CN107607410A - Portable alternating temperature original position tension/compression testing device - Google Patents
Portable alternating temperature original position tension/compression testing device Download PDFInfo
- Publication number
- CN107607410A CN107607410A CN201710968423.6A CN201710968423A CN107607410A CN 107607410 A CN107607410 A CN 107607410A CN 201710968423 A CN201710968423 A CN 201710968423A CN 107607410 A CN107607410 A CN 107607410A
- Authority
- CN
- China
- Prior art keywords
- precision
- unit
- temperature
- base frame
- displacement sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 70
- 238000007906 compression Methods 0.000 title claims abstract description 26
- 230000006835 compression Effects 0.000 title claims abstract description 24
- 238000006073 displacement reaction Methods 0.000 claims abstract description 51
- 238000011068 loading method Methods 0.000 claims abstract description 49
- 238000011065 in-situ storage Methods 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 230000007246 mechanism Effects 0.000 claims abstract description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 20
- 150000002367 halogens Chemical class 0.000 claims description 20
- 230000001360 synchronised effect Effects 0.000 claims description 18
- 230000033001 locomotion Effects 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 14
- 238000012669 compression test Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000011056 performance test Methods 0.000 abstract description 3
- 230000000977 initiatory effect Effects 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000003325 tomography Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004154 testing of material Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012625 in-situ measurement Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000001683 neutron diffraction Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明涉及一种便携式变温原位拉压测试装置,属于材料力学性能测试领域。精密拉伸/压缩载荷驱动单元与测试平台基座连接,精密旋转加载驱动单元与夹具体Ⅰ、Ⅱ相连,变形信号检测及控制单元由位移传感器通过位移传感器支撑座与基座架连接,夹持单元由夹具体Ⅰ、Ⅱ与精密移动平台刚性连接,与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ套接,温度加载单元固定在基座架上。结构紧凑、精巧,方便组装与拆卸,整机质量轻、测量精度高、实时数据采集,可在被测试件旋转过程中进行实时观察,如对材料的裂纹萌生、裂纹扩展和材料的失效断裂过程等进行原位监测,进而对材料在可变温度复杂载荷模式加载作用下的微观力学行为、内部变形损伤机制进行深入研究。
The invention relates to a portable temperature-variable in-situ tension-compression test device, which belongs to the field of material mechanical performance test. The precision tensile/compression load driving unit is connected to the base of the test platform, the precision rotating loading driving unit is connected to the clamp bodies I and II, the deformation signal detection and control unit is connected to the base frame by the displacement sensor through the displacement sensor support seat, and clamped The unit is rigidly connected with the precision mobile platform by the clamp body I and II, and is socketed with the timing pulleys I and II in the precision rotary drive unit, and the temperature loading unit is fixed on the base frame. The structure is compact and exquisite, easy to assemble and disassemble, the whole machine is light in weight, high in measurement accuracy, real-time data acquisition, real-time observation can be carried out during the rotation process of the tested piece, such as the crack initiation, crack propagation and failure fracture process of the material conducted in-situ monitoring, and then conducted in-depth research on the micromechanical behavior and internal deformation and damage mechanism of materials under variable temperature and complex load modes.
Description
技术领域technical field
本发明涉及材料力学性能测试技术领域,特别涉及一种便携式变温原位拉压测试装置,能在变温复杂载荷情况下对材料微观力学性能进行原位观测,可对材料的微观变形、损伤过程进行原位观测。The invention relates to the technical field of material mechanical performance testing, in particular to a portable variable temperature in-situ tension and compression testing device, which can observe the microscopic mechanical properties of materials in situ under the condition of variable temperature and complex loads, and can monitor the microscopic deformation and damage process of materials. In situ observation.
背景技术Background technique
随着中子衍射技术、扫描电子显微成像技术等在材料微观力学性能测试领域的广泛应用,材料保障技术对材料的力学性能测试提出了更高更深层次的要求,而将材料的力学性能的测试与材料内部结构的变化建立联系是当今材料领域研究的重要课题,其主要体现为材料在物理场与复杂载荷加载下的力学性能的测定、材料测试过程中显微结构表征以及无损检测技术的应用等方面。With the wide application of neutron diffraction technology and scanning electron microscopy imaging technology in the field of material micro-mechanical performance testing, material assurance technology has put forward higher and deeper requirements for the testing of mechanical properties of materials, and the mechanical properties of materials Establishing the relationship between testing and changes in the internal structure of materials is an important topic in the field of materials research today, which is mainly reflected in the determination of the mechanical properties of materials under physical fields and complex loads, the characterization of microstructures during material testing, and the development of non-destructive testing technologies. application etc.
在材料力学需要测试的各项力学性能参数中,弹性模量、屈服极限、强度极限、伸长率和切变模量等参数是测试的主要对象,一般来说,对材料的力学性能的测试有拉伸/压缩法、弯曲法、扭转法、鼓膜法和纳米压痕法等,其中原位拉伸/压缩测试方法能较为全面的体现出材料的力学性能,它可以通过实时的应力—应变曲线比较直观的分析出材料的弹性模量、断裂极限等力学性能,而在原位拉伸试验中拉伸速率、应变速率及温度等参数的控制对材料变形损伤状况影响也十分显著。Among the mechanical performance parameters that need to be tested in material mechanics, parameters such as elastic modulus, yield limit, strength limit, elongation and shear modulus are the main objects of the test. Generally speaking, the test of the mechanical properties of materials There are tension/compression method, bending method, torsion method, tympanic membrane method and nano-indentation method, etc. Among them, the in-situ tension/compression test method can comprehensively reflect the mechanical properties of materials, and it can pass real-time stress-strain The curve can intuitively analyze the mechanical properties such as elastic modulus and fracture limit of the material, and the control of parameters such as tensile rate, strain rate and temperature in the in-situ tensile test also has a significant impact on the deformation and damage of the material.
在近些年,伴随着工程材料领域理论知识与实际应用需求的增加,国内在实现复杂物理场下试件的原位测量的相关领域处于起步阶段,针对此类的加载设备也非常的少,并且,由于在实际生产过程中材料使用条件的复杂性,受单载荷拉伸作用的理想加载情况少之又少,而载荷场耦合热场的加载条件等在实际生产、生活中较为常见,在这样的趋势下,我们设计了变温复杂载荷下原位测试的装置对材料力学的性能测试进行研究。In recent years, with the increase of theoretical knowledge and practical application requirements in the field of engineering materials, the field of in-situ measurement of specimens under complex physical fields is in its infancy in China, and there are very few loading equipment for this type. Moreover, due to the complexity of material use conditions in the actual production process, there are very few ideal loading conditions under the action of single load tension, while the loading conditions of load field coupled with thermal field are more common in actual production and life. Under such a trend, we designed a device for in-situ testing under variable temperature and complex loads to study the performance testing of material mechanics.
发明内容Contents of the invention
本发明的目的在于提供一种便携式变温原位拉压测试装置,解决了现有技术存在的上述问题。本发明设计了具有整体试件绕自转轴旋转的功能并可以在试件旋转时实现测量的装置,并且本发明装置结构紧凑、精巧,可安装于中子衍射仪、X射线电子计算机断层扫描等观测平台上进行原位力学测试。重点强调了在可变温度复杂载荷下原位测试装置对试件的观测,通过在高温复杂载荷情况下对旋转试件的原位观测更有利于深入研究揭示材料在外力作用下的变形损伤规律,并对其可靠性预测和寿命评估具有重要的意义。The object of the present invention is to provide a portable variable temperature in-situ tension and compression test device, which solves the above-mentioned problems in the prior art. The present invention designs a device that has the function of rotating the whole test piece around the rotation axis and can realize measurement when the test piece rotates, and the device of the present invention has a compact and delicate structure, and can be installed in neutron diffractometers, X-ray electronic computerized tomography scans, etc. In-situ mechanical tests were carried out on the observation platform. Emphasis is placed on the observation of the specimen by the in-situ test device under the complex load of variable temperature. The in-situ observation of the rotating specimen under the complex load of high temperature is more conducive to in-depth research and reveals the deformation and damage law of the material under the action of external force. , and has important significance for its reliability prediction and life evaluation.
本发明的上述目的通过以下技术方案实现:Above-mentioned purpose of the present invention is achieved through the following technical solutions:
便携式变温原位拉压测试装置,能在高温环境中对材料在复杂载荷下的力学行为、宏观-微观内部损伤分布进行测试,包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、温度加载单元,所述精密拉伸/压缩载荷驱动单元通过电机法兰架30、滚珠丝杠轴承座27与测试平台基座螺栓连接,所述精密旋转加载驱动单元通过同步带Ⅰ、Ⅱ21、22与夹具体Ⅰ、Ⅱ9、13相连,所述变形信号检测及控制单元由位移传感器4通过位移传感器支撑座3与基座架2螺栓固定连接,所述夹持单元由夹具体Ⅰ、Ⅱ9、13与精密移动平台7刚性连接,通过同步带Ⅰ、Ⅱ21、22与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ20、23套接,所述温度加载单元由卤素灯11或电阻丝32进行加载固定在基座架2上。Portable variable temperature in-situ tension and compression test device, which can test the mechanical behavior of materials under complex loads and the distribution of macro-micro internal damage in a high-temperature environment, including precision tensile/compression load drive units, precision rotational load drive units, deformation Signal detection and control unit, clamping unit, temperature loading unit, the precision tension/compression load driving unit is connected to the test platform base by bolts through the motor flange frame 30, ball screw bearing seat 27, the precision rotation load The drive unit is connected to the clip body I, II9, 13 through the timing belt I, II21, 22, the deformation signal detection and control unit is fixedly connected by the displacement sensor 4 to the base frame 2 through the displacement sensor support seat 3, and the clamp body The holding unit is rigidly connected with the precision mobile platform 7 by the clamp body I, II 9, 13, and is socketed with the timing belt pulley I, II 20, 23 in the precision rotary drive unit through the timing belt I, II 21, 22, and the temperature loading unit is composed of The halogen lamp 11 or the resistance wire 32 is loaded and fixed on the base frame 2 .
所述的精密拉伸/压缩载荷驱动单元是:精密直流伺服电机31与传动单元相连接,传动单元由蜗轮28、蜗杆29、减速机构及精密滚珠丝杠26构成,精密直流伺服电机31通过脉冲换向方式输出角位移及可控扭矩,通过与精密直流伺服电机31相连接的传动单元将精密直流伺服电机31提供的旋转运动转换成精密直线运动,精密直流伺服电机31与精密滚珠丝杠26分别通过精密伺服电机法兰架30及滚珠丝杠轴承座27与测试平台基座进行螺栓连接。The described precision tensile/compression load driving unit is: a precision DC servo motor 31 is connected with a transmission unit, and the transmission unit is composed of a worm wheel 28, a worm 29, a reduction mechanism and a precision ball screw 26, and the precision DC servo motor 31 passes the pulse The angular displacement and controllable torque are output in the commutation mode, and the rotary motion provided by the precision DC servo motor 31 is converted into precise linear motion through the transmission unit connected with the precision DC servo motor 31. The precision DC servo motor 31 and the precision ball screw 26 Bolt connection with the test platform base is carried out through the precision servo motor flange frame 30 and the ball screw bearing seat 27 respectively.
所述的减速机构是:蜗轮蜗杆减速器与精密直流伺服电机31同轴安装,并通过精密伺服电机法兰30与下方的基座盖1连接,蜗杆29通过其上的螺钉与精密直流伺服电机31的输出轴套接,蜗轮28与精密滚珠丝杠26由楔键连接、定位,精密滚珠丝杠26通过滚珠丝杠轴承座27与上方的基座盖1连接,精密滚珠丝杠的导向通过导轨Ⅰ、Ⅱ5、14及导轨滑块Ⅰ、Ⅱ6、15实现,基座架2设有两组平行凹槽,导轨Ⅰ、Ⅱ5、14的直线定位通过两组平行凹槽实现。The reduction mechanism is: the worm gear reducer is installed coaxially with the precision DC servo motor 31, and is connected to the base cover 1 below through the precision servo motor flange 30, and the worm 29 is connected to the precision DC servo motor through the screws on it. The output shaft of 31 is socketed, the worm wheel 28 and the precision ball screw 26 are connected and positioned by a wedge key, the precision ball screw 26 is connected with the upper base cover 1 through the ball screw bearing seat 27, and the guide of the precision ball screw passes through Guide rails I, II5, 14 and guide rail sliders I, II6, 15 are realized, base frame 2 is provided with two sets of parallel grooves, and the linear positioning of guide rails I, II5, 14 is realized through two sets of parallel grooves.
所述的精密旋转加载驱动单元是:微型电机Ⅰ、Ⅱ18、25通过同步带Ⅰ、Ⅱ21、22与Ⅰ、Ⅱ夹具体9、13相连接,在单侧中,通过控制微型电机Ⅰ、18来控制旋转运动的速度,同步带轮Ⅰ、Ⅱ20、23刚性固定在夹具体Ⅱ13上,由轴肩定位,微型电机法兰支架Ⅰ、Ⅱ19、24通过螺栓连接固定在精密移动平台7上,通过微型电机Ⅰ18的精密旋转带动同步带21Ⅰ进行旋转,使与同步带Ⅰ21另一端相连的夹具体Ⅱ13进行旋转,使夹具Ⅱ13与试件12进行绕自转轴旋转。The precision rotary loading driving unit is: the micro motors I, II 18, 25 are connected with the I, II clip bodies 9, 13 through the timing belts I, II 21, 22, and in one side, the micro motors I, 18 are controlled to Control the speed of the rotation movement, the synchronous pulleys Ⅰ, Ⅱ 20, 23 are rigidly fixed on the clamp body Ⅱ 13, positioned by the shaft shoulder, the micro-motor flange bracket Ⅰ, Ⅱ 19, 24 are fixed on the precision mobile platform 7 through bolt connection, through the micro The precise rotation of the motor I18 drives the synchronous belt 21I to rotate, so that the clamp body II13 connected to the other end of the synchronous belt I21 rotates, so that the clamp II13 and the test piece 12 rotate around the rotation axis.
所述的变形信号检测及控制单元是:位移传感器4的基体部分安装在位移传感器支撑座3中,并通过位移传感器紧固螺钉对其进行紧固,位移传感器4前端的可伸缩探头与位移传感器支承座3在测试过程中始终保持弹性接触状态,且位移传感器支撑座3固定在基座架2上,由螺栓进行连接,即位移传感器4所检测到的实际位移为精密滚珠丝杠26与精密移动平台7之间的相对位移;拉压力传感器16分别与基座架2及轴承盖17通过螺纹方式刚性连接,且基座架2末端设有凹面对拉压力传感器16进行面定位,通过精密移动平台7的相对移动使拉压力传感器16受到拉压作用,通过加载载荷变形的模拟信号和编码器的标定位移数字信号的采集来实现单一加载方向的信号检测。The deformation signal detection and control unit is: the base part of the displacement sensor 4 is installed in the displacement sensor support seat 3, and it is fastened by the displacement sensor fastening screw, and the telescopic probe at the front end of the displacement sensor 4 is connected to the displacement sensor The support seat 3 always maintains an elastic contact state during the test, and the displacement sensor support seat 3 is fixed on the base frame 2 and connected by bolts, that is, the actual displacement detected by the displacement sensor 4 is the precision ball screw 26 and the precision ball screw 26. The relative displacement between the mobile platforms 7; the tension pressure sensor 16 is rigidly connected with the base frame 2 and the bearing cover 17 respectively through a threaded manner, and the end of the base frame 2 is provided with a concave surface for the tension pressure sensor 16 to be positioned surface-by-precision The relative movement of the mobile platform 7 causes the tension and pressure sensor 16 to be subjected to tension and compression, and the signal detection of a single loading direction is realized by collecting the analog signal of load deformation and the digital signal of the calibration displacement of the encoder.
所述的夹持单元是:夹具体Ⅰ、Ⅱ9、13通过夹持端的通孔实现其轴向定位,试件12与夹具体Ⅰ、Ⅱ9、13刚性接触,夹具体压板通过螺栓连接方式与夹具体Ⅰ、Ⅱ9、13连接,夹具体Ⅰ、Ⅱ9、13与轴端盖8连接实现其定位,并通过夹具体Ⅰ、Ⅱ9、13的冷凝口进行水循环,对高温加载情况下的试件12、夹具体Ⅰ、Ⅱ9、13进行降温。The clamping unit is: clamp bodies I, II 9, 13 achieve their axial positioning through the through holes at the clamping ends, the test piece 12 is in rigid contact with clamp bodies I, II 9, 13, and the clamp body pressure plate is connected to the clamp body through bolt connection. Specifically, I, II9, and 13 are connected. The clamp bodies I, II9, and 13 are connected to the shaft end cover 8 to realize their positioning, and water circulation is performed through the condensation ports of the clamp bodies I, II9, and 13. The clamp bodies I, II 9, 13 are cooled.
所述的温度加载单元是:由电阻丝32或卤素灯11进行高温加载;所述电阻丝32刚性固定在基座架2上进行加载,并将冷凝管与基座架2连为一体;所述卤素灯11采用两个相同的进行前后照射,卤素灯11固定在灯罩10上,灯罩10通过螺栓连接方式与基座架2固定。The temperature loading unit is as follows: high temperature loading is carried out by the resistance wire 32 or the halogen lamp 11; the resistance wire 32 is rigidly fixed on the base frame 2 for loading, and the condensation pipe is connected with the base frame 2 as a whole; Two identical halogen lamps 11 are used for front and rear irradiation, and the halogen lamps 11 are fixed on the lampshade 10, and the lampshade 10 is fixed to the base frame 2 through bolt connection.
所述的试件12与夹具体Ⅰ、Ⅱ9、13一起进行旋转,在旋转中观察材料的力学性能的变化。The test piece 12 is rotated together with clamp bodies I, II 9, 13, and changes in the mechanical properties of the material are observed during the rotation.
本发明的有益效果在于:The beneficial effects of the present invention are:
1、与现有单一载荷拉伸/压缩力学性能测试相比,本发明可模拟现实生活中发生的多种复杂载荷下的力学性能测试,另外,本发明还可实现在高温加载情况下的原位测试,相比一般的原位测试装置,本发明的观测是在被测试件旋转情况下,精密的对试件进行原位观测,能对试件的微观结构进行更精准的分析,而对拉伸和压缩单一载荷加载模式的解析,还能够就材料在高温加载模式作用下的微观力学性能及变形损伤机制做出准确评价。1. Compared with the existing single-load tensile/compression mechanical performance test, the present invention can simulate the mechanical performance test under various complex loads that occur in real life. In addition, the present invention can also realize the original test under high temperature loading. In-situ test, compared with the general in-situ test device, the observation of the present invention is to precisely observe the test piece in situ when the tested piece is rotated, and can analyze the microstructure of the test piece more accurately. The analysis of the single load mode of tension and compression can also make an accurate evaluation of the micromechanical properties and deformation damage mechanism of the material under the high temperature loading mode.
2、本发明的复杂载荷原位测试装置中,试件自身可旋转,在进行原位测试时,可使试件在自身旋转过程中进行全方位观测,观测更精准。2. In the complex load in-situ test device of the present invention, the test piece itself can be rotated, so that the test piece can be observed in all directions during the in-situ test, and the observation is more accurate.
3、本发明所述的加载及传动单元各单向载荷施加速率可控,施加方式独立,施加顺序可控。因此就基于此种加载方式,可实现拉伸压缩模式下对试件单一载荷方向进行夹持、等速拉伸压缩模式、试件自旋转拉伸压缩模式以及试件旋转依次加载模式等多种形式的力学测试。3. The application rate of each unidirectional load of the loading and transmission unit of the present invention is controllable, the application mode is independent, and the application sequence is controllable. Therefore, based on this loading method, it is possible to clamp the specimen in a single load direction in the tension and compression mode, the constant velocity tension and compression mode, the self-rotation tension and compression mode of the specimen, and the sequential loading mode of the specimen rotation. Form mechanical testing.
4、本发明可为各类复合材料的结构设计、装备制造、寿命预测和可靠性评估提供新的方法,对研究工作具有十分重要的科学意义和很高的经济效益。4. The invention can provide new methods for structural design, equipment manufacturing, life prediction and reliability evaluation of various composite materials, and has very important scientific significance and high economic benefits for research work.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the application. The schematic examples and descriptions of the present invention are used to explain the present invention, and do not constitute improper limitations to the present invention.
图1为本发明与X射线CT原位测试结合的结构示意图;Fig. 1 is the structural representation that the present invention combines with X-ray CT in situ test;
图2为本发明的的主视示意图;Fig. 2 is the schematic front view of the present invention;
图3为本发明的结构示意图(电阻丝加载);Fig. 3 is a structural schematic diagram of the present invention (resistive wire loading);
图4为本发明的结构示意图(卤素灯加载);Fig. 4 is a schematic structural diagram of the present invention (loaded by a halogen lamp);
图5为本发明的左视示意图。Fig. 5 is a schematic left view of the present invention.
图中:1、基座盖;2、基座架;3、位移传感器支撑座;4、位移传感器;5、导轨Ⅰ;6、导轨滑块Ⅰ;7、精密移动平台;8、轴端盖;9、夹具体Ⅰ;10、灯罩;11、卤素灯;12、试件;13、夹具体Ⅱ;14、导轨Ⅱ;15、导轨滑块Ⅱ;16、拉压力传感器;17、轴承盖;18、微型电机Ⅰ;19、微型电机法兰支架Ⅰ;20、同步带轮Ⅰ;21、同步带Ⅰ;22、同步带Ⅱ;23、同步带轮Ⅱ;24、微型电机法兰支架Ⅱ;25、微型电机Ⅱ;26、精密滚珠丝杠;27、滚珠丝杠轴承座;28、蜗轮;29、蜗杆;30、精密伺服电机法兰架;31、精密直流伺服电机;32、电阻丝。In the figure: 1. Base cover; 2. Base frame; 3. Displacement sensor support seat; 4. Displacement sensor; 5. Guide rail Ⅰ; 6. Guide rail slider Ⅰ; 7. Precision mobile platform; 8. Shaft end cover ;9. Clamp body Ⅰ; 10. Lampshade; 11. Halogen lamp; 12. Test piece; 13. Clamp body Ⅱ; 14. Guide rail Ⅱ; 15. Guide rail slider Ⅱ; 18. Micro motor Ⅰ; 19. Micro motor flange support Ⅰ; 20. Synchronous pulley Ⅰ; 21. Synchronous belt Ⅰ; 22. Synchronous belt Ⅱ; 23. Synchronous pulley Ⅱ; 24. Micro motor flange support Ⅱ; 25. Micro motor II; 26. Precision ball screw; 27. Ball screw bearing housing; 28. Worm wheel; 29. Worm; 30. Precision servo motor flange; 31. Precision DC servo motor; 32. Resistance wire.
具体实施方式detailed description
下面结合附图进一步说明本发明的详细内容及其具体实施方式。The detailed content of the present invention and its specific implementation will be further described below in conjunction with the accompanying drawings.
参见图1至图5所示,本发明的便携式变温原位拉压测试装置,能在高温环境中对材料在复杂载荷下的力学行为、宏观-微观内部损伤分布等进行有效测试,包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、温度加载单元,所述的精密拉伸/压缩载荷驱动单元通过电机法兰架30、滚珠丝杠轴承座27与测试平台基座进行螺栓连接,所述的精密旋转加载驱动单元通过同步带Ⅰ、Ⅱ21、22与夹具体Ⅰ、Ⅱ9、13相连,所述的变形信号检测及控制单元由位移传感器4通过位移传感器支撑座3与基座架2进行螺栓固定连接,所述的夹持单元由夹具体Ⅰ、Ⅱ9、13与精密移动平台7刚性连接通过同步带Ⅰ、Ⅱ21、22与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ20、23套接,所述的温度加载单元由卤素灯11或电阻丝32进行加载固定在基座架2上。所测试平台基座由基座架2和基座盖1构成。Referring to Figures 1 to 5, the portable temperature-variable in-situ tension-compression test device of the present invention can effectively test the mechanical behavior of materials under complex loads, the macro-micro internal damage distribution, etc. in a high-temperature environment, including precision tensile testing. Extension/compression load drive unit, precision rotation load drive unit, deformation signal detection and control unit, clamping unit, temperature load unit, the precision tension/compression load drive unit passes through the motor flange frame 30, ball screw bearing The seat 27 is bolted to the base of the test platform, the precision rotation loading driving unit is connected to the clamp body I, II9, 13 through the timing belt I, II21, 22, and the deformation signal detection and control unit is controlled by the displacement sensor 4 The support base 3 of the displacement sensor is bolted to the base frame 2, and the clamping unit is rigidly connected to the precision mobile platform 7 by the clamp body I, II 9, 13 and the precision rotary drive unit through the timing belt I, II 21, 22 The synchronous pulleys I, II 20, 23 are socketed, and the temperature loading unit is loaded and fixed on the base frame 2 by the halogen lamp 11 or the resistance wire 32 . The base of the tested platform is composed of a base frame 2 and a base cover 1 .
所述的精密拉伸/压缩载荷驱动单元是:精密直流伺服电机31与传动单元相连接,传动单元由蜗轮28、蜗杆29、减速机构及精密滚珠丝杠26构成,精密直流伺服电机31通过脉冲换向方式输出角位移及可控扭矩,通过与精密直流伺服电机31相连接的传动单元将精密直流伺服电机31提供的旋转运动转换成精密直线运动,精密直流伺服电机31与精密滚珠丝杠26分别通过精密伺服电机法兰架30及滚珠丝杠轴承座27与测试平台基座进行螺栓连接。The described precision tensile/compression load driving unit is: a precision DC servo motor 31 is connected with a transmission unit, and the transmission unit is composed of a worm wheel 28, a worm 29, a reduction mechanism and a precision ball screw 26, and the precision DC servo motor 31 passes the pulse The angular displacement and controllable torque are output in the commutation mode, and the rotary motion provided by the precision DC servo motor 31 is converted into precise linear motion through the transmission unit connected with the precision DC servo motor 31. The precision DC servo motor 31 and the precision ball screw 26 Bolt connection with the test platform base is carried out through the precision servo motor flange frame 30 and the ball screw bearing seat 27 respectively.
所述的减速机构是:蜗轮蜗杆减速器与精密直流伺服电机31同轴安装,并通过精密伺服电机法兰30与下方的基座盖1连接,蜗杆29通过其上的螺钉与精密直流伺服电机31的输出轴套接,蜗轮28与精密滚珠丝杠26由楔键连接、定位,精密滚珠丝杠26通过滚珠丝杠轴承座27与上方的基座盖1连接,精密滚珠丝杠的导向通过导轨Ⅰ、Ⅱ5、14及导轨滑块Ⅰ、Ⅱ6、15实现,基座架2设有两组平行凹槽,导轨Ⅰ、Ⅱ5、14的直线定位通过两组平行凹槽实现。The reduction mechanism is: the worm gear reducer is installed coaxially with the precision DC servo motor 31, and is connected to the base cover 1 below through the precision servo motor flange 30, and the worm 29 is connected to the precision DC servo motor through the screws on it. The output shaft of 31 is socketed, the worm wheel 28 and the precision ball screw 26 are connected and positioned by a wedge key, the precision ball screw 26 is connected with the upper base cover 1 through the ball screw bearing seat 27, and the guide of the precision ball screw passes through Guide rails I, II5, 14 and guide rail sliders I, II6, 15 are realized, base frame 2 is provided with two sets of parallel grooves, and the linear positioning of guide rails I, II5, 14 is realized through two sets of parallel grooves.
所述的精密旋转加载驱动单元是:驱动加载是由微型电机Ⅰ、Ⅱ18、25输出的精密旋转运动通过同步带Ⅰ、Ⅱ21、22与Ⅰ、Ⅱ夹具体9、13相连接,在单侧中,通过控制微型电机Ⅰ、18来控制旋转运动的速度,同步带轮Ⅰ、Ⅱ20、23刚性固定在夹具体Ⅱ13上,由轴肩定位,微型电机法兰支架Ⅰ、Ⅱ19、24通过螺栓连接固定在精密移动平台7上,通过微型电机Ⅰ18的精密旋转带动同步带21Ⅰ进行旋转,使与同步带Ⅰ21另一端相连的夹具体Ⅱ13进行旋转,使夹具Ⅱ13与试件12进行绕自转轴旋转。The described precision rotary loading driving unit is: the driving loading is the precise rotary motion output by the micro-motors I, II 18, 25, which are connected with the I, II clip bodies 9, 13 through the synchronous belts I, II 21, 22, in one side , by controlling the micromotor Ⅰ, 18 to control the speed of the rotating motion, the synchronous pulley Ⅰ, Ⅱ 20, 23 is rigidly fixed on the clamp body Ⅱ 13, positioned by the shaft shoulder, the micromotor flange support Ⅰ, Ⅱ 19, 24 is fixed by bolt connection On the precision mobile platform 7, the timing belt 21I is driven to rotate by the precise rotation of the micro motor I18, so that the clamp body II13 connected to the other end of the timing belt I21 rotates, so that the clamp II13 and the test piece 12 rotate around the rotation axis.
所述的变形信号检测及控制单元是:位移传感器4的基体部分安装在位移传感器支撑座3中,并通过位移传感器紧固螺钉对其进行紧固,以达到定位效果,位移传感器4前端的可伸缩探头与位移传感器支承座3在测试过程中始终保持弹性接触状态,且位移传感器支撑座3固定在基座架2上,由螺栓进行连接,即位移传感器4所检测到的实际位移为精密滚珠丝杠26与精密移动平台7之间的相对位移;拉压力传感器16分别与基座架2及轴承盖17通过螺纹方式刚性连接,且基座架2末端设有凹面对拉压力传感器16进行面定位,通过精密移动平台7的相对移动使拉压力传感器16受到拉压作用,因此,可通过加载载荷变形的模拟信号和编码器的标定位移数字信号的采集来实现单一加载方向的信号检测。The deformation signal detection and control unit is: the base part of the displacement sensor 4 is installed in the displacement sensor support seat 3, and it is fastened by the displacement sensor fastening screw to achieve the positioning effect. The front end of the displacement sensor 4 can The telescopic probe and the displacement sensor support base 3 always maintain an elastic contact state during the test, and the displacement sensor support base 3 is fixed on the base frame 2 and connected by bolts, that is, the actual displacement detected by the displacement sensor 4 is the precision ball. The relative displacement between the lead screw 26 and the precision mobile platform 7; the tension pressure sensor 16 is rigidly connected with the base frame 2 and the bearing cover 17 by threading respectively, and the end of the base frame 2 is provided with a concave surface for the tension pressure sensor 16. Surface positioning, through the relative movement of the precision mobile platform 7, the tension and pressure sensor 16 is subjected to tension and compression. Therefore, the signal detection of a single loading direction can be realized by collecting the analog signal of load deformation and the digital signal of the encoder’s calibration displacement.
所述的夹持单元是:夹具体Ⅰ、Ⅱ9、13通过夹持端的通孔实现其轴向定位,试件12与夹具体Ⅰ、Ⅱ9、13刚性接触,夹具体压板通过螺栓连接方式与夹具体Ⅰ、Ⅱ9、13连接,夹具体Ⅰ、Ⅱ9、13与轴端盖8连接实现其定位,并通过夹具体Ⅰ、Ⅱ9、13的冷凝口进行水循环,对高温加载情况下的试件12、夹具体Ⅰ、Ⅱ9、13等进行降温。The clamping unit is: clamp bodies I, II 9, 13 achieve their axial positioning through the through holes at the clamping ends, the test piece 12 is in rigid contact with clamp bodies I, II 9, 13, and the clamp body pressure plate is connected to the clamp body through bolt connection. Specifically, I, II9, and 13 are connected. The clamp bodies I, II9, and 13 are connected to the shaft end cover 8 to realize their positioning, and water circulation is performed through the condensation ports of the clamp bodies I, II9, and 13. The clamp body I, II 9, 13, etc. are cooled.
所述的温度加载单元是:由电阻丝32或卤素灯11进行高温加载;以电阻丝32加热为例,所述电阻丝32刚性固定在基座架2上进行加载,并将冷凝管与基座架2连为一体,加热温度最高可达700℃,使试件受热均匀;以卤素灯11加热为例,为使试件受热均匀,所述卤素灯11采用两个相同的进行前后照射,卤素灯11固定在灯罩10上,灯罩10通过螺栓连接方式与基座架2固定,本高温加载单元可根据实际情况来确定由电阻丝或卤素灯进行高温加载。The temperature loading unit is: high temperature loading by resistance wire 32 or halogen lamp 11; taking resistance wire 32 heating as an example, the resistance wire 32 is rigidly fixed on the base frame 2 for loading, and the condenser tube is connected to the base The base frame 2 is connected as a whole, and the heating temperature can reach up to 700°C, so that the test piece is heated evenly; taking the heating of the halogen lamp 11 as an example, in order to make the test piece evenly heated, the halogen lamp 11 adopts two identical ones for front and back irradiation, The halogen lamp 11 is fixed on the lampshade 10, and the lampshade 10 is fixed to the base frame 2 through bolt connection. The high temperature loading unit can be determined to be loaded by resistance wire or halogen lamp according to the actual situation.
所述的试件12与夹具体Ⅰ、Ⅱ9、13等一起进行旋转,在旋转中观察材料的力学性能的变化。The test piece 12 is rotated together with clamp bodies I, II 9, 13, etc., and changes in the mechanical properties of the material are observed during the rotation.
实施例:Example:
参见图1至图5所示,本发明的便携式变温原位拉压测试装置,是一种可以与X射线电子计算机断层扫描(XCT)等兼容使用的高温复杂载荷下便携式原位测试装置,可以专业地模拟高温复杂载荷情况并对材料的力学性能进行测试,更直观的展现出在不同温度场下材料的微观力学性能,本发明是外观为立式、内部试件可旋转的装置,可以对试件进行高温条件下的拉伸/压缩试验,本发明由精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、高温加载单元等组成,本发明可以通过低速的加载方式实现载荷的精密施加,另外本发明结合目前X射线CT、衍射仪、扫描电镜等观测平台结构及试验研究情况,设计了具有整体试件绕自转轴旋转的功能并在试件旋转时可以进行观测的原位测试装置,测试装置具有整机质量轻、测量精度高、实时数据采集等特点,可在被测试件旋转过程中进行实时观察,如对材料的裂纹萌生、裂纹扩展和材料的失效断裂过程等进行原位监测,进而对材料在可变温度复杂载荷模式加载作用下的微观力学行为、内部变形损伤机制进行深入研究,该测试装置结构紧凑、精巧,方便组装与拆卸。变温复杂载荷下原位拉压测试装置包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、试件夹持单元及温度加载单元。Referring to Fig. 1 to Fig. 5, the portable variable temperature in-situ tension and compression test device of the present invention is a portable in-situ test device under high temperature and complex loads that can be used compatible with X-ray computerized tomography (XCT), etc., and can Professionally simulate high-temperature complex load conditions and test the mechanical properties of materials, and more intuitively show the micro-mechanical properties of materials under different temperature fields. This invention is a device with a vertical appearance and a rotatable internal test piece. The test piece is subjected to tensile/compression tests under high temperature conditions. The present invention is composed of a precise tensile/compressive load drive unit, a precision rotational load drive unit, a deformation signal detection and control unit, a clamping unit, and a high temperature loading unit. The present invention The precise application of the load can be realized through the low-speed loading method. In addition, the present invention combines the current X-ray CT, diffractometer, scanning electron microscope and other observation platform structures and test research conditions, and designs the function of rotating the whole test piece around the rotation axis. The in-situ test device can be observed when the workpiece is rotating. The test device has the characteristics of light weight, high measurement accuracy, and real-time data collection. In-situ monitoring of expansion and material failure and fracture process, and then in-depth research on the micro-mechanical behavior and internal deformation and damage mechanism of materials under variable temperature complex load mode loading. The test device is compact and exquisite, easy to assemble and Disassemble. The in-situ tension and compression test device under variable temperature and complex loads includes a precision tensile/compression load drive unit, a precision rotation load drive unit, a deformation signal detection and control unit, a specimen clamping unit, and a temperature loading unit.
本发明所述的精密旋转加载驱动单元,以单侧为例,其驱动加载是由:微型电机Ⅰ18输出的精密旋转运动通过同步带Ⅰ21与夹具轴相连接,通过控制微型电机Ⅰ18来控制精密旋转运动的速度,微型电机法兰支架Ⅰ19通过螺栓连接固定在精密移动平台7上,通过微型电机18Ⅰ的精密旋转带动同步带Ⅰ21进行旋转,使与同步带Ⅰ21另一端相连的夹具体Ⅱ13进行旋转,使夹具Ⅱ13与试件12进行绕自转轴旋转,两侧旋转加载驱动单元选用同种型号同样大小的微型电机Ⅰ18,使试件12均匀旋转,旋转更稳定。The precision rotary loading driving unit described in the present invention, taking one side as an example, its driving loading is: the precision rotary motion output by the micro motor I18 is connected with the fixture shaft through the synchronous belt I21, and the precision rotation is controlled by controlling the micro motor I18 The speed of movement, the micro motor flange support I19 is fixed on the precision mobile platform 7 through bolt connection, and the precise rotation of the micro motor 18I drives the synchronous belt I21 to rotate, so that the clamp body II13 connected to the other end of the synchronous belt I21 rotates, The fixture II13 and the test piece 12 are rotated around the rotation axis, and the rotating loading drive unit on both sides uses the same model and the same size micro motor I18, so that the test piece 12 rotates evenly and the rotation is more stable.
本发明所述的变形信号检测及控制单元,位移传感器4的基体部分安装在位移传感器支撑座3中,并通过位移传感器紧固螺钉对其进行紧固,以达到定位效果,其前端可伸缩探头与位移传感器支承座3在测试过程中始终保持弹性接触,且位移传感器支撑座3固定在基座架2上,由螺栓进行连接,即位移传感器4所检测到的实际位移为精密滚珠丝杠26与精密移动平台7之间的相对位移;拉压力传感器16分别与基座架2及轴承盖17通过螺纹方式刚性连接,且基座架2下层的末端设计有凹面对拉压力传感器16进行面定位,通过精密移动平台7的相对移动使拉压力传感器16受到拉压作用。In the deformation signal detection and control unit of the present invention, the base part of the displacement sensor 4 is installed in the displacement sensor support seat 3, and it is fastened by the displacement sensor fastening screw to achieve the positioning effect, and the front end of the telescopic probe is During the test process, the displacement sensor support base 3 is always in elastic contact, and the displacement sensor support base 3 is fixed on the base frame 2 and connected by bolts, that is, the actual displacement detected by the displacement sensor 4 is the precision ball screw 26 The relative displacement between the precision mobile platform 7; the tension pressure sensor 16 is rigidly connected with the base frame 2 and the bearing cover 17 by threading respectively, and the end of the lower layer of the base frame 2 is designed with a concave surface to face the tension pressure sensor 16. Positioning, through the relative movement of the precision mobile platform 7, the tension and pressure sensor 16 is subjected to tension and compression.
本发明所述温度加载单元有两种方式,第一种由电阻丝32进行高温加载,第二种由卤素灯11进行高温加载;以电阻丝32加热为例,电阻丝32刚性固定在基座架2上进行加载,并将冷凝管与基座架2连为一体,加热温度最高可达700℃,使试件受热均匀;以卤素灯11加热为例,为使试件受热均匀,采用两个卤素灯11前后进行照射,并将卤素灯11固定在灯罩10上,灯罩10通过螺栓连接方式与基座架2进行连接固定,本温度加载单元可根据具体的实际情况来确定由电阻丝32或卤素灯11进行高温加载。The temperature loading unit of the present invention has two modes, the first is high temperature loading by the resistance wire 32, and the second is high temperature loading by the halogen lamp 11; taking the heating by the resistance wire 32 as an example, the resistance wire 32 is rigidly fixed on the base Frame 2 for loading, and the condensation tube and the base frame 2 are integrated, the heating temperature can reach up to 700 ° C, so that the specimen is heated evenly; taking the heating of the halogen lamp 11 as an example, in order to make the specimen heated evenly, two A halogen lamp 11 is irradiated front and back, and the halogen lamp 11 is fixed on the lampshade 10, and the lampshade 10 is connected and fixed with the base frame 2 through a bolt connection. The temperature loading unit can be determined according to the actual situation by the resistance wire 32 Or halogen lamp 11 for high temperature loading.
本发明所述的便携式变温原位拉压测试装置,与扫描电子显微镜、中子衍射仪、X射线电子计算机断层扫描及光学显微成像组件等具有良好的结构兼容性。The portable temperature-variable in-situ tension-compression testing device of the present invention has good structural compatibility with scanning electron microscopes, neutron diffractometers, X-ray computerized tomography and optical microscopic imaging components.
在测试的整个过程中,被测试件表面的裂纹萌生、扩展及变形损伤情况由高放大倍率的扫描电子显微镜成像系统进行动态监测,并可同时记录图像,结合调试软件亦可实时获取表征材料力学性能的工程应力应变曲线及抗弯强度、抗拉强度等重要力学参数。During the whole process of the test, the crack initiation, propagation and deformation damage on the surface of the tested piece are dynamically monitored by the scanning electron microscope imaging system with high magnification, and the images can be recorded at the same time, combined with the debugging software, the material mechanics can be obtained in real time Performance engineering stress-strain curve and important mechanical parameters such as flexural strength and tensile strength.
以上所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred examples of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made to the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710968423.6A CN107607410A (en) | 2017-10-18 | 2017-10-18 | Portable alternating temperature original position tension/compression testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710968423.6A CN107607410A (en) | 2017-10-18 | 2017-10-18 | Portable alternating temperature original position tension/compression testing device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107607410A true CN107607410A (en) | 2018-01-19 |
Family
ID=61078288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710968423.6A Pending CN107607410A (en) | 2017-10-18 | 2017-10-18 | Portable alternating temperature original position tension/compression testing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107607410A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108760525A (en) * | 2018-03-30 | 2018-11-06 | 中国科学院力学研究所 | One kind being based on computed tomograph scanner system original position superhigh temperature tensile test device |
CN108896407A (en) * | 2018-06-20 | 2018-11-27 | 上海跃央机械工程设计有限公司 | A kind of mechanical technique consulting material tensile property detection apparatus for demonstrating |
CN108982233A (en) * | 2018-07-06 | 2018-12-11 | 郝文峰 | Material internal deformation and damage measure device under a kind of hot environment |
CN109655342A (en) * | 2019-01-29 | 2019-04-19 | 西南交通大学 | A kind of molecule sample shattering process research experiment device and its experimental method |
CN109738274A (en) * | 2019-01-22 | 2019-05-10 | 南京航空航天大学 | Microscopic test loading device for fiber reinforced composites |
CN109932252A (en) * | 2019-03-20 | 2019-06-25 | 大连理工大学 | An eddy current heating high temperature mechanical test device |
CN110426288A (en) * | 2019-08-06 | 2019-11-08 | 上海市政工程设计研究总院(集团)有限公司 | A kind of full-automatic Point Load Strength Instrument of fluid pressure type and test method |
CN110530909A (en) * | 2019-08-14 | 2019-12-03 | 中国原子能科学研究院 | One kind being suitable for neutron diffraction Euler ring tension-torsion composite in-situ tester |
CN110646285A (en) * | 2019-10-09 | 2020-01-03 | 河南理工大学 | Tensile compression testing device for strain in material |
CN110726495A (en) * | 2019-10-25 | 2020-01-24 | 中铁工程服务有限公司 | A system and method for testing temperature field of shield main bearing |
CN111141619A (en) * | 2019-12-24 | 2020-05-12 | 长春因赛图精密仪器设备有限公司 | In-situ tester for mechanical properties of materials under high and low temperature alternation |
CN111521485A (en) * | 2020-06-17 | 2020-08-11 | 中国科学技术大学 | In-situ force loading experimental instrument |
CN111811837A (en) * | 2020-07-22 | 2020-10-23 | 东风小康汽车有限公司重庆分公司 | Tension-pressure and displacement loading device |
CN112082927A (en) * | 2020-08-06 | 2020-12-15 | 东莞材料基因高等理工研究院 | In-situ corrosion environment test device for X-ray imaging |
CN112255111A (en) * | 2020-09-14 | 2021-01-22 | 中国航发北京航空材料研究院 | Miniature loading device for DVC method test under ultralow temperature condition |
CN112504817A (en) * | 2020-12-18 | 2021-03-16 | 上海工程技术大学 | Auxiliary structure for tensile testing machine and testing method thereof |
CN112557221A (en) * | 2020-12-14 | 2021-03-26 | 中国科学技术大学 | High-temperature fatigue labor loading experimental instrument suitable for CT experiment |
CN112763358A (en) * | 2019-11-04 | 2021-05-07 | 中国石油化工股份有限公司 | Portable in-service pipeline mechanical property detection equipment |
CN112871692A (en) * | 2021-01-12 | 2021-06-01 | 深圳市凤舞科技有限公司 | Gastroscope seal wire tensile properties detection device |
CN114002064A (en) * | 2021-11-02 | 2022-02-01 | 重庆邮电大学 | A multi-media-based biaxial extensometer with removable clamps |
CN114486569A (en) * | 2022-04-14 | 2022-05-13 | 安徽农业大学 | High-temperature impact tensile mechanical test platform and method based on cam crank-link mechanism |
CN115326573A (en) * | 2022-10-10 | 2022-11-11 | 徐州远方药食同源健康产业研究院有限公司 | Tensile test device of bio-based material |
CN115615854A (en) * | 2022-08-17 | 2023-01-17 | 中国科学院力学研究所 | Micro in-situ material tension and compression test method |
CN118130248A (en) * | 2024-04-12 | 2024-06-04 | 吴江市中川金属制品有限公司 | Tension detection device for detecting octagonal lead caps |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645370A (en) * | 2012-04-12 | 2012-08-22 | 吉林大学 | Biaxial stretching/compression mode scanning electron microscope mechanical test device |
CN102944466A (en) * | 2012-11-29 | 2013-02-27 | 北京大学 | Device and method for testing mechanical property in ultrahigh temperature oxidation environment |
CN103512803A (en) * | 2013-09-26 | 2014-01-15 | 吉林大学 | Multi-load and multi-physics coupling material micromechanical performance in-situ testing instrument |
CN103528887A (en) * | 2013-10-24 | 2014-01-22 | 吉林大学 | In-situ pull/press-torque combined load material micromechanics test platform |
CN106153472A (en) * | 2016-06-17 | 2016-11-23 | 华北电力大学 | A kind of realize multi-axial creep pilot system and the method that intrinsic pressure and stretching combinations loads |
CN106370527A (en) * | 2016-10-08 | 2017-02-01 | 浙江大学 | In-situ high temperature micromechanics testing device in scanning electron microscope |
CN106370521A (en) * | 2016-11-18 | 2017-02-01 | 盐城工学院 | In-situ tension and compression testing platform and observation system |
CN106769525A (en) * | 2016-11-28 | 2017-05-31 | 哈尔滨工业大学 | The system and method for testing of tested conductor material mechanical performance under vacuum environment |
CN106996897A (en) * | 2017-06-13 | 2017-08-01 | 吉林大学 | Neutron diffraction high temperature angular instrument and its special mechanical loading unit |
CN206488988U (en) * | 2017-03-02 | 2017-09-12 | 河北科技大学 | A kind of cryogenic mechanics performance test device |
CN207423696U (en) * | 2017-10-18 | 2018-05-29 | 吉林大学 | Portable alternating temperature original position tension/compression testing device |
-
2017
- 2017-10-18 CN CN201710968423.6A patent/CN107607410A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645370A (en) * | 2012-04-12 | 2012-08-22 | 吉林大学 | Biaxial stretching/compression mode scanning electron microscope mechanical test device |
CN102944466A (en) * | 2012-11-29 | 2013-02-27 | 北京大学 | Device and method for testing mechanical property in ultrahigh temperature oxidation environment |
CN103512803A (en) * | 2013-09-26 | 2014-01-15 | 吉林大学 | Multi-load and multi-physics coupling material micromechanical performance in-situ testing instrument |
CN103528887A (en) * | 2013-10-24 | 2014-01-22 | 吉林大学 | In-situ pull/press-torque combined load material micromechanics test platform |
CN106153472A (en) * | 2016-06-17 | 2016-11-23 | 华北电力大学 | A kind of realize multi-axial creep pilot system and the method that intrinsic pressure and stretching combinations loads |
CN106370527A (en) * | 2016-10-08 | 2017-02-01 | 浙江大学 | In-situ high temperature micromechanics testing device in scanning electron microscope |
CN106370521A (en) * | 2016-11-18 | 2017-02-01 | 盐城工学院 | In-situ tension and compression testing platform and observation system |
CN106769525A (en) * | 2016-11-28 | 2017-05-31 | 哈尔滨工业大学 | The system and method for testing of tested conductor material mechanical performance under vacuum environment |
CN206488988U (en) * | 2017-03-02 | 2017-09-12 | 河北科技大学 | A kind of cryogenic mechanics performance test device |
CN106996897A (en) * | 2017-06-13 | 2017-08-01 | 吉林大学 | Neutron diffraction high temperature angular instrument and its special mechanical loading unit |
CN207423696U (en) * | 2017-10-18 | 2018-05-29 | 吉林大学 | Portable alternating temperature original position tension/compression testing device |
Non-Patent Citations (1)
Title |
---|
轧制技术及连轧自动化国家重点实验室: "《新一代TMCP技术在钢管热处理工艺与设备中的应用研究》", 31 October 2014, 冶金工业出版社, pages: 38 - 40 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108760525A (en) * | 2018-03-30 | 2018-11-06 | 中国科学院力学研究所 | One kind being based on computed tomograph scanner system original position superhigh temperature tensile test device |
CN108896407A (en) * | 2018-06-20 | 2018-11-27 | 上海跃央机械工程设计有限公司 | A kind of mechanical technique consulting material tensile property detection apparatus for demonstrating |
CN108982233A (en) * | 2018-07-06 | 2018-12-11 | 郝文峰 | Material internal deformation and damage measure device under a kind of hot environment |
CN109738274A (en) * | 2019-01-22 | 2019-05-10 | 南京航空航天大学 | Microscopic test loading device for fiber reinforced composites |
CN109655342B (en) * | 2019-01-29 | 2021-04-06 | 西南交通大学 | Experimental device and experimental method for researching crushing process of micro-particle sample |
CN109655342A (en) * | 2019-01-29 | 2019-04-19 | 西南交通大学 | A kind of molecule sample shattering process research experiment device and its experimental method |
CN109932252A (en) * | 2019-03-20 | 2019-06-25 | 大连理工大学 | An eddy current heating high temperature mechanical test device |
CN110426288A (en) * | 2019-08-06 | 2019-11-08 | 上海市政工程设计研究总院(集团)有限公司 | A kind of full-automatic Point Load Strength Instrument of fluid pressure type and test method |
CN110530909A (en) * | 2019-08-14 | 2019-12-03 | 中国原子能科学研究院 | One kind being suitable for neutron diffraction Euler ring tension-torsion composite in-situ tester |
CN110646285A (en) * | 2019-10-09 | 2020-01-03 | 河南理工大学 | Tensile compression testing device for strain in material |
CN110646285B (en) * | 2019-10-09 | 2022-02-08 | 河南理工大学 | Tensile compression testing device for strain in material |
CN110726495A (en) * | 2019-10-25 | 2020-01-24 | 中铁工程服务有限公司 | A system and method for testing temperature field of shield main bearing |
CN112763358A (en) * | 2019-11-04 | 2021-05-07 | 中国石油化工股份有限公司 | Portable in-service pipeline mechanical property detection equipment |
CN111141619A (en) * | 2019-12-24 | 2020-05-12 | 长春因赛图精密仪器设备有限公司 | In-situ tester for mechanical properties of materials under high and low temperature alternation |
CN111521485A (en) * | 2020-06-17 | 2020-08-11 | 中国科学技术大学 | In-situ force loading experimental instrument |
CN111811837A (en) * | 2020-07-22 | 2020-10-23 | 东风小康汽车有限公司重庆分公司 | Tension-pressure and displacement loading device |
CN112082927A (en) * | 2020-08-06 | 2020-12-15 | 东莞材料基因高等理工研究院 | In-situ corrosion environment test device for X-ray imaging |
CN112255111A (en) * | 2020-09-14 | 2021-01-22 | 中国航发北京航空材料研究院 | Miniature loading device for DVC method test under ultralow temperature condition |
CN112557221A (en) * | 2020-12-14 | 2021-03-26 | 中国科学技术大学 | High-temperature fatigue labor loading experimental instrument suitable for CT experiment |
CN112504817A (en) * | 2020-12-18 | 2021-03-16 | 上海工程技术大学 | Auxiliary structure for tensile testing machine and testing method thereof |
CN112504817B (en) * | 2020-12-18 | 2023-04-28 | 上海工程技术大学 | Auxiliary structure for tensile testing machine and testing method thereof |
CN112871692A (en) * | 2021-01-12 | 2021-06-01 | 深圳市凤舞科技有限公司 | Gastroscope seal wire tensile properties detection device |
CN114002064A (en) * | 2021-11-02 | 2022-02-01 | 重庆邮电大学 | A multi-media-based biaxial extensometer with removable clamps |
CN114486569A (en) * | 2022-04-14 | 2022-05-13 | 安徽农业大学 | High-temperature impact tensile mechanical test platform and method based on cam crank-link mechanism |
CN115615854A (en) * | 2022-08-17 | 2023-01-17 | 中国科学院力学研究所 | Micro in-situ material tension and compression test method |
CN115326573A (en) * | 2022-10-10 | 2022-11-11 | 徐州远方药食同源健康产业研究院有限公司 | Tensile test device of bio-based material |
CN118130248A (en) * | 2024-04-12 | 2024-06-04 | 吴江市中川金属制品有限公司 | Tension detection device for detecting octagonal lead caps |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107607410A (en) | Portable alternating temperature original position tension/compression testing device | |
CN103335898B (en) | In-situ testing device for micro-mechanical properties of materials under tension-shear combined loading mode | |
CN102331370B (en) | In-situ high-frequency fatigue material mechanical test platform under scanning electron microscope based on stretching/compressing mode | |
CN104913974B (en) | The biaxial stretch-formed fatigue test system of material Micro Mechanical Properties and its method of testing | |
CN105842080B (en) | Combined load Material mechanics test system under a kind of induction heating mode | |
CN102359912B (en) | Mechanical testing platform for in-situ tension/compression materials under scanning electronic microscope based on quasi-static loading | |
CN103487315B (en) | A kind of material mechanical performance proving installation | |
CN106680079B (en) | Piezoelectric stack direct-drive macro-micro combined biaxial tensile-fatigue testing system | |
CN203551372U (en) | Platform for in situ testing micro mechanical properties of material in shearing-torsion composite load mode | |
WO2017107362A1 (en) | Material property testing apparatus and method for in situ combined mechanical, electrical, thermal, and magnetic testing in composite load mode | |
CN110715862A (en) | Instrument and method for testing mechanical properties of materials under tension-torsion composite-mechanical-thermal coupling conditions | |
CN103926160B (en) | Stretch-reverse combined load material Micro Mechanical Properties in-situ test instrument | |
CN202305330U (en) | Mechanics testing platform for in-situ high frequency fatigue materials under scanning electron microscope based on stretching/compressing mode | |
CN102680325B (en) | Material mechanical performance testing platform for small-sized test sample under stretching bending composite loading mode | |
CN102384875A (en) | Stretching, compression and bending combined load mode material mechanics performance test device under microscope | |
CN107340190A (en) | Multistage quiet Dynamic Coupling mechanical loading unit for high frequency fatigue test | |
CN103499499B (en) | Bilateral power original position micro-torsion material mechanical performance tester under a kind of microcosmic visual field | |
CN106769452A (en) | Tensile fatigue four-point bending fatigue in-situ mechanical test device and its method of testing | |
CN106525571B (en) | A microscope stretcher adapted to an optical microscope | |
CN104913981A (en) | High-temperature in situ tension-fatigue test system and test method thereof | |
CN109060575A (en) | Driving type piezoelectric actuator low-temperature in-site high-frequency reciprocating micro-moving frictional wear test platform | |
CN206696086U (en) | Eccentric load stretch bending in-situ testing device under temperature match curing conditions | |
CN204718885U (en) | Material Micro Mechanical Properties is biaxial stretch-formed-fatigue test system | |
CN207423703U (en) | Stretching preloads lower dynamic torsional fatigue Mechanics Performance Testing device | |
CN108507882A (en) | Material mechanical property in-situ test equipment for neutron scattering analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180119 |