CN107702079A - A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method - Google Patents

A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method Download PDF

Info

Publication number
CN107702079A
CN107702079A CN201710842946.6A CN201710842946A CN107702079A CN 107702079 A CN107702079 A CN 107702079A CN 201710842946 A CN201710842946 A CN 201710842946A CN 107702079 A CN107702079 A CN 107702079A
Authority
CN
China
Prior art keywords
mrow
msubsup
thermal power
photo
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710842946.6A
Other languages
Chinese (zh)
Other versions
CN107702079B (en
Inventor
孙沛
傅旭
李丁
王昭
李富春
韩伟
杨攀峰
许美朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Electric Power Design Institute of China Power Engineering Consulting Group
Original Assignee
Northwest Electric Power Design Institute of China Power Engineering Consulting Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Electric Power Design Institute of China Power Engineering Consulting Group filed Critical Northwest Electric Power Design Institute of China Power Engineering Consulting Group
Priority to CN201710842946.6A priority Critical patent/CN107702079B/en
Publication of CN107702079A publication Critical patent/CN107702079A/en
Application granted granted Critical
Publication of CN107702079B publication Critical patent/CN107702079B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Abstract

The present invention proposes a kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method.Model be applied to independent operating photo-thermal power station and containing wind-powered electricity generation, photovoltaic, photo-thermal power generation the scene such as system of providing multiple forms of energy to complement each other, it considers a variety of operation constraints, including:Using hot salt cellar as the heating power balance constraint of node, the heat to electricity conversion relation constraint of electric heater unit, hot tank by when heat accumulation state constraint, calculating cycle internal memory quantity of heat storage is equal to the constraint of release heat, the heat to electricity conversion constraint of steam turbine generator, the startups heat constraint of steam turbine and power balance and constrains, abandons photoelectricity force constraint etc. for the wind of abandoning of electric heater unit.The optimization problem is solved using MIXED INTEGER linear optimization technology.By installing appropriate electric heater unit additional in photo-thermal power station, the electricity of abandoning of new energy can be efficiently reduced, increases photo-thermal power generation amount, is advantageous to improve the performance driving economy of photo-thermal power station and system of providing multiple forms of energy to complement each other.

Description

A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method
Technical field
The present invention relates to photothermal technique field, more particularly to a kind of photo-thermal power station containing electric heater unit and its modeling and Optimizing operation method.
Background technology
Solar light-heat power-generation technology is another main Solar use mode in addition to photovoltaic generation.China can be with Meet that the area of photo-thermal power station illumination condition requirement is located at northwest and the north mostly, these regional wind-powered electricity generation, solar energy resourceses compared with Abundant, the extensive access of wind-powered electricity generation, photovoltaic brings difficulty with Real-Time Scheduling a few days ago to power system.Photo-thermal electricity containing heat accumulation The introducing for heat accumulation link of standing makes the output in photo-thermal power station steadily controllable, and photo-thermal power station is combined with wind-powered electricity generation, photovoltaic composition provides multiple forms of energy to complement each other When system generates electricity, the uncertainty of wind-powered electricity generation, photovoltaic can be reduced, reduce new energy to a certain extent abandons electric rate.But for new energy For the too high the Northwest of source permeability, peak load stations, the capacity limit of energy storage facility are limited to, still exists and abandons electric rate mistake The problem of high.
The content of the invention
It is an object of the invention to provide a kind of modeling in photo-thermal power station containing electric heater unit and its optimization operation side Method.New energy can be efficiently reduced abandons electricity, is advantageous to improve the performance driving economy of photo-thermal power station and system of providing multiple forms of energy to complement each other.From And the flexibility of photo-thermal power station operation is improved, there is practical significance and promotional value.
To achieve these goals, the present invention adopts the following technical scheme that:
A kind of photo-thermal power station containing electric heater unit, including light and heat collection system, endothermic system, heat-storing device, heat exchange System and steam turbine generator;Described light and heat collection system is used to provide heat energy to heat dump;The outlet of heat dump fills with heat accumulation The first outlet of the first entrance connection for the hot salt storage tank put, the entrance of heat dump and the cold salt storage tank of heat-storing device connects;It is cold The second outlet of salt storage tank is connected by electric heater unit with the second entrance of hot salt storage tank;The outlet of hot salt storage tank is with heat exchange The high temperature inlet connection of the steam generator of system, the low-temperature outlet of steam generator are connected with the entrance of cold salt storage tank, to realize Fused salt circulates;The hot outlet of steam generator and the entrance of steam turbine generator connect, and the outlet of steam turbine generator passes through condensing The low-temperature inlet of device and steam generator connects, to realize steam circulation.
Photo-thermal power station modeling meets following constrain:
Equality constraint:
The heating power balance of hot salt storage tank node is constrained to:
In formula,Represent that t flows into the thermal power of hot salt storage tank through heat dump, electric heater unit respectively;The hot salt storage tank release of t, the thermal power of storage are represented respectively;Represent that t flows to steam generator Thermal power;
The heat to electricity conversion relation of electric heater unit is:
In formula, ηEHRepresent the electric-thermal conversion efficiency of electric heater unit;Represent the electrical power of t electric heater unit;
Hot salt storage tank by when heat accumulation state equation be:
In formula,Represent the quantity of heat storage that the hot salt storage tank of t is deposited;γTSRepresent the dissipative system of hot salt storage tank fused salt heat Number;Δ t is the time interval calculated;
Further improve of the invention is:According to engineering experience, fused salt declines about 1 DEG C daily, γTSVery little can be neglected, Above formula can be reduced to:
For hot salt storage tank not across periodic adjustment, calculating cycle internal memory quantity of heat storage is equal to release heat:
The thermal power main application of input steam generator is divided into two parts:
In formula:Represent that t is used for the thermal power for starting steam turbine generator,Represent t input steamer hair The thermal power of motor;
Heat into steam turbine generator reaches the minimum startup requirement constraint of steam turbine generator:
In formula:Represent the required minimum heat for starting steam turbine generator;It is for expression k moment units The 0-1 variables of no startup, when the value is 1, represent k moment unit startings;Δ t is the time interval calculated;
The heat to electricity conversion relation of steam turbine generator is:
In formula:Represent the output in t photo-thermal power station, the efficiency curve of steam turbine generator be it is nonlinear, herein Use Piecewise Linear Representation;
Inequality constraints:
The thermal power of input steam generator is no more than steam generator maximal input:
In formula:Represent steam generator maximal input;
Turbo-generator Set minimum start and stop constrains:
In formula,Start is represented to represent the 0-1 variables of t Unit Commitment state, 1;Ton, ToffStarted shooting for minimum, Downtime;TnFor calculating cycle;
Turbo-generator Set Startup time constrains:
Turbo-generator Set Startup time constrains:
In formula:Represent that photo-thermal power station is shut down in t to represent the 0-1 variables of t shutdown, 1;
Unit output restriction:
In formula:Output lower limit, the upper limit of unit are represented respectively, it should be pointed out that in start moment unit First heat engine is needed, after-heat, which can not meet to contribute, to be required;
Hot salt storage tank release, the thermal power of storage will meet to constrain:
In formula:Hot salt storage tank storage, the maximum of release thermal power are represented respectively,To represent heat The 0-1 variables of salt storage tank storage state, 1 represents hot salt storage tank storage, and hot tank can not only store simultaneously but also discharge heat;
The storing heat of hot salt storage tank will meet to constrain:
In formula:Lower limit, the upper limit of hot salt storage tank memory capacity are represented respectively.
Optimization object function during the photo-thermal power station independent operating is:
In formula, Section 1 is photo-thermal power station power selling income, and Section 2 is that purchases strategies are shut down in power station, and Section 3 is purchased for power station Buy the cost for abandoning electricity;pCSPRepresent the sale of electricity electricity price in photo-thermal power station;pERepresent power station from power network purchase electricity price;pEHRepresent power station from The electricity price of electricity is abandoned in power network purchase;EBUYFrom power network power purchase electricity during expression compressor emergency shutdown;
The photo-thermal power station also need meet constraints be:
In formula,Electric power can be abandoned for t photo-thermal power station from systems buying.
The optimization object function of system of providing multiple forms of energy to complement each other containing the photo-thermal power station is:
In formula, first two are respectively to abandon wind, abandon light punishment;Section 3 is that photo-thermal is punished, wherein, Section 1 generates electricity to be few Punishment, Section 2 to shut down power purchase expense, for electrical heating punish by Section 3;Last, which is that passage is idle, punishes, λiFor punishment Coefficient;Contributed for wind-powered electricity generation, photovoltaic prediction,For wind-powered electricity generation, the actual output of photovoltaic;ηRecConverted for thermo-electrically Efficiency;For passage idle capacity;
System of providing multiple forms of energy to complement each other also need meet constraints be:
In formula,For t passage ability of supplying electric power;Electric part is abandoned for electrically heated for wind-powered electricity generation, photovoltaic original Contribute;
Described light and heat collection system (1) is tower or slot type collecting system.
A kind of modeling in photo-thermal power station containing electric heater unit and optimizing operation method, comprise the following steps:
During for the power station independent operating, the photo-thermal power station model containing electric heater unit and energy storage device, the mould are established Type is made up of object function and constraints;Using photo-thermal power station Income Maximum as optimization aim, this running body of photo-thermal power station is considered Constraint;Finally, by mixed integer optimization derivation algorithm to model solution, the optimal solution tried to achieve is as photo-thermal power station active power output Plan and storage tank charge and discharge strategy;
For containing the power station provide multiple forms of energy to complement each other system when, initially set up the photo-thermal containing electric heater unit and energy storage device Power station model, then establish the optimal operation model of the system of providing multiple forms of energy to complement each other formed containing wind-powered electricity generation, photovoltaic, photo-thermal power station, the mould Type is made up of object function and constraints;Object function is system operation totle drilling cost minimum of providing multiple forms of energy to complement each other, and constraints is divided into Operation of Electric Systems constraints and the constraint of this running body of photo-thermal power station;Finally, by mixed integer optimization derivation algorithm to more Energy complementary system Unit Combination model solution, using obtained optimal solution as system unit operation reserve of providing multiple forms of energy to complement each other.
As a further improvement on the present invention, establish the photo-thermal power station model containing electric heater unit and refer to that cold salt storage tank melts Salt is pumped up toward electric heater unit, enters hot salt storage tank after electrical heating, fused salt from cold salt storage tank to hot salt storage tank more than one simultaneously Row path, realize conversion and storage of the electricity to heat.
As a further improvement on the present invention, the constraint of the photo-thermal power station model containing electric heater unit is as follows:
1) equality constraint
The heating power balance of hot salt storage tank node is constrained to:
In formula,Represent that t flows into the thermal power of hot salt storage tank through heat dump, electric heater unit respectively;The hot salt storage tank release of t, the thermal power of storage are represented respectively;Represent that t flows to steam generator Thermal power;
The heat to electricity conversion relation of electric heater unit is:
In formula, ηEHRepresent the electric-thermal conversion efficiency of electric heater unit;Represent the electrical power of t electric heater unit;
Hot salt storage tank by when heat accumulation state equation be:
In formula,Represent the quantity of heat storage that the hot salt storage tank of t is deposited;γTSRepresent the dissipative system of hot salt storage tank fused salt heat Number;Δ t is the time interval calculated;
Further improve of the invention is:According to engineering experience, fused salt declines about 1 DEG C daily, γTSVery little can be neglected, Above formula can be reduced to:
For hot salt storage tank not across periodic adjustment, calculating cycle internal memory quantity of heat storage is equal to release heat:
The thermal power main application of input steam generator is divided into two parts:
In formula:Represent that t is used for the thermal power for starting steam turbine generator,Represent t input steamer hair The thermal power of motor;
Heat into steam turbine generator reaches the minimum startup requirement constraint of steam turbine generator:
In formula:Represent the required minimum heat for starting steam turbine generator;It is for expression k moment units The 0-1 variables of no startup, when the value is 1, represent k moment unit startings;Δ t is the time interval calculated;
The heat to electricity conversion relation of steam turbine generator is:
In formula:Represent the output in t photo-thermal power station;The efficiency curve of steam turbine generator is nonlinear, herein Use Piecewise Linear Representation;
2) inequality constraints
The thermal power of input steam generator is no more than steam generator maximal input:
In formula:Represent steam generator maximal input;
Turbo-generator Set minimum start and stop constrains:
In formula,Start, T are represented to represent the 0-1 variables of t Unit Commitment state, 1on, ToffStarted shooting for minimum, Downtime;TnFor calculating cycle;
Turbo-generator Set Startup time constrains:
Turbo-generator Set Startup time constrains:
In formula:Represent that photo-thermal power station is shut down in t to represent the 0-1 variables of t shutdown, 1;
Unit output restriction:
In formula:Output lower limit, the upper limit of unit are represented respectively;
Hot salt storage tank release, the thermal power of storage will meet to constrain:
In formula:Hot salt storage tank storage, the maximum of release thermal power are represented respectively,To represent heat The 0-1 variables of salt storage tank storage state, 1 represents hot salt storage tank storage, and hot tank can not only store simultaneously but also discharge heat;
The storing heat of hot salt storage tank will meet to constrain:
In formula:Lower limit, the upper limit of hot salt storage tank memory capacity are represented respectively.
As a further improvement on the present invention, the optimization object function during photo-thermal power station independent operating is:
In formula, Section 1 is photo-thermal power station power selling income, and Section 2 is that purchases strategies are shut down in power station, and Section 3 is purchased for power station Buy the cost for abandoning electricity;pCSPRepresent the sale of electricity electricity price in photo-thermal power station;pERepresent power station from power network purchase electricity price;pEHRepresent power station from The electricity price of electricity is abandoned in power network purchase;EBUYFrom power network power purchase electricity during expression compressor emergency shutdown;
The photo-thermal power station also need meet constraints be:
In formula,Electric power can be abandoned for t photo-thermal power station from systems buying.
The optimization object function of system of providing multiple forms of energy to complement each other containing the photo-thermal power station is:
In formula, first two are respectively to abandon wind, abandon light punishment;Section 3 is that photo-thermal is punished, wherein, Section 1 generates electricity to be few Punishment, Section 2 to shut down power purchase expense, for electrical heating punish by Section 3;Last is the idle punishment of passage;λiFor punishment Coefficient;Contributed for wind-powered electricity generation, photovoltaic prediction,For wind-powered electricity generation, the actual output of photovoltaic;ηRecConverted for thermo-electrically Efficiency;For passage idle capacity;
System of providing multiple forms of energy to complement each other also need meet constraints be:
In formula,For t passage ability of supplying electric power;Electric part is abandoned for electrically heated for wind-powered electricity generation, photovoltaic original Contribute;
Relative to prior art, the present invention has advantages below:
The photo-thermal power station of the present invention utilizes electric calorifie installation recovery system by installing electric heater unit inside photo-thermal power station Abandon wind, abandon optical quantum, can efficiently reduce new energy abandons electricity, is advantageous to improve photo-thermal power station and system of providing multiple forms of energy to complement each other Performance driving economy.So as to improve the flexibility of photo-thermal power station operation, there is practical significance and promotional value.
The present invention a kind of photo-thermal power station containing electric heater unit modeling and optimizing operation method can optimize containing The photo-thermal power station operation of electric heater unit, improving new energy consumption can be with the performance driving economy in photo-thermal power station.Model is applied to only The photo-thermal power station of vertical operation and containing wind-powered electricity generation, photovoltaic, photo-thermal power generation the scene such as system of providing multiple forms of energy to complement each other, it considers a variety of fortune Row constraint, including:Heating power balance constraint, the heat to electricity conversion relation constraint of electric heater unit, hot tank using hot salt cellar as node By when heat accumulation state constraint, calculating cycle internal memory quantity of heat storage be equal to release heat constraint, steam turbine generator heat to electricity conversion about Beam, the startup heat constraint of steam turbine and power balance constraint, the wind of abandoning for electric heater unit abandon photoelectricity force constraint etc..Using MIXED INTEGER linear optimization technology solves the optimization problem.As a result show to fill by installing appropriate electrical heating additional in photo-thermal power station Put, the electricity of abandoning of new energy can be efficiently reduced, increase photo-thermal power generation amount, be advantageous to improve photo-thermal power station and system of providing multiple forms of energy to complement each other Performance driving economy.
Brief description of the drawings
Fig. 1 is tower (slot type is also applicable) the molten salt thermal power station schematic diagram containing electric heater unit;
Fig. 2 steam turbine generator efficiency curve diagrams;
Fig. 3 does not install the base service chart of providing multiple forms of energy to complement each other of electric heater unit;
Fig. 4 installs the base service chart of providing multiple forms of energy to complement each other of electric heater unit;
Wherein, 1 is light and heat collection system, and 2 be heat dump, and 3 be cold salt storage tank, and 4 be electric heater unit, and 5 be hot salt storage tank, 6 be steam generator, and 7 be condenser, and 8 be steam turbine generator, and 9 be power transformer.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, below for containing this photo-thermal power station System of providing multiple forms of energy to complement each other, in conjunction with the embodiments, the present invention will be described in further detail.The photo-thermal power station of independent operating with it is such Seemingly, case-study is no longer done.It should be appreciated that specific embodiment described herein is only to explain the present invention, and do not have to It is of the invention in limiting.
The present invention proposes modeling and the optimizing operation method in a kind of photo-thermal power station containing electric heater unit.The optimization is transported Row strategy can optimize the photo-thermal power station operation containing electric heater unit, and improving new energy consumption can pass through with the operation in photo-thermal power station Ji property.Model be applied to independent operating photo-thermal power station and containing wind-powered electricity generation, photovoltaic, photo-thermal power generation the field such as system of providing multiple forms of energy to complement each other Scape, it considers a variety of operation constraints, including:Using hot salt cellar as the heating power balance constraint of node, the heat of electric heater unit The constraint of electric transformational relation, hot tank by when heat accumulation state constraint, calculating cycle internal memory quantity of heat storage be equal to the constraint of release heat, steamer The heat to electricity conversion constraint of generator, the startup heat constraint of steam turbine and power balance constrain, abandon wind for electric heater unit Abandon photoelectricity force constraint etc..
Such as Fig. 1, a kind of photo-thermal power station containing electric heater unit is mainly made up of four parts:Light and heat collection system 1, heat absorption System, heat-storing device, heat-exchange system and turbine generator device.In fused salt solar energy tower type (slot type is also suitable) electricity generation system, About 290 DEG C of fused salt is sent to heat dump 2 through pump from cold salt storage tank 3, the daylight reflected in heat dump 2 by light and heat collection system 1 565 DEG C are heated to, enters back into hot salt storage tank 5.When needing to generate electricity, hot salt enters steam generator 6 through pump, produces overheat and steams Vapour, superheated steam enter steam turbine generator 8, enter steam generator 6 by condenser 7, realize that traditional Rankine cycle generates electricity, Salt through steam raising plant heat release enters back into cold salt storage tank 3, then is heated by heat dump 2 and repeat said process.Add containing electricity During thermal 4, the cold fused salt of salt storage tank 3 is pumped up, toward electric heater 4, hot salt storage tank 5 being entered after electrical heating, fused salt stores up from cold salt Tank 3 arrives an IEEE Std parallel highway of hot salt storage tank more than 5, realizes conversion and storage of the electricity to heat.
A kind of modeling in photo-thermal power station containing electric heater unit of the present invention and optimizing operation method, this method are initially set up Photo-thermal power station model containing electric heater unit and energy storage device, then establish containing wind-powered electricity generation, photovoltaic, photo-thermal power station form it is more The Optimal Operation Strategies model of energy complementary system, the model are made up of object function and constraints;Object function is that multipotency is mutual Complement system operation totle drilling cost (containing opportunity cost) is minimum, and constraints is divided into Operation of Electric Systems constraints and photo-thermal power station sheet Running body constrains;Finally, system unit built-up pattern of providing multiple forms of energy to complement each other is solved by MIXED INTEGER linear optimization technology, will obtained Optimal solution as providing multiple forms of energy to complement each other system unit operation reserve.
Mathematical modeling is carried out to the photo-thermal power station containing electric heater unit.The major constraints of the model are as follows.
1) equality constraint
Heating power balance using hot salt storage tank as node is constrained to:
In formula,Represent that t flows into the thermal power of hot salt storage tank through heat dump, electric heater unit respectively;The hot salt storage tank release of t, the thermal power of storage are represented respectively;Represent that t flows to steam generator Thermal power.
The heat to electricity conversion relation of electric heater unit is:
In formula, ηEHRepresent the electric-thermal conversion efficiency of electric heater unit;Represent the electrical power of t electric heater unit.
Hot salt storage tank by when heat accumulation state equation be:
In formula,Represent the quantity of heat storage that the hot salt storage tank of t is deposited;γTSRepresent the dissipative system of hot salt storage tank fused salt heat Number;Δ t is the time interval calculated.
Further improve of the invention is:According to engineering experience, fused salt declines about 1 DEG C daily, γTSVery little can be neglected, Above formula can be reduced to:
For hot salt storage tank not across periodic adjustment, calculating cycle internal memory quantity of heat storage is equal to release heat:
The thermal power main application of input steam generator is divided into two parts:
In formula:Represent that t is used for the thermal power for starting steam turbine generator,Represent t input steamer hair The thermal power of motor.
General 1~the 2h of used time of cold start of steam turbine generator, the heat into steam turbine generator reach steam turbine generator Minimum, which starts, requires constraint:
In formula:Represent the required minimum heat for starting steam turbine generator;It is for expression k moment units The 0-1 variables of no startup, when the value is 1, represent k moment unit startings;Δ t is the time interval calculated.
The heat to electricity conversion relation of steam turbine generator is:
In formula:Represent the output in t photo-thermal power station.The efficiency curve of steam turbine generator is nonlinear, herein Use Piecewise Linear Representation.
2) inequality constraints
The thermal power of input steam generator is no more than steam generator maximal input:
In formula:Represent steam generator maximal input.
Unit minimum start and stop constrains:
In formula,Start is represented to represent the 0-1 variables of t Unit Commitment state, 1.Ton, ToffStarted shooting for minimum, Downtime;TnFor calculating cycle.
The unit starting moment constrains:
The unit starting moment constrains:
In formula:Represent that photo-thermal power station is shut down in t to represent the 0-1 variables of t shutdown, 1.
Unit output restriction:
In formula:Output lower limit, the upper limit of unit are represented respectively.It is pointed out that in start moment unit First heat engine is needed, after-heat, which can not meet to contribute, to be required.
Hot salt storage tank operation will also meet certain requirements.First, hot salt storage tank release, the thermal power of storage will meet about Beam:
In formula:Hot salt storage tank storage, the maximum of release thermal power are represented respectively.To represent heat The 0-1 variables of salt storage tank storage state, 1 represents hot salt storage tank storage.Hot tank can not only store simultaneously but also discharge heat.
The storing heat of hot salt storage tank will meet to constrain:
In formula:Lower limit, the upper limit of hot salt storage tank memory capacity are represented respectively.
Establish containing wind-powered electricity generation, photovoltaic, photo-thermal power generation system of providing multiple forms of energy to complement each other Optimized model it is as follows.
1) object function
In formula, first two are respectively to abandon wind, abandon light punishment;Section 3 is that photo-thermal is punished, wherein, Section 1 generates electricity to be few Punishment, Section 2 to shut down power purchase expense, for electrical heating punish by Section 3;Last is the idle punishment of passage.λiFor punishment Coefficient;Contributed for wind-powered electricity generation, photovoltaic prediction,For wind-powered electricity generation, the actual output of photovoltaic;ηRecConverted for thermo-electrically Efficiency;For passage idle capacity.
2) constraints
The constraints that above-mentioned optimization object function should be met is:
In formula,For t channel capacity;Electric part, which is abandoned, for wind-powered electricity generation, photovoltaic original is used for electrically heated output.
To meet the constraint of formula (1)~(14) simultaneously.
The features of the present invention and beneficial effect are:The light containing electric heater unit based on optimized algorithm proposed by the invention Thermo-power station optimizing operation method, it is suitably employed in control centre's main station system, realizes that system optimization is run.As a result show to lead to Cross and install appropriate electric heater unit additional in photo-thermal power station, the electricity of abandoning of new energy can be efficiently reduced, increase photo-thermal power generation amount, have Beneficial to the performance driving economy for improving photo-thermal power station and system of providing multiple forms of energy to complement each other.
Have below by emulation case to the modeling and optimizing operation method that consider the photo-thermal power station of electric heater unit Body is analyzed, and is further described with the application effect to the present invention.
Example system is a certain base of providing multiple forms of energy to complement each other in northwest, and the base is connected by 1 time 330kV circuit with major network.System Apoplexy Denso machine 400MW, photovoltaic installation 200MW, photo-thermal one 50MW of installation, and assemble 40MW electric heater unit.Wind-powered electricity generation, light Lie prostrate power producing characteristics and use the characteristic curve of typical case 8760 generated in engineering based on historical data for many years.Photo-thermal unit is using design Tower fused salt unit, heat accumulation hourage are 12 hours, and sun multiple is defined as all light and heat collection equipment (settled dates in whole power station Mirror) ratio for the thermal power that the thermal power of heat dump output and steam turbine generator rated load need when putting into operation, take in this example 2.8, unit efficiency curve is shown in Fig. 2.
1) example 1:Typical day simulation
Typical day sunykatuib analysis a certain to above-mentioned example system, is contrasted containing electric heater unit and without electric heater unit Analog result is shown in Fig. 3 and table 1.
When without electric heater unit, scene is contributed 13:00~17:00 exceedes passage conveying capacity (passage power transmission energy Force curve is as shown in Figure 3) abandon electricity.Photo-thermal unit off-duty when wind-powered electricity generation photovoltaic big hair, only absorb heat and store, 18:Start power operation of overfilling after 00.After increasing electric heater unit, photo-thermal unit operation 3 hours before abandoning electricity and occurring, then in wind Big generate when electricity is abandoned in generation of electric light volt is shut down, and now electric heater unit Operation at full power 5 hours, subsequent start-up unit, heat accumulation are filled Net quantity of heat in putting generates electricity.
After photo-thermal unit increase electric heater unit, new energy abandons electric reduction, and electric heater unit is with abandoning electrical heating fused salt and deposit Storage generates electricity.Because factor, the generation of electricity by new energy amounts that system is really received such as the thermal efficiency of photo-thermal unit and startup heat consumption are less than real Border photo-thermal increment life insurance.In this example, after considering that photo-thermal unit increases electric heater unit, whole day abandons electricity and reduces 200MWh, system The generation of electricity by new energy amount increase 40MWh of receiving.
The example system daily generation of table 1
2) example 2:Year operation result comparative analysis
Effect and the factor such as illumination resources supplIes, heat accumulation duration for installing electric heater unit additional are all related.Do not changing heat accumulation On the premise of duration, base year operating index of providing multiple forms of energy to complement each other is as shown in table 2.As can be seen that after increase electric heater unit, wind-powered electricity generation light Volt abandons electricity year and reduces 0.2 hundred million kWh, the more kWh of generated energy 0.07 hundred million of photo-thermal unit.40MW electric heater unit need to increase by 40,000,000 Member investment, according to 1.15 yuan/kWh of photo-thermal unit rate for incorporation into the power network, it is contemplated that electricity price thermal uses base of providing multiple forms of energy to complement each other Electricity is abandoned, purchases strategies can be ignored, and the investment payback time is 5.0 years.Carry out peak regulation electricity price after considering further that electricity market reform, throw Money income will further increase.
The example system annual electricity generating capacity of table 2
Unit:Hundred million kWh
3) example 3:Different electrical heating power year operation result comparative analyses
Assembling 40,60MW electric heater unit, base year operating index of providing multiple forms of energy to complement each other are as shown in table 3.From table, electricity adds When thermal increases to 60MW, abandon electricity and reduce by 0.04 hundred million kWh, whole electricity are used for electric heater unit heating fused salt, photo-thermal machine Group annual electricity generating capacity increases by 0.03 hundred million kWh, and unit operation efficiency improves.
The different electric heater unit example system annual electricity generating capacities of table 3
Unit:Hundred million kWh
4) example 4:Operation result comparative analysis all the year round during different heat accumulations
Change heat accumulation duration, base year operating index of providing multiple forms of energy to complement each other is as shown in table 4.Heat accumulation duration increases it can be seen from table Add, the change of electrical heating power consumption is constant, and electrical heating power consumption is not only restricted to heat accumulation salt storage tank size in this example system.
With the increase of heat accumulation duration, the increase of system gross generation:Illumination money can be stored more by being firstly because photo-thermal unit Source is measured, so as to generated energy increase;Secondly as heat accumulation duration increases, the peak modulation capacity enhancing of photo-thermal unit, scene is abandoned electricity and subtracted It is few, generated energy increase.Heat accumulation duration often increases by 1 hour, about 15,000,000 yuan of increase investment.Should be according to specific system, it is suitable to choose Heat accumulation duration.
The different heat accumulation duration example system annual electricity generating capacities of table 4
Unit:Hundred million kWh
Above content is further description made for the present invention, it is impossible to assert the embodiment of the present invention only It is limited to this, for general technical staff of the technical field of the invention, without departing from the inventive concept of the premise, also Some simple deduction or replace can be made, the present invention should be all considered as belonging to and determine invention by the claims submitted Protection domain.

Claims (10)

1. a kind of photo-thermal power station containing electric heater unit, it is characterised in that including light and heat collection system (1), endothermic system, storage Thermal, heat-exchange system and steam turbine generator (8);Described light and heat collection system (1) is used to provide heat energy to heat dump (2); The first entrance of the outlet of heat dump (2) and the hot salt storage tank (5) of heat-storing device connects, and entrance and the heat accumulation of heat dump (2) fill The first outlet connection for the cold salt storage tank (3) put;The second outlet of cold salt storage tank (3) is stored up by electric heater unit (4) and hot salt The second entrance connection of tank (5);The high temperature inlet of the outlet of hot salt storage tank (5) and the steam generator (6) of heat-exchange system connects, The low-temperature outlet of steam generator (6) is connected with the entrance of cold salt storage tank (3), to realize that fused salt circulates;Steam generator (6) Hot outlet is connected with the entrance of steam turbine generator (8), and the outlet of steam turbine generator (8) passes through condenser (7) and steam generation The low-temperature inlet connection of device (6), to realize steam circulation.
2. a kind of photo-thermal power station containing electric heater unit according to claim 1, it is characterised in that the photo-thermal power station is built Mould meets following constrain:
Equality constraint:
The heating power balance of hot salt storage tank node is constrained to:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>Re</mi> <mi>c</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow>
In formula,Represent that t flows into the thermal power of hot salt storage tank through heat dump, electric heater unit respectively;The hot salt storage tank release of t, the thermal power of storage are represented respectively;Represent that t flows to steam generator Thermal power;
The heat to electricity conversion relation of electric heater unit is:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>&amp;eta;</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> </mrow>
In formula, ηEHRepresent the electric-thermal conversion efficiency of electric heater unit;Pt EHRepresent the electrical power of t electric heater unit;
Hot salt storage tank by when heat accumulation state equation be:
<mrow> <msubsup> <mi>E</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>E</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>H</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>H</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow>
In formula,Represent the quantity of heat storage that the hot salt storage tank of t is deposited;Δ t is the time interval calculated;
For hot salt storage tank not across periodic adjustment, calculating cycle internal memory quantity of heat storage is equal to release heat:
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> </mrow>
The thermal power main application of input steam generator is divided into two parts:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> </mrow>
In formula:Represent that t is used for the thermal power for starting steam turbine generator,Represent t input steam turbine generator Thermal power;
Heat into steam turbine generator reaches the minimum startup requirement constraint of steam turbine generator:
<mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>+</mo> <msubsup> <mi>H</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>=</mo> <msubsup> <mi>E</mi> <mn>0</mn> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>s</mi> <mi>k</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mn>1</mn> </mrow>
In formula:Represent the required minimum heat for starting steam turbine generator;To represent whether k moment unit opens Dynamic 0-1 variables, when the value is 1, represent k moment unit startings;Δ t is the time interval calculated;
The heat to electricity conversion relation of steam turbine generator is:
<mrow> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
In formula:Pt PCThe output in t photo-thermal power station is represented, the efficiency curve of steam turbine generator is nonlinear, uses divide herein Section linear expression;
Inequality constraints:
The thermal power of input steam generator is no more than steam generator maximal input:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>H</mi> <mi>max</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> </mrow>
In formula:Represent steam generator maximal input;
Turbo-generator Set minimum start and stop constrains:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>x</mi> <mi>&amp;tau;</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>&amp;ForAll;</mo> <mi>&amp;tau;</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>x</mi> <mi>&amp;tau;</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>&amp;ForAll;</mo> <mi>&amp;tau;</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula,Start is represented to represent the 0-1 variables of t Unit Commitment state, 1;Ton, ToffFor minimum start, shut down Time;TnFor calculating cycle;
Turbo-generator Set Startup time constrains:
<mrow> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> </mrow>
Turbo-generator Set Startup time constrains:
<mrow> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>C</mi> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>e</mi> </mrow> </msubsup> </mrow>
In formula:Represent that photo-thermal power station is shut down in t to represent the 0-1 variables of t shutdown, 1;
Unit output restriction:
<mrow> <msubsup> <mi>P</mi> <mi>min</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
In formula:Output lower limit, the upper limit of unit are represented respectively, it should be pointed out that are needed in start moment unit First heat engine, after-heat, which can not meet to contribute, to be required;
Hot salt storage tank release, the thermal power of storage will meet to constrain:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>c</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msubsup> <mi>H</mi> <mi>max</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>c</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>H</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula:Hot salt storage tank storage, the maximum of release thermal power are represented respectively,To represent hot salt storage tank The 0-1 variables of storage state, 1 represents hot salt storage tank storage, and hot tank can not only store simultaneously but also discharge heat;
The storing heat of hot salt storage tank will meet to constrain:
<mrow> <msubsup> <mi>E</mi> <mi>min</mi> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>E</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>E</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> </mrow>
In formula:Lower limit, the upper limit of hot salt storage tank memory capacity are represented respectively.
3. a kind of photo-thermal power station containing electric heater unit according to claim 1, it is characterised in that the photo-thermal power station is only Founding optimization object function when running is:
<mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </msup> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> </mrow> <mo>)</mo> <msup> <mi>p</mi> <mi>E</mi> </msup> <msup> <mi>E</mi> <mrow> <mi>B</mi> <mi>U</mi> <mi>Y</mi> </mrow> </msup> <mo>-</mo> <msup> <mi>p</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msup> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
In formula, Section 1 is photo-thermal power station power selling income, and Section 2 is that purchases strategies are shut down in power station, and Section 3 is that power station purchase is abandoned The cost of electricity;pCSPRepresent the sale of electricity electricity price in photo-thermal power station;pERepresent power station from power network purchase electricity price;pEHRepresent power station from power network The electricity price of electricity is abandoned in purchase;EBUYFrom power network power purchase electricity during expression compressor emergency shutdown;
The photo-thermal power station also need meet constraints be:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>t</mi> </mrow>
In formula, Pt EH(0)Electric power can be abandoned for t photo-thermal power station from systems buying.
4. a kind of photo-thermal power station containing electric heater unit according to claim 1, it is characterised in that contain photo-thermal electricity The optimization object function for the system of providing multiple forms of energy to complement each other stood is:
<mrow> <mi>min</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>W</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </munderover> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>(</mo> <mrow> <msup> <mi>&amp;eta;</mi> <mrow> <mi>Re</mi> <mi>c</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>Re</mi> <mi>c</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msubsup> <mi>P</mi> <mi>t</mi> <mi>L</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
In formula, first two are respectively to abandon wind, abandon light punishment;Section 3 is that photo-thermal is punished, wherein, Section 1 is punished for few generating Penalize, Section 2 to shut down power purchase expense, for electrical heating punish by Section 3;Last, which is that passage is idle, punishes, λiIt is for punishment Number;Contributed for wind-powered electricity generation, photovoltaic prediction,For wind-powered electricity generation, the actual output of photovoltaic;ηRecConvert and imitate for thermo-electrically Rate;Pt LFor passage idle capacity;
System of providing multiple forms of energy to complement each other also need meet constraints be:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>W</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mi>L</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mi>D</mi> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>t</mi> </mrow>
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>W</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>W</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>S</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>t</mi> </mrow>
In formula, Pt DFor t passage ability of supplying electric power;Electric part, which is abandoned, for wind-powered electricity generation, photovoltaic original is used for electrically heated output;
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>W</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>S</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>.</mo> </mrow>
A kind of 5. photo-thermal power station containing electric heater unit according to claim 1, it is characterised in that described optically focused collection Hot systems (1) are tower or slot type collecting system.
6. modeling and the optimizing operation method in a kind of photo-thermal power station containing electric heater unit, it is characterised in that including following step Suddenly:
During for the power station independent operating, establish the photo-thermal power station model containing electric heater unit and energy storage device, the model by Object function and constraints are formed;Using photo-thermal power station Income Maximum as optimization aim, this running body constraint of photo-thermal power station is considered; Finally, by mixed integer optimization derivation algorithm to model solution, the optimal solution tried to achieve is as the active power output plan of photo-thermal power station With storage tank charge and discharge strategy;
For containing the power station provide multiple forms of energy to complement each other system when, initially set up the photo-thermal power station containing electric heater unit and energy storage device Model, then establish containing wind-powered electricity generation, photovoltaic, photo-thermal power station form system of providing multiple forms of energy to complement each other optimal operation model, the model by Object function and constraints are formed;Object function is system operation totle drilling cost minimum of providing multiple forms of energy to complement each other, and constraints is divided into electric power System operation constraints and the constraint of this running body of photo-thermal power station;Finally, it is mutual to multipotency by mixed integer optimization derivation algorithm Complement system Unit Combination model solution, using obtained optimal solution as system unit operation reserve of providing multiple forms of energy to complement each other.
7. modeling and the optimizing operation method in the photo-thermal power station according to claim 6 containing electric heater unit, its feature It is, establishes the photo-thermal power station model containing electric heater unit and refer to that cold salt storage tank fused salt is pumped up toward electric heater unit, through electricity Enter hot salt storage tank after heating, fused salt from cold salt storage tank to hot salt storage tank more than an IEEE Std parallel highway, realize electricity to heat conversion simultaneously Storage.
8. modeling and the optimizing operation method in the photo-thermal power station according to claim 6 containing electric heater unit, its feature It is, the constraint of the photo-thermal power station model containing electric heater unit is as follows:
1) equality constraint
The heating power balance of hot salt storage tank node is constrained to:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>Re</mi> <mi>c</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow>
In formula,Represent that t flows into the thermal power of hot salt storage tank through heat dump, electric heater unit respectively;The hot salt storage tank release of t, the thermal power of storage are represented respectively;Represent that t flows to steam generator Thermal power;
The heat to electricity conversion relation of electric heater unit is:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>&amp;eta;</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> </mrow>
In formula, ηEHRepresent the electric-thermal conversion efficiency of electric heater unit;Pt EHRepresent the electrical power of t electric heater unit;
Hot salt storage tank by when heat accumulation state equation be:
<mrow> <msubsup> <mi>E</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>E</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>H</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>H</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow>
In formula,Represent the quantity of heat storage that the hot salt storage tank of t is deposited;Δ t is the time interval calculated;
For hot salt storage tank not across periodic adjustment, calculating cycle internal memory quantity of heat storage is equal to release heat:
<mrow> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>t</mi> </munder> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> </mrow>
The thermal power main application of input steam generator is divided into two parts:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> </mrow>
In formula:Represent that t is used for the thermal power for starting steam turbine generator,Represent t input steam turbine generator Thermal power;
Heat into steam turbine generator reaches the minimum startup requirement constraint of steam turbine generator:
<mrow> <msubsup> <mi>H</mi> <mi>k</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>+</mo> <msubsup> <mi>H</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;CenterDot;</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>=</mo> <msubsup> <mi>E</mi> <mn>0</mn> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>s</mi> <mi>k</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mn>1</mn> </mrow>
In formula:Represent the required minimum heat for starting steam turbine generator;To represent whether k moment unit opens Dynamic 0-1 variables, when the value is 1, represent k moment unit startings;Δ t is the time interval calculated;
The heat to electricity conversion relation of steam turbine generator is:
<mrow> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
In formula:Pt PCRepresent the output in t photo-thermal power station;The efficiency curve of steam turbine generator is nonlinear, uses divide herein Section linear expression;
2) inequality constraints
The thermal power of input steam generator is no more than steam generator maximal input:
<mrow> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>H</mi> <mi>max</mi> <mrow> <mi>S</mi> <mi>G</mi> </mrow> </msubsup> </mrow>
In formula:Represent steam generator maximal input;
Turbo-generator Set minimum start and stop constrains:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>x</mi> <mi>&amp;tau;</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>&amp;ForAll;</mo> <mi>&amp;tau;</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>x</mi> <mi>&amp;tau;</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>&amp;ForAll;</mo> <mi>&amp;tau;</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>{</mo> <mi>t</mi> <mo>+</mo> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>T</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula,Start, T are represented to represent the 0-1 variables of t Unit Commitment state, 1on, ToffFor minimum start, shut down Time;TnFor calculating cycle;
Turbo-generator Set Startup time constrains:
<mrow> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> </mrow>
Turbo-generator Set Startup time constrains:
<mrow> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>C</mi> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>e</mi> </mrow> </msubsup> </mrow>
In formula:Represent that photo-thermal power station is shut down in t to represent the 0-1 variables of t shutdown, 1;
Unit output restriction:
<mrow> <msubsup> <mi>P</mi> <mi>min</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>s</mi> <mi>t</mi> <mrow> <mi>S</mi> <mi>t</mi> <mi>a</mi> <mi>r</mi> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
In formula:Output lower limit, the upper limit of unit are represented respectively;
Hot salt storage tank release, the thermal power of storage will meet to constrain:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>c</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <msubsup> <mi>H</mi> <mi>max</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>H</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>c</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> <mi>i</mi> <mi>n</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <msubsup> <mi>H</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>T</mi> <mi>S</mi> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
In formula:Hot salt storage tank storage, the maximum of release thermal power are represented respectively,To represent hot salt storage tank The 0-1 variables of storage state, 1 represents hot salt storage tank storage, and hot tank can not only store simultaneously but also discharge heat;
The storing heat of hot salt storage tank will meet to constrain:
<mrow> <msubsup> <mi>E</mi> <mi>min</mi> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>E</mi> <mi>t</mi> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>E</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>T</mi> <mi>S</mi> </mrow> </msubsup> </mrow>
In formula:Lower limit, the upper limit of hot salt storage tank memory capacity are represented respectively.
9. modeling and the optimizing operation method in the photo-thermal power station according to claim 6 containing electric heater unit, its feature It is, the optimization object function during photo-thermal power station independent operating is:
<mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </msup> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>-</mo> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>x</mi> <mi>t</mi> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> </mrow> <mo>)</mo> <msup> <mi>p</mi> <mi>E</mi> </msup> <msup> <mi>E</mi> <mrow> <mi>B</mi> <mi>U</mi> <mi>Y</mi> </mrow> </msup> <mo>-</mo> <msup> <mi>p</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msup> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow>
In formula, Section 1 is photo-thermal power station power selling income, and Section 2 is that purchases strategies are shut down in power station, and Section 3 is that power station purchase is abandoned The cost of electricity;pCSPRepresent the sale of electricity electricity price in photo-thermal power station;pERepresent power station from power network purchase electricity price;pEHRepresent power station from power network The electricity price of electricity is abandoned in purchase;EBUYFrom power network power purchase electricity during expression compressor emergency shutdown;
The photo-thermal power station also need meet constraints be:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mrow> <mi>E</mi> <mi>H</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>t</mi> </mrow>
In formula, Pt EH(0)Electric power can be abandoned for t photo-thermal power station from systems buying.
10. modeling and the optimizing operation method in the photo-thermal power station according to claim 6 containing electric heater unit, its feature It is, the optimization object function of the system of providing multiple forms of energy to complement each other containing the photo-thermal power station is:
<mrow> <mi>min</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>W</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </munderover> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>3</mn> </msub> <mo>(</mo> <mrow> <msup> <mi>&amp;eta;</mi> <mrow> <mi>Re</mi> <mi>c</mi> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>Re</mi> <mi>c</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>4</mn> </msub> <msubsup> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>5</mn> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <msubsup> <mi>P</mi> <mi>t</mi> <mi>L</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
In formula, first two are respectively to abandon wind, abandon light punishment;Section 3 is that photo-thermal is punished, wherein, Section 1 is punished for few generating Penalize, Section 2 to shut down power purchase expense, for electrical heating punish by Section 3;Last is the idle punishment of passage;λiIt is for punishment Number;Contributed for wind-powered electricity generation, photovoltaic prediction,For wind-powered electricity generation, the actual output of photovoltaic;ηRecConvert and imitate for thermo-electrically Rate;Pt LFor passage idle capacity;
System of providing multiple forms of energy to complement each other also need meet constraints be:
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>W</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>P</mi> <mi>C</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mi>L</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mi>t</mi> <mi>D</mi> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>t</mi> </mrow>
<mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>W</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>W</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>S</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>S</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>C</mi> <mi>S</mi> <mi>P</mi> </mrow> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>E</mi> <mi>H</mi> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>t</mi> </mrow>
In formula, Pt DFor t passage ability of supplying electric power;Electric part, which is abandoned, for wind-powered electricity generation, photovoltaic original is used for electrically heated output;
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>W</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>W</mi> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow>
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <msup> <mi>S</mi> <mo>&amp;prime;</mo> </msup> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mrow> <mi>S</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mi>S</mi> </msubsup> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>.</mo> </mrow>
CN201710842946.6A 2017-09-18 2017-09-18 A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method Active CN107702079B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710842946.6A CN107702079B (en) 2017-09-18 2017-09-18 A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710842946.6A CN107702079B (en) 2017-09-18 2017-09-18 A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method

Publications (2)

Publication Number Publication Date
CN107702079A true CN107702079A (en) 2018-02-16
CN107702079B CN107702079B (en) 2019-03-22

Family

ID=61172787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710842946.6A Active CN107702079B (en) 2017-09-18 2017-09-18 A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method

Country Status (1)

Country Link
CN (1) CN107702079B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322139A (en) * 2018-03-01 2018-07-24 东北电力大学 It is a kind of meter and overall cost wind-powered electricity generation-photovoltaic-photo-thermal power generation combined scheduling method
CN108805328A (en) * 2018-04-30 2018-11-13 国网浙江省电力有限公司经济技术研究院 The optimizing operation method of photo-thermal power station cogeneration micro-grid system
CN108984875A (en) * 2018-07-02 2018-12-11 中国电力工程顾问集团西北电力设计院有限公司 A method of it calculating photo-thermal unit and participates in power balance capacity
CN109102204A (en) * 2018-08-29 2018-12-28 国网青海省电力公司经济技术研究院 A kind of scheduling model and networking benefit analysis methods of photo-thermal power generation access power grid
CN109842156A (en) * 2019-03-05 2019-06-04 国网甘肃省电力公司电力科学研究院 A kind of photo-thermal power station modeling and wind power plant coordination optimizing method containing electric heater unit
CN109945512A (en) * 2019-04-04 2019-06-28 南京林业大学 A kind of efficient photovoltaic and photothermal integrated system
CN110048469A (en) * 2019-05-14 2019-07-23 东南大学 A kind of Optimization Scheduling promoting wind electricity digestion using photo-thermal power station
CN110245793A (en) * 2019-06-04 2019-09-17 西安交通大学 A kind of power system optimal dispatch method based on photo-thermal unit polymerization model
CN110345650A (en) * 2019-07-26 2019-10-18 青岛鸿瑞电力工程咨询有限公司 A kind of design method of photo-thermal power station external heat dump
CN114336744A (en) * 2021-12-27 2022-04-12 山东电力建设第三工程有限公司 Solar multi-energy complementary system and method suitable for brine lithium mine exploitation
JP7384476B2 (en) 2021-08-20 2023-11-21 常州工学院 Optimization method and system for ventilation structure for boiler combustion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202501439U (en) * 2012-02-29 2012-10-24 江苏太阳宝新能源有限公司 System for generating high-temperature sterilization steam by utilizing solar photo-thermal energy and stored energy of molten salt
CN104807204A (en) * 2014-12-31 2015-07-29 深圳市爱能森科技有限公司 Wind power, photovoltaic, photo-thermal and medium heat storage combined energy supply system
CN205154506U (en) * 2015-11-04 2016-04-13 江西宝象科技有限公司 Solar energy power generation and wind power generation combination microgrid system
CN205823548U (en) * 2016-07-22 2016-12-21 华北电力科学研究院(西安)有限公司 A kind of wind and solar hybrid generating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202501439U (en) * 2012-02-29 2012-10-24 江苏太阳宝新能源有限公司 System for generating high-temperature sterilization steam by utilizing solar photo-thermal energy and stored energy of molten salt
CN104807204A (en) * 2014-12-31 2015-07-29 深圳市爱能森科技有限公司 Wind power, photovoltaic, photo-thermal and medium heat storage combined energy supply system
CN205154506U (en) * 2015-11-04 2016-04-13 江西宝象科技有限公司 Solar energy power generation and wind power generation combination microgrid system
CN205823548U (en) * 2016-07-22 2016-12-21 华北电力科学研究院(西安)有限公司 A kind of wind and solar hybrid generating system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴雄等: "微网经济调度问题的混合整数规划方法", 《中国电机工程学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322139A (en) * 2018-03-01 2018-07-24 东北电力大学 It is a kind of meter and overall cost wind-powered electricity generation-photovoltaic-photo-thermal power generation combined scheduling method
CN108805328A (en) * 2018-04-30 2018-11-13 国网浙江省电力有限公司经济技术研究院 The optimizing operation method of photo-thermal power station cogeneration micro-grid system
CN108984875A (en) * 2018-07-02 2018-12-11 中国电力工程顾问集团西北电力设计院有限公司 A method of it calculating photo-thermal unit and participates in power balance capacity
CN108984875B (en) * 2018-07-02 2022-11-08 中国电力工程顾问集团西北电力设计院有限公司 Method for calculating capacity of photo-thermal unit participating in power balance
CN109102204B (en) * 2018-08-29 2020-10-16 国网青海省电力公司经济技术研究院 Scheduling model for connecting photo-thermal power generation to power grid and network access benefit analysis method
CN109102204A (en) * 2018-08-29 2018-12-28 国网青海省电力公司经济技术研究院 A kind of scheduling model and networking benefit analysis methods of photo-thermal power generation access power grid
CN109842156A (en) * 2019-03-05 2019-06-04 国网甘肃省电力公司电力科学研究院 A kind of photo-thermal power station modeling and wind power plant coordination optimizing method containing electric heater unit
CN109945512A (en) * 2019-04-04 2019-06-28 南京林业大学 A kind of efficient photovoltaic and photothermal integrated system
CN110048469A (en) * 2019-05-14 2019-07-23 东南大学 A kind of Optimization Scheduling promoting wind electricity digestion using photo-thermal power station
CN110048469B (en) * 2019-05-14 2021-07-20 东南大学溧阳研究院 Optimized scheduling method for promoting wind power consumption by utilizing optical and thermal power station
CN110245793A (en) * 2019-06-04 2019-09-17 西安交通大学 A kind of power system optimal dispatch method based on photo-thermal unit polymerization model
CN110345650A (en) * 2019-07-26 2019-10-18 青岛鸿瑞电力工程咨询有限公司 A kind of design method of photo-thermal power station external heat dump
JP7384476B2 (en) 2021-08-20 2023-11-21 常州工学院 Optimization method and system for ventilation structure for boiler combustion
CN114336744A (en) * 2021-12-27 2022-04-12 山东电力建设第三工程有限公司 Solar multi-energy complementary system and method suitable for brine lithium mine exploitation
CN114336744B (en) * 2021-12-27 2023-11-03 山东电力建设第三工程有限公司 Solar energy multifunctional complementary system and method suitable for brine lithium ore exploitation

Also Published As

Publication number Publication date
CN107702079B (en) 2019-03-22

Similar Documents

Publication Publication Date Title
CN107702079B (en) A kind of photo-thermal power station containing electric heater unit and its modeling and optimizing operation method
US20220325640A1 (en) Method of operating thermal energy storage system
CN108321837A (en) A kind of wind-powered electricity generation-photo-thermal combined generating system and its operation method
US20150354545A1 (en) Dispatchable solar hybrid power plant
CN112529244B (en) Comprehensive energy system collaborative optimization operation method considering electric load demand response
CN111859683B (en) Optimal configuration method of park comprehensive energy system based on dynamic energy concentrator
CN111723475B (en) Wind power, photovoltaic and heat storage combined thermoelectric system and capacity optimization modeling method
CN107565613B (en) A kind of photo-thermal power station Optimization Scheduling a few days ago considering electric power assisted hatching
CN110930073B (en) Day-ahead scheduling method for wind-light-photo-thermal combined power generation system considering price type demand response
CN113159407B (en) Multi-energy storage module capacity optimal configuration method based on regional comprehensive energy system
CN113541205A (en) Cluster learning-based low-carbon CSP system collaborative optimization method and device
CN112541609A (en) Wind-light-heat and water energy storage combined renewable energy power generation system capacity optimization model
CN110361969A (en) A kind of cool and thermal power integrated energy system optimizing operation method
CN110286590A (en) Consider the cooling heating and power generation system Optimization Scheduling a few days ago of polymorphic type energy storage
Manaserh et al. Assessment of integrating hybrid solar-combined cycle with thermal energy storage for shaving summer peak load and improving sustainability
CN108053073A (en) The optimization method of photo-thermal power station heat accumulation duration and electrical heating power containing electric heater unit
Yu et al. Complementary configuration research of new combined cooling, heating, and power system driven by renewable energy under energy management modes
Kopp et al. Comparison of two-tank indirect thermal storage designs for solar parabolic trough power plants
CN117252043A (en) Multi-target optimal scheduling method and device for regional multi-energy complementary energy system
CN110991753A (en) Electric heating internet system scheduling optimization method considering multi-energy demand response
Conlon et al. Liquid Salt Combined Cycle
CN115276088A (en) Optimal configuration method for heat storage capacity of opto-thermal power station in combined power generation system
CN114626624A (en) Comprehensive energy system electric-heat combined optimization scheduling method considering heat load conversion
CN113722895A (en) Comprehensive energy system optimal configuration method based on multi-station fusion
CN115936336B (en) Virtual power plant capacity configuration and regulation operation optimization method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant