CN107383434B - 一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法 - Google Patents

一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法 Download PDF

Info

Publication number
CN107383434B
CN107383434B CN201710825109.2A CN201710825109A CN107383434B CN 107383434 B CN107383434 B CN 107383434B CN 201710825109 A CN201710825109 A CN 201710825109A CN 107383434 B CN107383434 B CN 107383434B
Authority
CN
China
Prior art keywords
polylactic acid
cellulose nanocrystal
preparation
cellulose
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710825109.2A
Other languages
English (en)
Other versions
CN107383434A (zh
Inventor
吴德峰
仇亚昕
吕巧莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710825109.2A priority Critical patent/CN107383434B/zh
Publication of CN107383434A publication Critical patent/CN107383434A/zh
Application granted granted Critical
Publication of CN107383434B publication Critical patent/CN107383434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法,涉及材料制备技术领域,将纤维素纳米晶和聚乳酸于溶剂中混合均匀,利用超临界二氧化碳发泡,得到纤维素纳米晶增强的聚乳酸发泡材料。本发明便于工业化生产,节能环保,制作简单,取得的产品取两者之长,增强了聚乳酸的力学性能。

Description

一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法
技术领域
本发明涉及材料制备技术领域。
背景技术
天然纤维素微纤丝含有在长度方向上随机分布的结晶区和无定形区。结晶区纤维素链堆积紧密,性质稳定;而无定形区结构松散,容易受到化学试剂或酶的攻击。因此,在合适的酸或酶解处理条件下,去除天然纤维素中的无定形区而保留结晶区,可得到粉末、液体或凝胶态的纤维素纳米晶(NCC)。
纤维素纳米晶(NCC)具有刚性棒状结构,一般直径在1~100nm,长度在数十至数百纳米,是纤维素的最小物理结构单元。NCC的来源非常广泛,主要有针叶木、阔叶木、棉花、棉短绒、苎麻、剑麻、甜菜、棕榈、被囊动物、微晶纤维素和细菌纤维素等,不同原料制备的 NCC在尺寸和形态上有所差异。NCC 具有许多优良特性,如高结晶度、高纯度、低密度(1. 6g/cm3)、高杨氏模量(100~140 GPa)、高强度(7500MPa)、高比表面积(150~250m2/ g)、低热膨胀系数(CTE)、高亲水性、超精细结构、高透明性和液晶性、可降解、生物相容及可再生等。另外,NCC 的表面含有大量的羟基,能通过表面修饰赋予 NCC 独特的性质,如高分散性、良好的基质相容性和表面组装负载功能。国内外近年来针对 NCC 的制备、表面修饰、表征和应用等方面开展了系统的研究工作,已有相应的综述文章发表。
化学法修饰NCC表面的众多羟基决定了它不能很好地分散在疏水性溶剂和聚合物介质中,另外 NCC 表面电荷有限,羟基的反应活性不高,因此常需进行表面改性改善其亲疏水性、相容性、表面电荷特性和反应活性等。吸附表面活性剂是改善 NCC 表面性质的一种方法,表面活性剂可在 NCC 表面形成一层覆盖层,其空间位阻作用和特定的化学性质可提高 NCC在非极性物质中的分散性和相容性,酯类、阴离子型和两性表面活性剂均有研究报道。应用更广泛的 NCC 表面修饰方法为共价键化学改性,如磺化、酯化、氧化、异氰酸酯化和硅烷化等,点击化学方法也已被 应 用 到 NCC 的表面修饰。接枝共聚是对 NCC 进行改性的另一种重要方法,通过共价键在 NCC 表面引入聚合物侧链,即可以赋予 NCC 某些新的性能,同时又不破坏其固有的优点。另外,在较高的离子强度和电荷屏蔽作用下,聚合物侧链会形成类似“聚合物刷”伸展进入周围的溶剂介质,阻碍 NCC 的直接接触和聚集,保持良好的分散性。NCC 的表面接枝聚合修饰越来越受到关注,已从传统的自由基聚合发展到活性自由基聚合,如氮氧自由基调控活性聚合、原子转移自由基聚合、可逆加成-断裂链转移聚合和单电子转移活性自由基聚合。
聚乳酸纳米复合材料在最近一二十年中一直是一个研究热点。聚乳酸(PLA)具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。如今,各种不同组成、结构和性能的聚乳酸纳米复合材料已经被制备出来,并应用于生产和生活。但是基于納晶纤维素的复合材料及制备方法还没有人加以开发。但是聚乳酸的力学性能不是很强,然而现在很多器件要求材料具有较高的力学性能。
发明内容
本发明目的是提供一种纤维素纳米晶增强的聚乳酸发泡材料。
本发明技术方案是:将纤维素纳米晶与聚乳酸共混于有机溶剂中,烘干溶剂,得到纤维素纳米晶/聚乳酸复合材料,再利用超临界二氧化碳发泡的方法,对纤维素纳米晶/聚乳酸复合材料进行超临界二氧化碳发泡,即得纤维素纳米晶增强的聚乳酸发泡材料。
本发明将聚乳酸和绿色可循环材料纤维素纳米晶混合,制备得到纤维素纳米晶/聚乳酸复合材料,再利用超临界二氧化碳发泡方法,制得纤维素纳米晶增强的聚乳酸发泡材料,该材料取两者之长,增强了聚乳酸的力学性能。本发明工艺简单、合理,方便工业化绿色生产。
进一步地,本发明纤维素纳米晶与聚乳酸的投料质量比为1∶0.01~0.5。投料比的高低会影响到聚乳酸与纤维素纳米晶复合材料的力学性能。拉伸强度会在1∶0.01~0.5之间的一点,会到达一个峰值,而杨氏模量会随着投料比从1∶0.01到1∶0.5,逐渐增大。
进一步地,当纤维素纳米晶与聚乳酸的投料质量比为1∶0.05时,产品的综合力学性能最佳。
本工艺中有机溶剂是为了溶解聚乳酸,使之可与纤维素纳米晶混合。所述溶剂可以采用三氯甲烷,或二氯甲烷,丙酮等有机溶剂皆可。
所述超临界二氧化碳发泡的釜内反应温度为0℃,0℃时发泡较为稳定。发泡温度为50℃~90℃,50℃~90℃皆可用于此条件下的发泡,但温度在60℃时,发泡效果最为稳定。
具体实施方式
一、实施例1:
1、将纤维素纳米晶和聚乳酸加入到溶剂三氯甲烷(或丙酮或二氯甲烷)中搅拌均匀,烘干去除溶剂后,得到纤维素纳米晶/聚乳酸复合材料。再采用超临界二氧化碳发泡的方法,将纤维素纳米晶/聚乳酸复合材料置于0℃的高压釜内,再通入高纯二氧化碳,使釜内压力达到5MPa,保持釜温为0℃,反应24h,再取出纤维素纳米晶/聚乳酸复合材料迅速置于水浴锅内,控制发泡温度为50℃~90℃。制得纤维素纳米晶增强的聚乳酸发泡材料。
以上纤维素纳米晶和聚乳酸的投料质量比为1∶0.01。
2、将纤维素纳米晶增强的聚乳酸发泡材料制成(30 mm×2 mm×1 mm)的样条用于拉伸性能的测试。
二、实施例2至6:
1、采用与实施例1相同的步骤,通过改变纤维素纳米晶和聚乳酸的质量比、调节发泡温度,分别得到实施例2至10产品。
2、将以上各例制成的纳米复合材料使用微型注塑机注射成同样的标准样条(30mm×2 mm×1 mm)。
由此可见,本发明工艺采用纤维素纳米晶和聚乳酸的任何比例,都能得到纳米复合材料。
纤维素纳米晶和聚乳酸的投料质量比不同,得到的样条力学性能,可根据市场不同的需要制备不同性能的材料。
三、各实施例产品与纤维素纳米晶、聚乳酸的拉伸强度和杨氏模量试验对比:
上表中投料质量比是指纤维素纳米晶和聚乳酸的投料质量比。
纤维素纳米晶是白色粉末,无力学性能。
由上表可见:本发明由于采用纤维素纳米晶与聚乳酸共混后发泡,取得的复合材料的拉伸强度和杨氏模量都大于纤维素纳米晶和聚乳酸。取得的产品取两者之长,增强了聚乳酸的力学性能。
其中,实施例3(纤维素纳米晶与聚乳酸的投料质量比为1∶0.05)的综合力学性能最佳。

Claims (4)

1.一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法,其特征在于:将纤维素纳米晶与聚乳酸共混于有机溶剂中,所述有机溶液为三氯甲烷、丙酮或二氯甲烷,烘干溶剂,得到纤维素纳米晶/聚乳酸复合材料,再利用超临界二氧化碳发泡的方法,对纤维素纳米晶/聚乳酸复合材料进行超临界二氧化碳发泡,所述超临界二氧化碳发泡的釜内反应温度为0℃,反应时间为24h,所述发泡温度为50℃~90℃,即得纤维素纳米晶增强的聚乳酸发泡材料。
2.根据权利要求1所述的制备方法,其特征在于:所述纤维素纳米晶与聚乳酸的投料质量比为1∶0.01~0.5。
3.根据权利要求2所述的制备方法,其特征在于:所述纤维素纳米晶与聚乳酸的投料质量比为1∶0.05。
4.根据权利要求1所述的制备方法,其特征在于:所述发泡温度为60℃。
CN201710825109.2A 2017-09-14 2017-09-14 一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法 Active CN107383434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710825109.2A CN107383434B (zh) 2017-09-14 2017-09-14 一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710825109.2A CN107383434B (zh) 2017-09-14 2017-09-14 一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法

Publications (2)

Publication Number Publication Date
CN107383434A CN107383434A (zh) 2017-11-24
CN107383434B true CN107383434B (zh) 2019-06-21

Family

ID=60349843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710825109.2A Active CN107383434B (zh) 2017-09-14 2017-09-14 一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法

Country Status (1)

Country Link
CN (1) CN107383434B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329644A (zh) * 2018-01-30 2018-07-27 福洹体育用品(苏州)有限公司 一种高强轻质超临界流体微发泡材料的制备方法
CN110746749A (zh) * 2018-07-23 2020-02-04 中国科学院理化技术研究所 一种分步法制备微纳米纤维素聚酯微孔发泡片材的方法
CN111286070B (zh) * 2020-02-11 2021-06-29 中国科学院宁波材料技术与工程研究所 一种超临界流体注塑发泡聚乳酸泡沫材料及其制备方法
CN111808408B (zh) * 2020-08-06 2022-04-15 苏州环诺新材料科技有限公司 一种感光抗菌可生物降解3d打印线材及其制备方法
CN112694636A (zh) * 2020-12-14 2021-04-23 浙江理工大学 一种软质pbat基生物可降解发泡材料的制备方法
CN112592587A (zh) * 2021-03-04 2021-04-02 旗众科技有限公司 聚乳酸生物复合材料的制备方法
CN113072802B (zh) * 2021-04-02 2024-01-09 湖南省林业科学院 一种高长径比竹纤维素纳米纤维增强的聚乳酸复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709448A (zh) * 2013-12-30 2014-04-09 南京林业大学 一种纤维素/聚乳酸共混物材料及其制备方法
CN104629077A (zh) * 2014-12-09 2015-05-20 郑经堂 一种纳米纤维素微孔泡沫材料的制备方法
CN104893266A (zh) * 2015-05-22 2015-09-09 宁波大学 一种聚乳酸/甲壳素纳米晶复合材料和制备方法及其制备的笔

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709448A (zh) * 2013-12-30 2014-04-09 南京林业大学 一种纤维素/聚乳酸共混物材料及其制备方法
CN104629077A (zh) * 2014-12-09 2015-05-20 郑经堂 一种纳米纤维素微孔泡沫材料的制备方法
CN104893266A (zh) * 2015-05-22 2015-09-09 宁波大学 一种聚乳酸/甲壳素纳米晶复合材料和制备方法及其制备的笔

Also Published As

Publication number Publication date
CN107383434A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107383434B (zh) 一种纤维素纳米晶增强的聚乳酸发泡材料的制备方法
Chakrabarty et al. Recent advances in nanocellulose composites with polymers: A guide for choosing partners and how to incorporate them
Neto et al. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls
Fortunati et al. Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview
Ray et al. In situ processing of cellulose nanocomposites
Lin et al. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges
Gan et al. Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based nanocomposites
Trovatti et al. Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties
Yang et al. Reinforcement of ramie fibers on regenerated cellulose films
Trovatti et al. Novel bacterial cellulose–acrylic resin nanocomposites
AU2020101197A4 (en) Preparation process of new-energy biomass material for 3d printing
Robles-García et al. Nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by electrospinning: preparation and characterization
Zhu et al. Comprehensive insight into degradation mechanism of green biopolyester nanocomposites using functionalized cellulose nanocrystals
CN111100437B (zh) 一种含纳米纤维素的可降解塑料母粒的制备方法
CN102295827A (zh) 一种全生物降解纳米复合聚酯塑料的制备方法
CN108003645A (zh) 一种全生物降解秸秆注塑塑料及其制备方法
Zhu et al. Modification of lignin with silane coupling agent to improve the interface of poly (L-lactic) acid/lignin composites
Vahabi et al. Nanolignin in materials science and technology—does flame retardancy matter?
Wang et al. Structure-controlled lignin complex for PLA composites with outstanding antibacterial, fluorescent and photothermal conversion properties
CN109233230A (zh) 一种有机/无机杂化改性聚乳酸膜材料及其制备方法
Giri et al. Biodegradable copolyester-based natural fibers–polymer composites: morphological, mechanical, and degradation behavior
Xie et al. A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications
Chandrakumara et al. Eco‐Friendly, Green Packaging Materials from Akaganeite and Hematite Nanoparticle‐Reinforced Chitosan Nanocomposite Films
Ghalia et al. Mechanical and biodegradability of porous PCL/PEG copolymer-reinforced cellulose nanofibers for soft tissue engineering applications
Abdel-Hakim et al. Nanocellulose and its polymer composites: preparation, characterization, and applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant