CN107474469A - 一种二硫化钼量子点修饰的柔性传感器电极的制备方法 - Google Patents

一种二硫化钼量子点修饰的柔性传感器电极的制备方法 Download PDF

Info

Publication number
CN107474469A
CN107474469A CN201710751387.8A CN201710751387A CN107474469A CN 107474469 A CN107474469 A CN 107474469A CN 201710751387 A CN201710751387 A CN 201710751387A CN 107474469 A CN107474469 A CN 107474469A
Authority
CN
China
Prior art keywords
preparation
solution
quantum dot
molybdenum disulfide
sensor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710751387.8A
Other languages
English (en)
Inventor
万军民
丁文凤
胡智文
王秉
彭志勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201710751387.8A priority Critical patent/CN107474469A/zh
Publication of CN107474469A publication Critical patent/CN107474469A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明涉及传感器电极材料领域,本发明公开了一种二硫化钼量子点修饰的柔性传感器电极的制备方法,通过溶液混合法制备柔性导电薄膜,其中以丙烯腈‑丁二烯‑苯乙烯树脂为柔性基底,以聚3,4‑乙烯二氧噻吩‑聚苯乙烯磺酸‑石墨烯为导电材料,并以二硫化钼量子点修饰电极,得到一种柔性传感器电极。本发明的传感器电极具有导电性能更加出色、灵敏度高、具有柔性的优点,可应用于医疗生物监测,环境和卫生监测等领域。

Description

一种二硫化钼量子点修饰的柔性传感器电极的制备方法
技术领域
本发明涉及传感器电极材料领域,尤其涉及一种二硫化钼量子点修饰的柔性传感器电极的制备方法。
背景技术
传感器是人类自身对自然界各种感觉信息的探知,能够对不同信号和感知信息转化为可数字化、智能化的重要器件。在人类文明信息技术高速发展的过程中,传感器起到了越来越重的作用,是人类探索未知世界,同时也是人类了解现实世界,观察周边信息的重要手段之一。传感器是一种能把电、光、温度以及化学作用等非电学信号转化为电学信号的可调控的元器件。
石墨烯是一类新的碳二维纳米轻质材料,具有独特的单原子层二维晶体结构,大量的研究结果表明石墨烯具有已知材料最高的强度,大的比表面积比,优异的导电性和导热性等优异的性质,这些优异的性质也决定了它在诸如复合材料,电子器件,太阳能等诸多领域有着广泛的应用前景。
在传感器电极材料领域,现有技术中多数是将石墨烯复合到铂碳电极上,复合材料比较单一,导电性能不佳,存在缺陷,且不具有柔性,不能用于可穿戴设备,即不能更好地发挥传感器的实用价值,为此有必要开发出一种导电性能更加出色、与传统传感器相比具有更加优异的检测性能的柔性传感器电极材料。
发明内容
为了解决上述技术问题,本发明提供了一种二硫化钼量子点修饰的柔性传感器电极的制备方法。本发明的传感器电极具有导电性能更加出色、灵敏度高、具有柔性的优点,可应用于医疗生物监测,环境和卫生监测等领域。
本发明的具体技术方案为:一种二硫化钼量子点修饰的柔性传感器电极的制备方法,包括如下步骤:
(1)油性成膜溶液的配制:将丙烯腈-丁二烯-苯乙烯树脂添加到二氯甲烷溶液中,搅拌后静置使丙烯腈-丁二烯-苯乙烯树脂完全溶解,得到油性成膜溶液,待用。
丙烯腈-丁二烯-苯乙烯树脂具有耐低温性、耐热性、抗冲击性、电气性能及耐化学药品性优良,丙烯腈-丁二烯-苯乙烯树脂集合了三个单体的优良性能,即丙烯腈的耐热性、耐油性;丁二烯的耐冲击性;苯乙烯的光泽、成型性;是一种用途极广的柔性塑料。
(2)聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料的制备:将石墨烯加入到聚苯乙烯磺酸溶液中,超声分散,然后加入3,4-乙烯二氧噻吩单体,并在搅拌条件下逐滴加入氯化铁溶液,继续搅拌反应10-14h,离心分离所得的墨绿色浆液,并分别用无水乙醇和蒸馏水反复清洗多次至洗涤液为无色,收集固体,70-80℃下真空干燥10-14h,得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料。
将石墨烯加入到聚苯乙烯磺酸溶液中,超声分散,其目的是为了使石墨烯功能化,将聚苯乙烯磺酸负载于石墨烯上,并以功能化的石墨烯为载体原位聚合聚3,4-乙烯二氧噻吩,使其相互紧密结合。通过聚合的方法得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯复合材料由于是通过化学键的作用相互结合在一起,大大提高了电子的迁移速率,比将聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸溶液与石墨烯简单的物理混合导电性能要优越很多。
(3)水性导电溶液的配制:将步骤(2)所得的导电复合材料添加到水溶液中,超声分散,得到水性导电溶液,待用。
(4)高分子导电薄膜的制备:将步骤(3)所得的水性导电溶液和步骤(1)所得的油性成膜溶液进行混合,超声处理,得到混合均一的水油导电溶液,取水油导电溶液滴定于培养皿,放置20-28h后,自然干燥后得到高分子导电薄膜,掲下高分子导电薄膜后烘干。
(5)柔性传感器电极的制备:将步骤(4)所得的导电高分子薄膜剪裁成长条状样品,用固体石蜡和绝缘胶带将导电薄膜进行固定并对其部分区域进行覆盖。
(6)二硫化钼量子点的制备:将Na2MoO4·2H2O溶解于水中,超声4-6min;用盐酸调节pH至6-7;加入L-半胱氨酸和去离子水,超声4-6min;将溶液转移至反应釜进行水热反应,自然冷却后,离心,收集浅棕色的上清液,得到二硫化钼量子点。
二硫化钼是一种典型的过渡金属二维层状硫化物,单层的二硫化钼由-Mo-S原子层以共价键方式构成,层与层之间依靠较弱的范德华力结合。与具有二维层状结构的石墨烯不同,二硫化钼具有可调控的带隙结构。当块状的二硫化钼变为二硫化钼纳米片层时,二硫化钼的禁带宽度随着其层数的减小而增加。相比零带隙的石墨烯,单层二硫化钼表现出更为优异的物理化学特性,在光学器件、锂离子电池、光电催化、超级电容器、传感器等领域具有很高的应用前景,吸引了科研工作者的广泛关注。目前,关于二硫化钼的报道多停留在纳米片层范围,对于MoS2量子点的报道相对较少,相较于二硫化钼纳米片层,二硫化钼量子点具有更大的比表面积,更显著的边缘效应,使其在生物医学、光学成像、气体检测等领域更具潜力。在石墨烯和氧化锌纳米管阵列中掺杂二硫化钼量子点,大大得提高传感器灵敏度。
(7)二硫化钼量子点修饰的柔性传感器电极的制备:将步骤(6)所得的二硫化钼量子点加入到全氟磺酸树脂溶液中,超声分散均匀,然后再将其滴加到步骤(5)所得的导电高分子薄膜的未覆盖区域上,于室温下自然干燥,得到二硫化钼量子点修饰的柔性传感器电极。
本发明制备方法通过溶液混合法制备柔性导电薄膜,其中以丙烯腈-丁二烯-苯乙烯为柔性基底,以聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯为导电材料,并以二硫化钼量子点修饰电极,得到一种柔性传感器电极。
在本发明中,聚3,4-乙烯二氧噻吩作为聚噻吩的衍生物,具有分子结构简单、能隙小、电导率高和透明度高等特点。被广泛应用于各领域。为解决聚3,4-乙烯二氧噻吩的不溶不熔性,聚苯乙烯磺酸被引入聚3,4-乙烯二氧噻吩,形成了分散性和加工性良好的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸悬浮液,聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸水溶液具有良好的成膜性和环境稳定性。将石墨烯和聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸掺杂在一起以得到导电性能优加的材料,并以丙烯腈-丁二烯-苯乙烯树脂为柔性塑料基底,得到性能十分优越的柔性透明导电薄膜,可作为可穿戴生物传感器电极,具有十分广阔的应用前景。为更进一步的提高导电薄膜的导电性和敏感性,本发明引入零维二硫化钼量子点,使其与传统的传感器电极相比具有更加优越的性能。
作为优选,步骤(1)中,所述油性成膜溶液中丙烯腈-丁二烯-苯乙烯树脂的质量分数为5%-20%。
作为优选,步骤(2)中,石墨烯与聚苯乙烯磺酸、聚3,4-乙烯二氧噻吩、氯化铁的质量比为1-2:1-2:1-3:1-3。
作为优选,步骤(3)中,超声分散的时间为25-35min,水性导电溶液中导电复合材料的质量分数为5%-20%。
作为优选,步骤(4)中,水性导电溶液和油性成膜溶液的体积比为0.1-1:1;超声处理时间为10-20min,烘干温度为60-70℃,干燥时间为1-2h。
作为优选,步骤(4)中,所述导电高分子薄膜剪裁后的尺寸为4*30mm,覆盖后其未覆盖区域的尺寸为4*6mm。
作为优选,步骤(6)中,将0.25-0.3g的Na2MoO4·2H2O溶解于25-30毫升的水中,所述盐酸的浓度为0.1M;所述L-半胱氨酸的加入量为0.5-0.55g,所述去离子水的加入量为45-55毫升。
作为优选,步骤(6)中,水热温度为190-210℃,水热时间为30-40h;离心转速为1800-2200rpm, 离心时间为50-70min。
作为优选,步骤(7)中,所述全氟磺酸树脂的浓度为0.4-0.6%,超声分散的时间为50-70min,二硫化钼量子点与全氟磺酸树脂溶液的用量比为0.5-1.5mg/mL。
与现有技术对比,本发明的有益效果是:
1、本发明以丙烯腈-丁二烯-苯乙烯树脂作为导电薄膜的基底,丙烯腈-丁二烯-苯乙烯树脂集合了三个单体的优良性能,即丙烯腈的耐热性、耐油性;丁二烯的耐冲击性;苯乙烯的光泽、成型性。使制备的导电薄膜具有十分的柔软性以及一定的拉伸性。
2、将石墨烯加入到聚苯乙烯磺酸溶液中,超声分散,其目的是为了使石墨烯功能化,将聚苯乙烯磺酸负载到石墨烯上,并以功能化的石墨烯为载体原位聚合聚3,4-乙烯二氧噻吩,使其相互紧密结合。通过聚合的方法得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯复合材料由于是通过化学键的作用相互结合在一起,大大增加了电子的迁移速率,提高了薄膜的导电性。
3、二硫化钼是一种典型的过渡金属二维层状硫化物,相较于二硫化钼纳米片层,二硫化钼量子点具有更大的比表面积,更显著的边缘效应,使其在生物医学、光学成像、气体检测等领域更具潜力。在石墨烯和氧化锌纳米管阵列中掺杂二硫化钼量子点,大大得提高传感器灵敏度。
具体实施方式
下面结合实施例对本发明作进一步的描述。
实施例1:
(1)油性成膜溶液的配制
取1g的丙烯腈-丁二烯-苯乙烯树脂添加到20mL的二氯甲烷溶液中,搅拌后静置一天,使丙烯腈-丁二烯-苯乙烯树脂完全溶解到二氯甲烷溶液中,配制出质量分数为5%的丙烯腈-丁二烯-苯乙烯树脂溶液。
(2)聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料的制备
取20mg的石墨烯(加入到20mL的聚苯乙烯磺酸溶液中,超声分散30min,然后加入3,4-乙烯二氧噻吩单体200uL,并在搅拌的情况下逐滴加入10mL、14mmoL/L氯化铁溶液,继续搅拌反应12h,离心分离所制备的墨绿色浆液,并分别用无水乙醇和蒸馏水反复清洗多次至洗涤液无色,收集固体于75℃下真空干燥12h,得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料。
(3)水性导电溶液的配制
取1g的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料添加到20mL的水溶液中,超声分散30min,配制出质量分数为5%的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯溶液。
(4)高分子导电薄膜的制备
取1mL水性溶液和10mL的油性溶液进行混合,并用超声处理器进行超声处理15min,从而得到混合均一的水油(W/O)导电溶液,取3mL的导电混合液滴定于培养皿,放置24h后,自然干燥,掲下导电薄膜置于65℃恒温烘箱中烘干1.5h。
(5)柔性传感器电极的制备
将步骤(4)得到的导电高分子薄膜剪裁成4*30m的长条状样品,使用固体石蜡和绝缘胶带将导电薄膜的一段面积控制在4*6mm。
(6)二硫化钼量子点的制备
二硫化钼量子点的制备:将0.25gNa2MoO4·2H2O溶解在25mL水中,超声5min;用0.1M盐酸调节PH至6.5;加入0.5g L-半胱氨酸和50mL去离子水,超声5 min;将溶液转移至反应釜,200℃水热反应36h;自然冷却后,离心,转速2000rpm,60min,收集浅棕色的上清液,即为二硫化钼量子点。
(7)二硫化钼量子点修饰的柔性传感器电极
将步骤(6)得到的二硫化钼量子点1mg加入到1mL全氟磺酸树脂溶液(0.5%)中,使用超声机超声分散1h,将分散均匀的二硫化钼量子点滴加到步骤(5)的薄膜电极上,于室温下自然干燥,得到二硫化钼量子点修饰的柔性传感器电极。
实施例2:
(1)油性成膜溶液的配制
取1g的丙烯腈-丁二烯-苯乙烯树脂添加到20mL的二氯甲烷溶液中,搅拌后静置一天,使丙烯腈-丁二烯-苯乙烯树脂完全溶解到二氯甲烷溶液中,配制出质量分数为5%的丙烯腈-丁二烯-苯乙烯树脂溶液。
(2)聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料的制备
取20mg的石墨烯加入到20mL的聚苯乙烯磺酸溶液中,超声分散30min,然后加入3,4-乙烯二氧噻吩单体200uL,并在搅拌的情况下逐滴加入10mL、14mmoL/L氯化铁溶液,继续搅拌反应12h,离心分离所制备的墨绿色浆液,并分别用无水乙醇和蒸馏水反复清洗多次至洗涤液无色,收集固体于75℃下真空干燥12h,得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料。
(3)水性导电溶液的配制
取1g的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料添加到20mL的水溶液中,超声分散30min,配制出质量分数为5%的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯溶液。
(4)高分子导电薄膜的制备
取5mL水性溶液和10mL的油性溶液进行混合,并用超声处理器进行超声处理15min,从而得到混合均一的水油(W/O)导电溶液,取3mL的导电混合液滴定于培养皿,放置24h后,自然干燥,掲下导电薄膜置于65℃恒温烘箱中烘干1.5h。
(5)柔性传感器电极的制备
将步骤(4)得到的导电高分子薄膜剪裁成4*30m的长条状样品,使用固体石蜡和绝缘胶带将导电薄膜的一段面积控制在4*6mm。
(6)二硫化钼量子点的制备
二硫化钼量子点的制备:将0.25gNa2MoO4·2H2O溶解在25mL水中,超声5min;用0.1M盐酸调节PH至6.5;加入0.5g L-半胱氨酸和50mL去离子水,超声5 min;将溶液转移至反应釜,200℃水热反应36h;自然冷却后,离心,转速2000rpm,60min,收集浅棕色的上清液,即为二硫化钼量子点。
(7)二硫化钼量子点修饰的柔性传感器电极
将步骤(6)得到的二硫化钼量子点1mg加入到1mL全氟磺酸树脂溶液(0.5%)中,使用超声机超声分散1h,将分散均匀的二硫化钼量子点滴加到步骤(5)的薄膜电极上,于室温下自然干燥,得到二硫化钼量子点修饰的柔性传感器电极。
实施例3:
(1)油性成膜溶液的配制
取1g的丙烯腈-丁二烯-苯乙烯树脂添加到20mL的二氯甲烷溶液中,搅拌后静置一天,使丙烯腈-丁二烯-苯乙烯树脂完全溶解到二氯甲烷溶液中,配制出质量分数为5%的丙烯腈-丁二烯-苯乙烯树脂溶液。
(2)聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料的制备
取20mg的石墨烯加入到20mL的聚苯乙烯磺酸溶液中,超声分散30min,然后加入3,4-乙烯二氧噻吩单体200uL,并在搅拌的情况下逐滴加入10mL、14mmoL/L氯化铁溶液,继续搅拌反应12h,离心分离所制备的墨绿色浆液,并分别用无水乙醇和蒸馏水反复清洗多次至洗涤液无色,收集固体于75℃下真空干燥12h,得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料。
(3)水性导电溶液的配制
取1g的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料添加到20mL的水溶液中,超声分散30min,配制出质量分数为5%的聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯溶液。
(4)高分子导电薄膜的制备
取10mL水性溶液和10mL的油性溶液进行混合,并用超声处理器进行超声处理15min,从而得到混合均一的水油(W/O)导电溶液,取3mL的导电混合液滴定于培养皿,放置24h后,自然干燥,掲下导电薄膜置于65℃恒温烘箱中烘干1.5h。
(5)柔性传感器电极的制备
将步骤(4)得到的导电高分子薄膜剪裁成4*30m的长条状样品,使用固体石蜡和绝缘胶带将导电薄膜的一段面积控制在4*6mm。
(6)二硫化钼量子点的制备
二硫化钼量子点的制备:将0.25gNa2MoO4·2H2O溶解在25mL水中,超声5min;用0.1M盐酸调节PH至6.5;加入0.5g L-半胱氨酸和50mL去离子水,超声5 min;将溶液转移至反应釜,200℃水热反应36h;自然冷却后,离心,转速2000rpm,60min,收集浅棕色的上清液,即为二硫化钼量子点。
(7)二硫化钼量子点修饰的柔性传感器电极
将步骤(6)得到的二硫化钼量子点1mg加入到1mL全氟磺酸树脂溶液(0.5%)中,使用超声机超声分散1h,将分散均匀的二硫化钼量子点滴加到步骤(5)的薄膜电极上,于室温下自然干燥,得到二硫化钼量子点修饰的柔性传感器电极。
本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

Claims (9)

1.一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于包括如下步骤:
(1)油性成膜溶液的配制:将丙烯腈-丁二烯-苯乙烯树脂添加到二氯甲烷溶液中,搅拌后静置使丙烯腈-丁二烯-苯乙烯树脂完全溶解,得到油性成膜溶液,待用;
(2)聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料的制备:将石墨烯加入到聚苯乙烯磺酸溶液中,超声分散,然后加入3,4-乙烯二氧噻吩单体,并在搅拌条件下逐滴加入氯化铁溶液,继续搅拌反应10-14h,离心分离所得的墨绿色浆液,并分别用无水乙醇和蒸馏水反复清洗多次至洗涤液为无色,收集固体,70-80℃下真空干燥10-14h,得到聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸-石墨烯导电复合材料;
(3)水性导电溶液的配制:将步骤(2)所得的导电复合材料添加到水溶液中,超声分散,得到水性导电溶液,待用;
(4)高分子导电薄膜的制备:将步骤(3)所得的水性导电溶液和步骤(1)所得的油性成膜溶液进行混合,超声处理,得到混合均一的水油导电溶液,取水油导电溶液滴定于培养皿,放置20-28h后,自然干燥后得到高分子导电薄膜,掲下高分子导电薄膜后烘干;
(5)柔性传感器电极的制备:将步骤(4)所得的导电高分子薄膜剪裁成长条状样品,用固体石蜡和绝缘胶带将导电薄膜进行固定并对其部分区域进行覆盖;
(6)二硫化钼量子点的制备:将Na2MoO4·2H2O溶解于水中,超声4-6min;用盐酸调节pH至6-7;加入L-半胱氨酸和去离子水,超声4-6min;将溶液转移至反应釜进行水热反应,自然冷却后,离心,收集浅棕色的上清液,得到二硫化钼量子点;
(7)二硫化钼量子点修饰的柔性传感器电极的制备:将步骤(6)所得的二硫化钼量子点加入到全氟磺酸树脂溶液中,超声分散均匀,然后再将其滴加到步骤(5)所得的导电高分子薄膜的未覆盖区域上,于室温下自然干燥,得到二硫化钼量子点修饰的柔性传感器电极。
2.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(1)中,所述油性成膜溶液中丙烯腈-丁二烯-苯乙烯树脂的质量分数为5%-20%。
3.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(2)中,石墨烯与聚苯乙烯磺酸、聚3,4-乙烯二氧噻吩、氯化铁的质量比为1-2:1-2:1-3:1-3。
4.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(3)中,超声分散的时间为25-35min,水性导电溶液中导电复合材料的质量分数为5%-20%。
5.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(4)中,水性导电溶液和油性成膜溶液的体积比为0.1-1:1;超声处理时间为10-20min,烘干温度为60-70℃,干燥时间为1-2h。
6.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(4)中,所述导电高分子薄膜剪裁后的尺寸为4*30mm,覆盖后其未覆盖区域的尺寸为4*6mm。
7.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(6)中,将0.25-0.3g的Na2MoO4·2H2O溶解于25-30毫升的水中,所述盐酸的浓度为0.1M;所述L-半胱氨酸的加入量为0.5-0.55g,所述去离子水的加入量为45-55毫升。
8.如权利要求1或7所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(6)中,水热温度为190-210℃,水热时间为30-40h;离心转速为1800-2200rpm, 离心时间为50-70min。
9.如权利要求1所述的一种二硫化钼量子点修饰的柔性传感器电极的制备方法,其特征在于,步骤(7)中,所述全氟磺酸树脂的浓度为0.4-0.6%,超声分散的时间为50-70min,二硫化钼量子点与全氟磺酸树脂溶液的用量比为0.5-1.5mg/mL。
CN201710751387.8A 2017-08-28 2017-08-28 一种二硫化钼量子点修饰的柔性传感器电极的制备方法 Pending CN107474469A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710751387.8A CN107474469A (zh) 2017-08-28 2017-08-28 一种二硫化钼量子点修饰的柔性传感器电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710751387.8A CN107474469A (zh) 2017-08-28 2017-08-28 一种二硫化钼量子点修饰的柔性传感器电极的制备方法

Publications (1)

Publication Number Publication Date
CN107474469A true CN107474469A (zh) 2017-12-15

Family

ID=60604011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710751387.8A Pending CN107474469A (zh) 2017-08-28 2017-08-28 一种二硫化钼量子点修饰的柔性传感器电极的制备方法

Country Status (1)

Country Link
CN (1) CN107474469A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100340A (zh) * 2018-08-23 2018-12-28 浙江理工大学 一种硫化镉量子点修饰的可植入传感器的制备方法
CN111446423A (zh) * 2020-04-24 2020-07-24 深圳市海盈科技有限公司 一种锂离子电池电极材料及其制备方法、锂离子电池
CN112811536A (zh) * 2020-12-15 2021-05-18 华南理工大学 一种石墨毡负载二维层状纳米片的电芬顿阴极材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217567A (zh) * 2015-09-07 2016-01-06 复旦大学 一种二硫化钼纳米片/石墨烯纳米带复合材料及其制备方法
CN106207171A (zh) * 2016-08-30 2016-12-07 安徽师范大学 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106398207A (zh) * 2016-10-28 2017-02-15 齐鲁工业大学 一种聚吡咯膜的制备方法及其超级电容性能

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217567A (zh) * 2015-09-07 2016-01-06 复旦大学 一种二硫化钼纳米片/石墨烯纳米带复合材料及其制备方法
CN106207171A (zh) * 2016-08-30 2016-12-07 安徽师范大学 一种二硫化钼/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN106398207A (zh) * 2016-10-28 2017-02-15 齐鲁工业大学 一种聚吡咯膜的制备方法及其超级电容性能

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100340A (zh) * 2018-08-23 2018-12-28 浙江理工大学 一种硫化镉量子点修饰的可植入传感器的制备方法
CN109100340B (zh) * 2018-08-23 2020-10-16 浙江理工大学 一种硫化镉量子点修饰的可植入传感器的制备方法
CN111446423A (zh) * 2020-04-24 2020-07-24 深圳市海盈科技有限公司 一种锂离子电池电极材料及其制备方法、锂离子电池
CN111446423B (zh) * 2020-04-24 2022-02-22 贵州嘉盈科技有限公司 一种锂离子电池电极材料及其制备方法、锂离子电池
CN112811536A (zh) * 2020-12-15 2021-05-18 华南理工大学 一种石墨毡负载二维层状纳米片的电芬顿阴极材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Li et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin
Shao et al. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant
Jiang et al. A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode
Dai et al. An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd (II) and Pb (II)
Ma et al. Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid-liquid interface for electrochemical sensing of tetracycline
Dong et al. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells
Wang et al. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B1
Xing et al. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine
Choi et al. A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide
CN106383158B (zh) 一种基于银-石墨烯纳米复合物的过氧化氢无酶传感器及其制备方法
CN107525832B (zh) 一种银纳米线修饰的柔性纤维传感器电极的制备方法
Huang et al. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions
CN107474469A (zh) 一种二硫化钼量子点修饰的柔性传感器电极的制备方法
Ma et al. Novel electrochemical sensing platform based on a molecularly imprinted polymer-decorated 3D-multi-walled carbon nanotube intercalated graphene aerogel for selective and sensitive detection of dopamine
Peng et al. Label-free electrochemical immunosensor based on multi-functional gold nanoparticles–polydopamine–thionine–graphene oxide nanocomposites film for determination of alpha-fetoprotein
CN110192868B (zh) 基于石墨烯复合材料的柔性钙钾离子检测传感器及其制备方法
CN107556510A (zh) 一种柔性传感器电极的制备方法
CN104391030A (zh) 一种基于海藻酸功能化石墨烯构建的重金属离子Cd2+、Pb2+和Cu2+的传感器的制备方法及应用
CN109342522A (zh) 一种基于聚吡咯/石墨烯复合材料的电阻型nh3传感器、制备方法及其应用
CN1201146C (zh) 一种测定多巴胺的电化学传感器
Zhou et al. High sensitivity ammonia QCM sensor based on ZnO nanoflower assisted cellulose acetate-polyaniline composite nanofibers
Gong et al. Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-β-cyclodextrin for selective capacitive sensing of acephatemet
Ma et al. Electrochemical detection of norepinephrine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode
Fu et al. The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine
CN105181769A (zh) 基于肽纳米管/壳聚糖的电化学细胞传感器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171215