,用户可能与儿童处于不同的空间,例如,用户在厨房或者在离房屋不 远处的户外活动,儿童在房间内活动,用户可将终端安置在儿童活动的房间内。当终端检测 到用户输入的跟踪指令时,终端则开启旋转摄像头开始跟踪第一人脸,其中,第一人脸为儿 童的人脸。
[0072] S201,通过所述旋转摄像头识别所述第一人脸,判断所述第一人脸是否为预先存 储的需要跟踪的人脸。
[0073] 具体实现中,终端检测到的跟踪指令可为跟踪预先设定的用户的人脸。在跟踪第 一人脸之前需要对人脸进行识别,识别人脸包括四个组成部分,分别为:人脸图像采集及检 测、人脸图像预处理、人脸图像特征提取以及匹配与识别。其中,人脸图像采集及检测、人脸 图像预处理、人脸图像特征提取以及匹配与识别的具体实施方式可参照实施例图1,本实施 例则不再赘述。当终端识别到第一人脸之后,判断第一人脸是否为终端预先存储的需要跟 踪的人脸。例如,终端可预先存储儿童的人脸,当接收到的跟踪指令为跟踪儿童的人脸时, 终端可将识别到的第一人脸与终端预先存储的儿童的人脸进行比较,判断跟踪的第一人脸 是否为儿童的人脸。
[0074] S202,若判断为是,则确定跟踪所述第一人脸。
[0075]具体实现中,若识别到的第一人脸与预先存储的儿童的人脸相同,则确定继续跟 踪第一人脸。
[0076]作为一种可实施的方式,若识别到的第一人脸与预先存储的儿童的人脸并不相 问,则继纟头执彳丁步骤S201,终端控制旋转摄像头继续搜寻并识别其他人脸,再执行判断识别 到的其他人脸是否为需要跟踪的人脸的步骤。
[0077] S203,根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述旋转摄像 头获取所述第一人脸的图像。
[0078] 具体实现中,在终端确定跟踪第一人脸(即儿童的人脸)之后,由于儿童会在房间 内移动,因此终端可根据用户输入的跟踪指令控制摄像头旋转,从而跟踪第一人脸,并且在 跟踪第一人脸时获取第一人脸的图像。
[0079] S204,根据所述第一人脸的图像得到第一表情特征。
[00S0]具体实现中,当终端获取到第一人脸的图像之后,通过第一人脸的图像识别第一 表情特征,其中需要先从第一人脸的图像中提取第一表情特征,最后对第一表情特征进行 分类。具体的,表情特征提取可分为两大类,基于静态图像的表情特征提取和基于动态图像 序列的表情特征提取。其中表情特征提取方法有:主成分分析法、活动外观模型法以及光流 法等等。表情特征的分类是指定义一组类别,并涉及相应的分类机制对表情进行识别,归入 相应类别。用于表情分类的方法主要有人工神经网络、支持向量机以及AdaBoost算法等表 情分类方法。其中,表情特征提取以及表情特征的分类的具体实施方式可参照实施例图1, 本实施例则不再赘述。
[0081] S205,判断所述第一表情特征是否符合报警提示的条件。
[0082]具体实现中,所述报警提示的条件为所述第一表情特征与预设的第二表情特征相 同,所述第二表情特征为用于发出报警提示的表情特征。由于表情产生的原因、表情表现的 程度、用户对表情的控制能力和表情的倾向等诸多方面的原因,使表情的变化细微而复杂, 对表情特点的概括也显得复杂,依据最基本的分类方法,本发明实施例列举了以下6中基本 表情特征,分别是惊奇、恐惧、悲伤、愤怒、高兴以及厌恶。在本发明实施例中,终端可设定第 二表情特征为恐惧的表情特征、悲伤的表情特征以及愤怒的表情特征中的任一种,并且第 二表情特征用于发出报警提示。当终端根据第一人脸的图像得到第一表情特征之后,通过 确定第一表情特征是否为恐惧的表情特征、悲伤的表情特征以及愤怒的表情特征中的任一 种来判断第一表情特征是否符合报警提示的条件,若判断为是,则发出报警提示,若判断为 否,则执行步骤S203,继续跟踪第一人脸。
[0083] S206,若判断为是,则发出报警提示。
[0084]具体实现中,若第一表情特征为恐惧的表情特征、悲伤的表情特征以及愤怒的表 情特征中的任一种,则终端发出报警提示,表明儿童当前的安全状况出现异常,以及时提示 用户前往儿童所处的空间查看。
[0085] 作为一种可实施的方式,所述报警提示为语音提示和/或音乐提示。终端可以通过 预设的音量播放出语音提示,语音内容可为“您的孩子出现危险”等报警内容,语音内容还 可为用户录制的语音内容。终端可以通过预设的音量播放出音乐提示,音乐可为鸣笛声、警 报声或者为用户设置的音乐中的任一种。终端可以通过预设的音量播放出语音提示f及音 乐提示,例如在播放出警报声的同时播放语音内容为“您的孩子出现危险”的语音提示。
[0086] 作为一种可实施的方式,当终端发出报警提示之后,可根据检测到的关闭指令关 闭发出的报警提示。
[0087] 采用本发明实施例,当检测到跟踪指令时,开启旋转摄像头,根据跟踪指令控制旋 转摄像头跟踪第一人脸,通过旋转摄像头获取第一人脸的图像,根据第一人脸的图像得到 第一表情特征,判断第一表情特征是否符合报警提示的条件,若判断为是,则发出报警提 示,可通过旋转摄像头确定需要跟踪的人脸,当识别出人脸的表情为伤心、哭泣或痛苦等表 情时及时发出报警提示,能够及时提示监护人前往查看,能够实现监控功能,提升用户体验 感。
[0088]请参阅图3,图3是本发明实施例的一种基于旋转摄像头的报警方法的另一实施例 的流程示意图。本发明实施例可由终端实现以下实施步骤,其中,终端例如可以是手机、平 板电脑、笔记本电脑、掌上电脑、移动互联网设备或其他能够识别人脸表情的终端设备。此 夕卜,终端包括旋转摄像头,由于旋转摄像头具备在预设方向上旋转预设角度的功能,因此能 够跟踪活动中的人脸。例如,若儿童在旋转摄像头的拍摄范围内活动,则终端可通过控制旋 转摄像头旋转跟踪移动中的人脸。
[0089]如图3所示,本发明实施例的一种基于旋转摄像头的报警方法的另一实施例可以 包括以下步骤。
[0090] S300,当检测到跟踪指令时,开启旋转摄像头。
[0091]具体实现中,用户可能与儿童处于不同的空间,例如,用户在厨房或者在离房屋不 远处的户外活动,儿童在房间内活动,用户可将终端安置在儿童活动的房间内。当终端检测 到用户输入的跟踪指令时,终端则开启旋转摄像头开始跟踪第一人脸,其中,第一人脸为儿 童的人脸。
[0092] S301,通过所述旋转摄像头识别所述第一人脸,判断所述第一人脸是否为预先存 储的需要跟踪的人脸。
[0093]具体实现中,终端检测到的跟踪指令可为跟踪预先设定的用户的人脸。在跟踪第 一人脸之前需要对人脸进行识别,识别人脸包括四个组成部分,分别为:人脸图像采集及检 测、人脸图像预处理、人脸图像特征提取以及匹配与识别。其中,人脸图像采集及检测、人脸 图像预处理、人脸图像特征提取以及匹配与识别的具体实施方式可参照实施例图1,本实施 例则不再赘述。当终端识别到第一人脸之后,判断第一人脸是否为终端预先存储的需要跟 踪的人脸。例如,终端可预先存储儿童的人脸,当接收到的跟踪指令为跟踪儿童的人脸时, 终端可将识别到的第一人脸与终端预先存储的儿童的人脸进行比较,判断跟踪的第一人脸 是否为儿童的人脸。
[0094] S302,若判断为是,则确定跟踪所述第一人脸。
[0095]具体实现中,若识别到的第一人脸与预先存储的儿童的人脸相同,则确定继续跟 踪第一人脸。
[0096]作为一种可实施的方式,若识别到的第一人脸与预先存储的儿童的人脸并不相 同,则继续执行步骤S3〇l,终端控制旋转摄像头继续搜寻并识别其他人脸,再执行判断识别 到的其他人脸是否为需要跟踪的人脸的步骤。
[0097] S3〇3,根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述旋转摄像 头获取所述第一人脸的图像。
[0098]具体实现中,在终端确定跟踪第一人脸(S卩儿童的人脸)之后,由于儿童会在房间 内移动,因此终端可根据用户输入的跟踪指令控制摄像头旋转,从而跟踪第一人脸,并且在 跟踪第一人脸时获取第一人脸的图像。
[00"] S304,根据所述第一人脸的图像得到第一表情特征。
[0100]具体实现中,当终端获取到第一人脸的图像之后,通过第一人脸的图像识别第一 表情特征,其中需要先从第一人脸的图像中提取第一表情特征,最后对第一表情特征进行 分类。具体的,表情特征提取可分为两大类,基于静态图像的表情特征提取和基于动态图像 序列的表情特征提取。其中表情特征提取方法有:主成分分析法、活动外观模型法以及光流 法等等。表情特征的分类是指定义一组类别,并涉及相应的分类机制对表情进行识别,归入 相应类别。用于表情分类的方法主要有人工神经网络、支持向量机以及AdaBoost算法等表 情分类方法。其中,表情特征提取以及表情特征的分类的具体实施方式可参照实施例图1, 本实施例则不再赘述。
[0101] S305,判断所述第一表情特征是否符合报警提示的条件。
[0102]具体实现中,所述报警提示的条件为所述第一表情特征与预设的第二表情特征相 同,所述第二表情特征为用于发出报警提示的表情特征。由于表情产生的原因、表情表现的 程度、用户对表情的控制能力和表情的倾向等诸多方面的原因,使表情的变化细微而复杂, 对表情特点的概括也显得复杂,依据最基本的分类方法,本发明实施例列举了以下6中基本 表情特征,分别是惊奇、恐惧、悲伤、愤怒、高兴以及厌恶。在本发明实施例中,终端可设定第 二表情特征为恐惧的表情特征、悲伤的表情特征以及愤怒的表情特征中的任一种,并且第 二表情特征用于发出报警提示。当终端根据第一人脸的图像得到第一表情特征之后,通过 确定第一表情特征是否为恐惧的表情特征、悲伤的表情特征以及愤怒的表情特征中的任一 种来判断第一表情特征是否符合报警提示的条件,若判断为是,则发出报警提示,若判断为 否,则执行步骤S303,继续跟踪第一人脸。
[0103] S306,若判断为是,则根据所述第一表情特征获取对应的报警提示。
[0104]具体实现中,所述报警提示为语音提示和/或音乐提示。终端可以通过预设的音量 播放出语音提示,语音内容可为“您的孩子出现危险”等报警内容,语音内容还可为用户录 制的语音内容。终端可以通过预设的音量播放出音乐提示,音乐可为鸣笛声、警报声或者为 用户设置的音乐中的任一种。终端可以通过预设的音量播放出语音提示以及音乐提示,例 如在播放出警报声的同时播放语音内容为“您的孩子出现危险”的语音提示。
[0105] 具体实现中,由于第二表情特征可为恐惧的表情特征、悲伤的表情特征以及愤怒 的表情特征中的任一种,因此可根据不同的第二表情特征设定不同的报警提示。例如,终端 可设定恐惧的表情特征对应发出语音提示,语音内容可为“您的孩子出现危险”等报警内 容,同时发出警报声的音乐提示;悲伤的表情特征可对应发出音乐提示,比如警报声提示; 愤怒的表情特征可对应发出音乐提示,比如音乐提示可为用户设置的音乐。当终端确定第 一表情特征为恐惧的表情特征时,则获取对应的语音提示;当终端确定第一表情特征为悲 伤的表情特征时,则获取的对应的音乐提示为警报声提示;当终端确定第一表情特征为愤 怒的表情特征时,则获取的对应的音乐提示为用户设置的音乐。
[0106] S307,发出与所述第一表情特征对应的报警提示。
[0107] 具体实现中,若终端获取的是恐惧的表情特征对应的语音提示,则发出该语音提 示,语音内容可为“您的孩子出现危险”等报警内容,同时发出警报声的音乐提示;若终端获 取的悲伤的表情特征对应的音乐提示为警报声提示,则发出警报声提示;若终端获取的愤 怒的表情特征对应的音乐提示为用户设置的音乐,则播放用户设置的音乐。
[0108] 作为一种可实施的方式,当终端发出报警提示之后,可根据检测到的关闭指令关 闭发出的报警提示。
[0109] 采用本发明实施例,当检测到跟踪指令时,开启旋转摄像头,根据跟踪指令控制旋 转摄像头跟踪第一人脸,通过旋转摄像头获取第一人脸的图像,根据第一人脸的图像得到 第一表情特征,判断第一表情特征是否符合报警提示的条件,若判断为是,则发出与第一表 情特征对应的报警提示,可通过旋转摄像头确定需要跟踪的人脸,当识别出人脸的表情为 伤心、哭泣或痛苦等表情时及时发出相应的报警提示,能够及时提示监护人前往查看,能够 实现监控功能,提升用户体验感。
[0110] 请参阅图4,图4是本发明实施例的一种终端的结构示意图。如图4所示的终端包括 开启模块400、第一获取模块401、得到模块402、第一判断模块403以及发出模块404。
[0111] 开启模块400,用于当检测到跟踪指令时,开启旋转摄像头;
[0112] 第一获取模块401,用于根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通 过所述旋转摄像头获取所述第一人脸的图像;
[0113] 得到模块402,用于根据所述第一获取模块401获取的第一人脸的图像得到第一表 情特征;
[0114] 第一判断模块403,用于判断所述得到模块402得到的第一表情特征是否符合报警 提示的条件;
[0115] 发出模块404,用于当所述第一判断模块403的判断结果为是时,则发出报警提示。
[0116] 具体实现中,用户可能与儿童处于不同的空间,例如,用户在厨房或者在离房屋不 远处的户外活动,儿童在房间内活动,用户可将终端安置在儿童活动的房间内。当终端检测 到用户输入的跟踪指令时,终端则开启旋转摄像头开始跟踪第一人脸,其中,第一人脸为儿 童的人脸。
[0117] 具体实现中,由于儿童会在房间内移动,因此终端可根据用户输入的跟踪指令控 制摄像头旋转,从而跟踪第一人脸,并且在跟踪第一人脸时获取第一人脸的图像。具体的, 在跟踪第一人脸之前需要对人脸进行识别,识别人脸包括四个组成部分,分别为:人脸图像 采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。其中,人脸图像采集对 于不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不 同表情等方面都可以得到很好的采集。当儿童在旋转摄像头的拍摄范围内时,旋转摄像头 会自动搜索并拍摄儿童的第一人脸的图像。人脸检测在实际中主要用于人脸识别的预处 理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直 方图特征、颜色特征、模板特征以及结构特征等。人脸检测就是提取上述特征的信息,利用 这些特征的信息实现人脸检测。人脸图像预处理是基于人脸检测结果,对图像进行处理并 最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰, 往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处 理,其预处理过程主要包括人脸图像的补偿、灰度变换、直方图均衡化、归一化、几何校正、 滤波以及锐化等。人脸图像特征提取是针对人脸的某些特征进行的。它是对人脸进行特征 建模的过程。人脸特征提取的方法分为基于指示的表征方法和基于代数特征或统计学习的 表征方法。人脸图像匹配用于将提取人脸图像的特征数据与数据库中存储的特征模板进行 搜索匹配,将待识别的人脸图像与已得到的特征模板进行比较,根据相似程度对人脸的身 份信息进行判断。这一过程分为两类,一类是确认,是一对一进行图像比较的过程,另一类 是辨认,是一对多进行图像匹配对比的过程。对于识别人脸的过程为现有技术,本实施例则 不再赘述。
[0118]作为一种可实施的方式,终端检测到的跟踪指令可为跟踪任意用户的人脸。
[0119]作为一种可实施的方式,终端检测到的跟踪指令可为跟踪预先设定的用户的人 脸。例如,终端可预先存储儿童的人脸,当接收到的跟踪指令为跟踪儿童的人脸时,终端可 将识别到的第一人脸与终端预先存储的儿童的人脸进行比较,判断跟踪的第一人脸是否为 儿童的人脸。若识别到的第一人脸与预先存储的儿童的人脸相同,则确定继续跟踪第一人 脸。
[0120]具体实现中,当终端获取到第一人脸的图像之后,通过第一人脸的图像识别第一 表情特征,其中需要先从第一人脸的图像中提取第一表情特征,最后对第一表情特征进行 分类。具体的,表情特征提取可分为两大类,基于静态图像的表情特征提取和基于动态图像 序列的表情特征提取。其中表情特征提取方法有:主成分分析法、活动外观模型法以及光流 法等等。其中,主成分分析法可根据像素件的二阶相关性,将包含表情人脸的图像区域看作 一个随机向量,采用主成分分析法得到正交变换基,其中较大的特征值对应的基底(特征 脸)就组成了表情特征空间的一组基,然后利用这组基底的线性组合就可以描述、表达人脸 表情。活动外观模型法是目前广泛应用的基于混合特征的特征提取方法。它结合形状和纹 理信息建立对人脸的参数化描述。光流法是运动特征提取法中的一种,所谓光流法是指亮 度模式引起的表观运动,理想的情况是这种表观运动反映了实际的运动。光流法利用光流 进行运动估计,并使用面部肌肉运动模型描述了面部的运动,对眉毛、眼睛、嘴唇的等区域 的运动单元进行分辨,提出了面部的局部参数运动模型,同时构建了面部运动的中级描述, 并使用启发式规则对各种表情进行分类。
[0121] 表情特征的分类是指定义一组类别,并涉及相应的分类机制对表情进行识别,归 入相应类别。用于表情分类的方法主要有人工神经网络、支持向量机以及AdaBoost (Adaptive Boosting,自适应增强)算法等表情分类方法。其中人工神经网络是一种模拟人 脑神经元细胞的网络结构,它是由大量简单的基本原件(神经元)相互连接成的自适应非线 性动态系统。支持向量机是在统计学习理论的基础上发展起来的一种分类方法,在解决小 样板、非线性和高维问题上有很多优势。AdaBoost算法将多个弱分类器结合起来训练形成 强分类器,不同分类器针对不同的特征,通过训练可以达到特征选择的目的,在模式识别领 域如图像检索和人脸检测中都有成功的应用。对于第一表情特征的提取和分类是现有技 术,本实施例则不再赘述。
[0122]作为一种可实施的方式,终端可每隔预设时间段获取第一人脸的图像,再根据当 前获取的第一人脸的图像得到第一表情特征。
[0123]具体实现中,由于表情产生的原因、表情表现的程度、用户对表情的控制能力和表 情的倾向等诸多方面的原因,使表情的变化细微而复杂,对表情特点的概括也显得复杂,依 据最基本的分类方法,本发明实施例列举了以下6中基本表情特征,分别是惊奇、恐惧、悲 伤、愤怒、高兴以及厌恶。在本发明实施例中,终端可设定恐惧的表情特征、悲伤的表情特征 以及愤怒的表情特征为发出报警提示的条件。当终端根据第一人脸的图像得到第一表情特 征之后,通过确定第一表情特征是否为恐惧的表情特征、悲伤的表情特征以及愤怒的表情 特征中的任一种来判断第一表情特征是否符合报警提示的条件。
[0124] 具体实现中,若第一表情特征为恐惧的表情特征、悲伤的表情特征以及愤怒的表 情特征中的任一种,则终端发出报警提示,表明儿童当前的安全状况出现异常,以及时提示 用户前往儿童所处的空间查看。
[0125] 作为一种可实施的方式,报警提示可为语音提示或者音乐提示。终端可以通过预 设的音量播放出语音提示,语音内容可为“您的孩子出现危险”等报警内容,语音内容还可 为用户录制的语音内容。终端可以通过预设的音量播放出音乐提示,音乐可为鸣笛声、警报 声或者为用户设置的音乐中的任一种。
[0126] 作为一种可实施的方式,当终端发出报警提示之后,可根据检测到的关闭指令关 闭发出的报警提示。
[0127] 作为一种可实施的方式,如图5所示,所述终端还包括第二判断模块405以及确定 模块406。
[0128] 第二判断模块405,用于通过所述旋转摄像头识别所述第一人脸,判断所述第一人 脸是否为预先存储的需要跟踪的人脸;
[0129] 确定模块406,用于当所述第二判断模块405的判断结果为是时,则确定跟踪所述 第一人脸。
[0130]具体实现中,终端检测到的跟踪指令可为跟踪预先设定的用户的人脸。在跟踪第 一人脸之前需要对人脸进行识别,识别人脸包括四个组成部分,分别为:人脸图像采集及检 测、人脸图像预处理、人脸图像特征提取以及匹配与识别。其中,人脸图像采集及检测、人脸 图像预处理、人脸图像特征提取以及匹配与识别的具体实施方式可参照实施例图1,本实施 例则不再赘述。当终端识别到第一人脸之后,判断第一人脸是否为终端预先存储的需要跟 踪的人脸。例如,终端可预先存储儿童的人脸,当接收到的跟踪指令为跟踪儿童的人脸时, 终端可将识别到的第一人脸与终端预先存储的儿童的人脸进行比较,判断跟踪的第一人脸 是否为儿童的人脸。
[0131] 具体实现中,若识别到的第一人脸与预先存储的儿童的人脸相同,则确定继续跟 踪第一人脸。
[0132] 作为一种可实施的方式,若识别到的第一人脸与预先存储的儿童的人脸并不相 同,则终端控制旋转摄像头继续搜寻并识别其他人脸,再执行判断识别到的其他人脸是否 为需要跟踪的人脸的步骤。
[0133] 作为一种可实施的方式,所述报警提示的条件为所述第一表情特征与预设的第二 表情特征相同,所述第二表情特征为用于发出报警提示的表情特征。
[0134] 作为一种可实施的方式,如图5所示,所述终端还包括第二获取模块407。
[0135] 第二获取模块407,用于根据所述第一表情特征获取对应的报警提示;
[0136] 则所述发出模块404,具体用于:
[0137] 发出与所述第一表情特征对应的报警提示。
[0138] 作为一种可实施的方式,,所述报警提示为语音提示和/或音乐提示。终端可以通 过预设的音量播放出语音提示,语音内容可为“您的孩子出现危险”等报警内容,语音内容 还可为用户录制的语音内容。终端可以通过预设的音量播放出音乐提示,音乐可为鸣笛声、 警报声或者为用户设置的音乐中的任一种。终端可以通过预设的音量播放出语音提示以及 音乐提示,例如在播放出警报声的同时播放语音内容为“您的孩子出现危险”的语音提示。 [0139]具体实现中,由于第二表情特征可为恐惧的表情特征、悲伤的表情特征以及愤怒 的表情特征中的任一种,因此可根据不同的第二表情特征设定不同的报警提示。例如,终端 可设定恐惧的表情特征对应发出语音提示,语音内容可为“您的孩子出现危险”等报警内 容,同时发出警报声的音乐提示;悲伤的表情特征可对应发出音乐提示,比如警报声提示; 愤怒的表情特征可对应发出音乐提示,比如音乐提示可为用户设置的音乐。当终端确定第 一表情特征为恐惧的表情特征时,则获取对应的语音提示;当终端确定第一表情特征为悲 伤的表情特征时,则获取的对应的音乐提示为警报声提示;当终端确定第一表情特征为愤 怒的表情特征时,则获取的对应的音乐提示为用户设置的音乐。
[0140]具体实现中,若终端获取的是恐惧的表情特征对应的语音提示,则发出该语音提 示,语音内容可为“您的孩子出现危险”等报警内容,同时发出警报声的音乐提示;若终端获 取的悲伤的表情特征对应的音乐提示为警报声提示,则发出警报声提示;若终端获取的愤 怒的表情特征对应的音乐提示为用户设置的音乐,则播放用户设置的音乐。
[0141] 作为一种可实施的方式,当终端发出报警提示之后,可根据检测到的关闭指令关 闭发出的报警提示。
[0142] 采用本发明,当检测到跟踪指令时,开启旋转摄像头,根据跟踪指令控制旋转摄像 头跟踪第一人脸,通过旋转摄像头获取第一人脸的图像,根据第一人脸的图像得到第一表 情特征,判断第一表情特征是否符合报警提示的条件,若判断为是,则发出报警提示,可通 过旋转摄像头跟踪人脸,当识别出人脸的表情为伤心、哭泣或痛苦等表情时及时发出报警 提示,能够及时提示监护人前往查看,能够实现监控功能,提升用户体验感。
[0143]以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可 以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单 元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其 中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性 的劳动的情况下,即可以理解并实施。
[0144]本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
[0145]本发明实施例装置中的模块或单元可以根据实际需要进行合并、划分和删减。 [0146] 本发明实施例的模块或模块,可以以通用集成电路(如中央处理器CPU),或以专用 集成电路(ASIC)来实现。
[0147] 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可 借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上 述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该 计算机软件产品可以存储在计算机可读存储介质中,如R0M/RAM、磁碟、光盘等,包括若干指 令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施 例或者实施例的某些部分所述的方法。
[0148] 以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施 方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范 围之内。

Claims (15)

1.一种基于旋转摄像头的报警方法,其特征在于,包括: 当检测到跟踪指令时,开启旋转摄像头; 根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述旋转摄像头获取所述 第一人脸的图像; 根据所述第一人脸的图像得到第一表情特征; 判断所述第一表情特征是否符合报警提示的条件; 若判断为是,则发出报警提示。
2.根据权利要求1所述的报警方法,其特征在于,所述根据所述跟踪指令控制所述旋转 摄像头跟踪第一人脸之前,所述方法还包括: 通过所述旋转摄像头识别所述第一人脸,判断所述第一人脸是否为预先存储的需要跟 踪的人脸; 若判断为是,则确定跟踪所述第一人脸。
3.根据权利要求2所述的报警方法,其特征在于,所述报警提示的条件为所述第一表情 特征与预设的第二表情特征相同,所述第二表情特征为用于发出报警提示的表情特征。
4. 根据权利要求3所述的报警方法,其特征在于,所述第二表情特征包括恐惧的表情特 征、悲伤的表情特征以及愤怒的表情特征中的任意一种。
5. 根据权利要求3所述的报警方法,其特征在于,所述发出报警提示之前,所述方法还 包括: 根据所述第一表情特征获取对应的报警提示; 则所述发出报警提示,包括: 发出与所述第一表情特征对应的报警提示。
6. 根据权利要求1所述的报警方法,其特征在于,所述根据所述第一人脸的图像得到第 一表情特征之后,还包括: 通过包括人工神经网络、支持向量机以及AdaBoo st算法在内的表情分类方法对所述第 一表情特征进行分类以确定所述第一表情特征的类型,所述第一表情特征的类型包括惊 奇、恐惧、悲伤、愤怒、高兴以及厌恶。
7. 根据权利要求1至6任一项所述的报警方法,其特征在于,所述报警提示为语音提示 和/或音乐提示。
8. —种终端,其特征在于,包括: 开启模块,用于当检测到跟踪指令时,开启旋转摄像头; 第一获取模块,用于根据所述跟踪指令控制所述旋转摄像头跟踪第一人脸,通过所述 旋转摄像头获取所述第一人脸的图像; 得到模块,用于根据所述第一获取模块获取的第一人脸的图像得到第一表情特征; 第一判断模块,用于判断所述得到模块得到的第一表情特征是否符合报警提示的条 件; 发出模块,用于当所述第一判断模块的判断结果为是时,则发出报警提示。
9. 根据权利要求8所述的终端,其特征在于,所述终端还包括: 第二判断模块,用于通过所述旋转摄像头识别所述第一人脸,判断所述第一人脸是否 为预先存储的需要跟踪的人脸; 确定模块,用于当所述第二判断模块的判断结果为是时,则确定跟踪所述第一人脸。
10. 根据权利要求9所述的终端,其特征在于,所述报警提示的条件为所述第一表情特 征与预设的第二表情特征相同,所述第二表情特征为用于发出报警提示的表情特征。
11. 根据权利要求1〇所述的终端,其特征在于,所述第二表情特征包括恐惧的表情特 征、悲伤的表情特征以及愤怒的表情特征中的任意一种。
12. 根据权利要求10所述的终端,其特征在于,所述终端还包括: 第二获取模块,用于根据所述第一表情特征获取对应的报警提示; 则所述发出模块,具体用于: 发出与所述第一表情特征对应的报警提示。
13. 根据权利要求8所述的终端,其特征在于,所述得到模块还用于通过包括人工神经 网络、支持向量机以及AdaBoost算法在内的表情分类方法对所述第一表情特征进行分类以 确定所述第一表情特征的类型,所述第一表情特征的类型包括惊奇、恐惧、悲伤、愤怒、高兴 以及厌恶。
14.根据权利要求8至13任一项所述的终端,其特征在于,所述报警提示为语音提示和/ 或音乐提示。 I5•—种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序指 令,所述程序指令供计算机调用后执行如权利要求卜7任一项所述的报警方法。
CN201711405316.9A 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端 Pending CN107944434A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510320908.5A CN104933827B (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端
CN201711405316.9A CN107944434A (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711405316.9A CN107944434A (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510320908.5A Division CN104933827B (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端

Publications (1)

Publication Number Publication Date
CN107944434A true CN107944434A (zh) 2018-04-20

Family

ID=54120977

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711405316.9A Pending CN107944434A (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端
CN201510320908.5A Active CN104933827B (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510320908.5A Active CN104933827B (zh) 2015-06-11 2015-06-11 一种基于旋转摄像头的报警方法及终端

Country Status (1)

Country Link
CN (2) CN107944434A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924482A (zh) * 2018-06-22 2018-11-30 张小勇 一种视频记录方法和系统
CN110121715A (zh) * 2019-02-19 2019-08-13 深圳市汇顶科技股份有限公司 基于表情识别的呼救方法、装置、电子设备及存储介质
CN111127830A (zh) * 2018-11-01 2020-05-08 奇酷互联网络科技(深圳)有限公司 基于监控设备的报警方法、报警系统和可读存储介质
CN111210589A (zh) * 2018-11-22 2020-05-29 北京搜狗科技发展有限公司 一种实现报警的方法及装置
CN113177489A (zh) * 2021-05-07 2021-07-27 艾拉物联网络(深圳)有限公司 一种安防监控用高精度人像识别方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105279898A (zh) 2015-10-28 2016-01-27 小米科技有限责任公司 报警方法及装置
CN109481170A (zh) * 2017-09-11 2019-03-19 四川金瑞麒智能科学技术有限公司 一种轮椅控制系统、方法及计算机可读存储介质
CN107798823A (zh) * 2017-10-27 2018-03-13 周燕红 一种信号提示方法及影像终端
CN108665147A (zh) * 2018-04-18 2018-10-16 深圳市云领天下科技有限公司 一种幼教信用预警的方法及装置
CN108830761A (zh) * 2018-06-27 2018-11-16 山东众云教育科技有限公司 一种基于人脸识别的校园安全管理方法
CN109118626A (zh) * 2018-08-08 2019-01-01 腾讯科技(深圳)有限公司 锁具的控制方法、装置、存储介质及电子装置
CN109889727A (zh) * 2019-03-14 2019-06-14 睿魔智能科技(深圳)有限公司 无人拍摄目标切换方法及系统、无人摄像机及存储介质
CN112291315B (zh) * 2020-10-18 2021-05-28 盛夏 基于大数据服务的无线通信平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045548A2 (en) * 1999-03-26 2000-10-18 Mitsubishi Denki Kabushiki Kaisha Status display unit using icons and method therefore
CN201213278Y (zh) * 2008-07-02 2009-03-25 希姆通信息技术(上海)有限公司 手机摄像人脸智能追踪装置
CN102647581A (zh) * 2012-04-27 2012-08-22 浙江晨鹰科技有限公司 一种视频监控方法及系统
CN102970438A (zh) * 2012-11-29 2013-03-13 广东欧珀移动通信有限公司 一种手机自动报警方法及自动报警装置
CN104013414A (zh) * 2014-04-30 2014-09-03 南京车锐信息科技有限公司 一种基于移动智能手机的驾驶员疲劳检测系统
CN104680141A (zh) * 2015-02-13 2015-06-03 华中师范大学 基于运动单元分层的人脸表情识别方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611206B2 (en) * 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
US7715598B2 (en) * 2006-07-25 2010-05-11 Arsoft, Inc. Method for detecting facial expressions of a portrait photo by an image capturing electronic device
CN201054660Y (zh) * 2007-02-15 2008-04-30 联想(北京)有限公司 一种摄像头装置
CN103246869B (zh) * 2013-04-19 2016-07-06 福建亿榕信息技术有限公司 基于人脸识别和行为语音识别的犯罪监控方法
CN104331685A (zh) * 2014-10-20 2015-02-04 上海电机学院 非接触式主动呼叫方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045548A2 (en) * 1999-03-26 2000-10-18 Mitsubishi Denki Kabushiki Kaisha Status display unit using icons and method therefore
CN201213278Y (zh) * 2008-07-02 2009-03-25 希姆通信息技术(上海)有限公司 手机摄像人脸智能追踪装置
CN102647581A (zh) * 2012-04-27 2012-08-22 浙江晨鹰科技有限公司 一种视频监控方法及系统
CN102970438A (zh) * 2012-11-29 2013-03-13 广东欧珀移动通信有限公司 一种手机自动报警方法及自动报警装置
CN104013414A (zh) * 2014-04-30 2014-09-03 南京车锐信息科技有限公司 一种基于移动智能手机的驾驶员疲劳检测系统
CN104680141A (zh) * 2015-02-13 2015-06-03 华中师范大学 基于运动单元分层的人脸表情识别方法及系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924482A (zh) * 2018-06-22 2018-11-30 张小勇 一种视频记录方法和系统
CN111127830A (zh) * 2018-11-01 2020-05-08 奇酷互联网络科技(深圳)有限公司 基于监控设备的报警方法、报警系统和可读存储介质
CN111210589A (zh) * 2018-11-22 2020-05-29 北京搜狗科技发展有限公司 一种实现报警的方法及装置
CN110121715A (zh) * 2019-02-19 2019-08-13 深圳市汇顶科技股份有限公司 基于表情识别的呼救方法、装置、电子设备及存储介质
CN113177489A (zh) * 2021-05-07 2021-07-27 艾拉物联网络(深圳)有限公司 一种安防监控用高精度人像识别方法及系统
CN113177489B (zh) * 2021-05-07 2021-12-07 艾拉物联网络(深圳)有限公司 一种安防监控用高精度人像识别方法及系统

Also Published As

Publication number Publication date
CN104933827A (zh) 2015-09-23
CN104933827B (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
CN104933827B (zh) 一种基于旋转摄像头的报警方法及终端
US9690982B2 (en) Identifying gestures or movements using a feature matrix that was compressed/collapsed using principal joint variable analysis and thresholds
CN107045623B (zh) 一种基于人体姿态跟踪分析的室内危险情况告警的方法
CN110569795A (zh) 一种图像识别方法、装置以及相关设备
CN106251874B (zh) 一种语音门禁和安静环境监控方法及系统
EP1494210B1 (en) Speech communication system and method, and robot apparatus
CN105739688A (zh) 一种基于情感体系的人机交互方法、装置和交互系统
CN105354986A (zh) 汽车司机驾驶状态监测系统及方法
CN109154976A (zh) 通过机器学习训练对象分类器的系统和方法
CN104573458A (zh) 一种基于心电信号的身份识别方法、装置及系统
CN108154075A (zh) 经由单次学习的群体分析法
CN105518708A (zh) 用于验证活体人脸的方法、设备和计算机程序产品
CN103984315A (zh) 一种家用多功能智能机器人
WO2013027091A1 (en) Systems and methods of detecting body movements using globally generated multi-dimensional gesture data
Szwoch et al. Emotion recognition for affect aware video games
CN106326857A (zh) 基于人脸图像的性别识别方法及装置
CN108406848A (zh) 一种基于场景分析的智能机器人及其运动控制方法
CN107624061A (zh) 具有维度数据缩减的机器视觉
CN104965589A (zh) 一种基于人脑智慧和人机交互的人体活体检测方法与装置
CN110136714A (zh) 自然交互语音控制方法及装置
CN109118626A (zh) 锁具的控制方法、装置、存储介质及电子装置
Yasir et al. Two-handed hand gesture recognition for Bangla sign language using LDA and ANN
Alshamsi et al. Automated facial expression and speech emotion recognition app development on smart phones using cloud computing
CN110414360A (zh) 一种异常行为的检测方法及检测设备
CN108596089A (zh) 人脸姿态检测方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination