CN107357954A - A kind of knitted wire mesh mechanical characteristic analysis based on FInite Element - Google Patents
A kind of knitted wire mesh mechanical characteristic analysis based on FInite Element Download PDFInfo
- Publication number
- CN107357954A CN107357954A CN201710418285.4A CN201710418285A CN107357954A CN 107357954 A CN107357954 A CN 107357954A CN 201710418285 A CN201710418285 A CN 201710418285A CN 107357954 A CN107357954 A CN 107357954A
- Authority
- CN
- China
- Prior art keywords
- wire mesh
- warp
- knitted wire
- finite element
- knitted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 37
- 230000003068 static effect Effects 0.000 claims abstract description 20
- 230000003252 repetitive effect Effects 0.000 claims description 14
- 238000009941 weaving Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000007596 consolidation process Methods 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 238000011161 development Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
- Wire Processing (AREA)
Abstract
本发明提供了一种基于有限元法的经编金属丝网力学特性分析,具体步骤如下:1)根据经编金属丝网最小重复结构的线圈结构,确定其型值点三维坐标;2)根据最小重复结构间的拓扑关系,确定整体的经编金属丝网型值点的三维坐标;3)将整体的经编金属丝网型值点的三维坐标作为有限元建模的关键点坐标,实现其有限元模型的建立;4)基于整体的经编金属丝网的有限元模型,对其施加接触约束;5)最终通过对整体的经编金属丝网施加载荷和边界约束,实现其静力学分析。本发明基于有限元法实现了经编金属丝网的力学分析,为丝网的研制提供理论基础,也为未来索网‑丝网结构找形分析、丝网的铺设过程提供参考。
The invention provides a kind of warp-knitted wire mesh mechanical characteristic analysis based on finite element method, concrete steps are as follows: 1) according to the coil structure of the warp-knitted wire mesh minimum repeating structure, determine the three-dimensional coordinates of its model value point; 2) according to The topological relationship between the minimum repeated structures determines the three-dimensional coordinates of the overall warp-knitted wire mesh type value points; 3) the three-dimensional coordinates of the overall warp-knitted wire mesh type value points are used as the key point coordinates of the finite element modeling to realize Establishment of its finite element model; 4) Based on the finite element model of the overall warp-knitted wire mesh, apply contact constraints to it; 5) Finally, by applying loads and boundary constraints to the overall warp-knitted wire mesh, realize its static analyze. The invention realizes the mechanical analysis of the warp-knitted wire mesh based on the finite element method, provides a theoretical basis for the development of the wire mesh, and also provides a reference for the form-finding analysis of the cable-net-wire mesh structure and the laying process of the wire mesh in the future.
Description
技术领域technical field
本发明属于有限元仿真技术领域,具体涉及一种基于有限元法的经编金属丝网力学特性分析。The invention belongs to the technical field of finite element simulation, and in particular relates to an analysis of the mechanical properties of warp-knitted wire mesh based on the finite element method.
背景技术Background technique
由金属丝编织而成的柔性网状织物是制备金属网状天线的关键材料。经编柔性金属丝网是采用超细金属丝和经编技术生产的经编柔性网格材料,其具有质量轻、纵横向均有一定延展性、网格尺寸可设计等特点。金属丝网被铺设在索网上,火箭发射时保持折叠收拢的状态;卫星进入运行轨道后要求金属丝编织网展开,进入工作状态。进而,金属丝编织网的性能决定着通信卫星金属网状天线通信性能的发挥。丝网材料的编织结构、网孔形状与尺寸大小、网面各向均匀性和金属丝的直径都直接影响着天线的电学性能,因此对金属丝网进行力学特性分析是亟待解决的难题。The flexible mesh fabric woven by metal wires is the key material for the preparation of metal mesh antennas. Warp-knitted flexible wire mesh is a warp-knitted flexible mesh material produced by ultra-fine wire and warp-knitting technology. It has the characteristics of light weight, certain ductility in both vertical and horizontal directions, and mesh size can be designed. The wire mesh is laid on the cable net, and the rocket is kept folded and folded during launch; after the satellite enters the orbit, the wire mesh is required to unfold and enter the working state. Furthermore, the performance of the metal wire mesh determines the communication performance of the metal mesh antenna of the communication satellite. The weaving structure of the wire mesh material, the shape and size of the mesh, the isotropic uniformity of the mesh surface, and the diameter of the wire all directly affect the electrical performance of the antenna. Therefore, it is an urgent problem to analyze the mechanical properties of the wire mesh.
目前研究金属丝网的力学特性仅仅是通过对金属丝网进行单向或双向拉伸实验,记录其横、纵向的伸长量,得到该金属丝网各向异性的程度等,进而指导丝网的编织,改变丝网的编织形式,最终使其尽可能各向同性。然而,一般情况下金属丝网的用料昂贵,因而通过实验的方法指导丝网编织的方法经济成本过大,且工作效率较低。At present, the study of the mechanical properties of the wire mesh is only through the one-way or two-way tensile test of the wire mesh, recording its horizontal and vertical elongation, and obtaining the degree of anisotropy of the wire mesh, etc., and then guiding the wire mesh. Weaving, changing the weaving form of the wire mesh, and finally making it as isotropic as possible. However, generally speaking, the materials used for the wire mesh are expensive, so the economical cost of guiding the wire mesh weaving through the method of experiment is too large, and the work efficiency is low.
ANSYS软件具有完善的有限元接触分析功能,同时还为用户进行二次开发提供了APDL语言,用户可通过APDL语言编写命令组成其命令流文件,方便实现模型的可参数化建模,提高了建模的效率。ANSYS software has a complete finite element contact analysis function, and also provides APDL language for users to carry out secondary development. Users can write commands in APDL language to form their command flow files, which facilitates the realization of parametric modeling of the model and improves the construction efficiency. model efficiency.
发明内容Contents of the invention
本发明的目的是克服上述现有技术中存在的问题,提供一种基于有限元法的经编金属丝网力学特性分析,该方法利用有限元法实现对经编金属丝网进行力学特性分析,为指导经编金属丝网的研究提供必要的理论基础,且可降低经编金属丝网的研制成本。The purpose of the present invention is to overcome the problems existing in the above-mentioned prior art, and provide a kind of warp-knitted wire mesh mechanical property analysis based on finite element method, the method utilizes finite element method to realize that warp-knitted wire mesh is carried out mechanical property analysis, It provides a necessary theoretical basis for guiding the research of warp-knitted wire mesh, and can reduce the development cost of warp-knitted wire mesh.
本发明的技术方案:一种基于有限元法的经编金属丝网力学特性分析,包括以下步骤:Technical scheme of the present invention: a kind of mechanical characteristic analysis of warp knitted wire mesh based on finite element method, comprises the following steps:
步骤1)获取经编金属丝网的最小重复结构的型值点三维坐标:根据经编金属丝网的最小重复结构的线圈结构,确定其型值点x、y、z三维坐标;Step 1) obtain the three-dimensional coordinates of the value point of the minimum repeating structure of the warp-knitted wire mesh: determine its value point x, y, z three-dimensional coordinates according to the coil structure of the minimum repeating structure of the warp-knitted wire mesh;
步骤2)获取整体的经编金属丝网的型值点三维坐标:首先,根据丝网的编织形式,确定线圈之间的横、纵距和最小重复结构间的拓扑关系,从而确定整体的经编金属丝网的型值点三维坐标;Step 2) Obtain the three-dimensional coordinates of the type value points of the overall warp-knitted wire mesh: first, according to the weaving form of the wire mesh, determine the topological relationship between the horizontal and vertical distances between the coils and the minimum repeating structure, thereby determining the overall warp-knitted wire mesh. The three-dimensional coordinates of the value points of the wire mesh;
步骤3)基于步骤2)获得的整体经编金属丝网的型值点三维坐标,建立整体的经编金属丝网的有限元模型:以整体的经编金属丝网的型值点三维坐标作为经编金属丝网建模的关键点坐标,建立其几何模型并对其进行有限元网格划分,最终得到经编金属丝网的有限元模型;Step 3) based on step 2) the value point three-dimensional coordinates of the overall warp-knitted wire mesh that is obtained, set up the finite element model of the overall warp-knitted wire mesh: take the model value point three-dimensional coordinates of the whole warp-knitted wire mesh as The key point coordinates of warp-knitted wire mesh modeling, establish its geometric model and divide it into finite element mesh, and finally get the finite element model of warp-knitted wire mesh;
步骤4)基于步骤3)建立的整体经编金属丝网有限元模型,假设拉伸过程中经编金属丝网发生接触的单丝一直处于黏结接触状态且单丝间为交叉接触,对经编金属丝网的有限元模型中处于临界接触的单丝施加接触约束;Step 4) Based on the finite element model of the overall warp-knitted wire mesh established in step 3), it is assumed that the monofilaments in contact with the warp-knitted wire mesh during the stretching process are always in a bonded contact state and the monofilaments are in cross contact. In the finite element model of the wire mesh, the contact constraints are imposed on the monofilaments in critical contact;
步骤5)经编金属丝网的静力学分析:通过对经编金属丝网的有限元模型施加载荷和边界约束,实现其静力学分析。Step 5) Static analysis of the warp-knitted wire mesh: by applying loads and boundary constraints to the finite element model of the warp-knitted wire mesh, its static analysis is realized.
步骤1)中所述的获取经编金属丝网的最小重复结构的型值点三维坐标的具体步骤为:The specific steps of the three-dimensional coordinates of the type value point of the minimum repeating structure of obtaining the warp-knitted wire mesh described in step 1) are:
步骤1.1)通过摄影测量技术,获取经编金属丝网的高清晰照片;Step 1.1) Obtain a high-resolution photo of the warp-knitted wire mesh by photogrammetry;
步骤1.2)利用图像数据处理技术对经编金属丝网的高清晰照片进行图像处理分析,分析过程主要是依据照片中的最小重复结构的单丝走向,勾勒出最小重复结构的型值点,从而可得到最小重复结构的型值点x、y二维坐标;又根据经编金属丝网的编织结构,可确定最小重复结构的型值点z坐标;Step 1.2) Utilize image data processing technology to carry out image processing and analysis on the high-definition photo of warp-knitted wire mesh. The analysis process is mainly based on the monofilament direction of the minimum repetitive structure in the photo, and outlines the type value point of the minimum repetitive structure, thereby The two-dimensional coordinates of the value point x and y of the minimum repeating structure can be obtained; and according to the weaving structure of the warp-knitted wire mesh, the z coordinate of the value point of the minimum repeating structure can be determined;
步骤1.3)基于步骤1.2)得到的最小重复结构的型值点三维坐标,采用B样条曲线建立最小重复结构的几何模型;Step 1.3) based on the three-dimensional coordinates of the value point of the minimum repetitive structure obtained in step 1.2), adopting the B-spline curve to establish the geometric model of the minimum repetitive structure;
步骤1.4)观察最小重复结构的几何模型,统计其发生相互嵌入的单丝,对发生相互嵌入的单丝的型值点进行上下或左右移动,使得单丝间发生接触的地方为临界接触,得到最终的最小重复结构型值点三维坐标。Step 1.4) Observe the geometric model of the minimum repeating structure, count the monofilaments that are embedded in each other, and move the value points of the monofilaments that are embedded in each other up and down or left and right, so that the contact between the monofilaments is the critical contact, and we get The final three-dimensional coordinates of the minimum repeating structure value point.
步骤2)中获取整体的经编金属丝网的型值点三维坐标的具体步骤为:Step 2) obtains the specific steps of the type value point three-dimensional coordinates of the whole warp-knitted wire mesh as:
步骤2.1)基于步骤1.1)获取的经编金属丝网的高清晰照片,对该高清晰照片通过图像处理分析照片中最小重复结构的拓扑关系,测出照片中其线圈间的横、纵距,以及照片中的单丝直径;假设图像中线圈间的横距为L′横,纵距为L′纵,单丝直径为d′,则图像中线圈间横距与单丝直径的比值k横=L′横/d′,纵距与单丝直径的比值为k纵=L′纵/d′;Step 2.1) based on the high-resolution photo of the warp-knitted wire mesh obtained in step 1.1), the topological relationship of the minimum repeating structure in the photo is analyzed by image processing to this high-resolution photo, and the horizontal and vertical distances between its coils in the photo are measured, And the diameter of the monofilament in the photo; assuming that the horizontal distance between the coils in the image is L' horizontal , the longitudinal distance is L' longitudinal , and the diameter of the monofilament is d', then the ratio of the horizontal distance between the coils in the image to the monofilament diameter is k horizontal =L' horizontal /d', the ratio of longitudinal distance and monofilament diameter is k vertical =L' vertical /d';
步骤2.2)基于步骤2.1)获得的横距与单丝直径的比值k横和纵距与单丝直径的比值k纵,根据实际单丝直径d,由比例关系求出实际线圈间的横、纵距:假设实际线圈间的横距为L横,纵距为L纵,则实际线圈间横距L横表示为L横=L′横·d/d′,纵距表示为L纵=L′纵·d/d′;Step 2.2) based on step 2.1) the ratio k of the horizontal distance and the monofilament diameter obtained and the ratio k of the longitudinal distance and the monofilament diameter are vertical , according to the actual monofilament diameter d, the horizontal and vertical ratios between the actual coils are obtained by the proportional relationship Distance: Assuming that the horizontal distance between the actual coils is L horizontal , and the vertical distance is L vertical , then the actual horizontal distance L horizontal between the coils is expressed as L horizontal = L' horizontal · d/d', and the vertical distance is expressed as L vertical = L' Longitudinal d/d';
步骤2.3)基于经编金属丝网的最小重复结构型值点三维坐标和经编金属丝网的拓扑关系,确定整体的经编金属丝网的型值点三维坐标:假设整体的经编金属丝网结构共有m行,n列,最小重复结构的型值点三维坐标向量表示为C=[X,Y,Z]T,其中T为矩阵的转置运算符,则第i行第j列最小重复结构的型值点三维坐标向量表示为Cij=[X+(i-1)·L横,Y+(j-1)·L纵,Z]T,其中,i=1,2,…m,i表示最小重复结构所处于整体经编金属丝网的行编号,j=1,2,…n,j表示最小重复结构所处于整体经编金属丝网的列编号,进而得到整体经编金属丝网的型值点三维坐标。Step 2.3) determine the three-dimensional coordinates of the warp-knitted wire mesh as a whole based on the three-dimensional coordinates of the minimum repeated structure type value point of the warp-knitted wire mesh and the topological relationship of the warp-knitted wire mesh: assuming that the warp-knitted wire mesh of the whole The network structure has m rows and n columns. The three-dimensional coordinate vector of the type-value point of the minimum repeating structure is expressed as C=[X,Y,Z] T , where T is the transposition operator of the matrix, and the i-th row and the j-column are the smallest The three-dimensional coordinate vector of the type-value point of the repeating structure is expressed as C ij =[X+(i-1) L horizontal , Y+(j-1) L vertical , Z] T , wherein, i=1,2,...m, i represents the row number of the overall warp-knitted wire mesh where the minimum repeating structure is located, j=1, 2, ... n, j represents the column number of the overall warp-knitted wire mesh where the minimum repeating structure is located, and then the overall warp-knitted wire is obtained The three-dimensional coordinates of the type value point of the net.
步骤4)中所述的基于步骤3)建立的整体经编金属丝网有限元模型,对有限元模型中处于临界接触的单丝施加接触约束,其具体步骤为:Step 4) based on the integral warp-knitted wire mesh finite element model established in step 3), the contact constraint is imposed on the monofilament in critical contact in the finite element model, and its specific steps are:
步骤4.1)假设拉伸过程中丝网发生接触的单丝一直处于黏结接触状态且处于临界接触的单丝全为交叉接触;Step 4.1) Assume that the monofilaments in contact with the screen during the stretching process are always in a bonded contact state and the monofilaments in critical contact are all cross-contact;
步骤4.2)基于步骤3)建立的整体经编金属丝网有限元模型,整理统计处于临界接触的单丝间,根据接触方式的不同进行分组,其中,钩结接触的地方分为一组,拖动接触的地方分为另一组,进而对不同接触方式的单丝间施加对应的接触约束。Step 4.2) Based on the finite element model of the overall warp-knitted wire mesh established in step 3), sort and count the monofilaments in critical contact, and group them according to the different contact modes. The places in dynamic contact are divided into another group, and then the corresponding contact constraints are imposed on the monofilaments in different contact modes.
步骤5)中经编金属丝网的静力学分析,具体步骤如下:Step 5) in the static analysis of warp-knitted wire mesh, concrete steps are as follows:
步骤5.1)首先,以固结约束方式约束经编金属丝网有限元模型原本要受载荷的边界,对经编金属丝网原本要铰接约束的边界施加载荷,进行一次静力学分析;Step 5.1) First, constrain the bounds of the warp-knitted wire mesh finite element model to be loaded originally by means of consolidation constraints, apply a load to the bounds of the warp-knitted wire mesh originally to be hinged, and perform a static analysis;
步骤5.2)基于步骤5.1)的静力学分析结果,获取受固结约束边界的节点支反力编号,此组节点支反力编号作为经编金属丝网原本要施加载荷的节点编号;Step 5.2) Based on the static analysis result of step 5.1), obtain the nodal support reaction number of the boundary subject to consolidation constraints, and this group of nodal support reaction number is used as the nodal number of the warp-knitted wire mesh to apply the load originally;
步骤5.3)对步骤5.2)得到的节点编号施加载荷,铰接经编金属丝网的另一边边界,最终实现经编金属丝网的静力学分析。Step 5.3) Apply a load to the node numbers obtained in step 5.2), and hinge the other side boundary of the warp-knitted wire mesh, and finally realize the static analysis of the warp-knitted wire mesh.
本发明的有益效果:1、本发明针对各种编织结构的金属丝网具有一般性,根据经编金属丝网的图像可得到最小重复结构的型值点,从而确定单丝走向,进而根据整体的经编金属丝网的型值点可快速参数化建立其有限元模型。Beneficial effects of the present invention: 1. The present invention has generality for wire meshes of various weaving structures. According to the images of warp-knitted wire meshes, the model value point of the minimum repeating structure can be obtained, thereby determining the direction of the monofilament, and then according to the overall The value points of the warp-knitted wire mesh can be quickly parameterized to establish its finite element model.
2、本发明基于有限元法实现经编金属丝网的有限元建模及其静力学分析,可以真实反映出经编金属丝网普遍存在的各向异性特性,从而指导各向同性经编金属丝网的研制,降低丝网的制作成本。2. The present invention realizes the finite element modeling and static analysis of the warp-knitted wire mesh based on the finite element method, which can truly reflect the ubiquitous anisotropic characteristics of the warp-knitted wire mesh, thereby guiding isotropic warp-knitted metal The development of wire mesh reduces the production cost of wire mesh.
3、本发明基于有限元法建立的有限元模型,可对其进行载荷分析及丝网弹性参数的等效等,为未来索网-丝网结构找形分析、经编金属丝网的铺设过程提供参考。3. The present invention is based on the finite element model established by the finite element method, which can carry out load analysis and the equivalent of the elastic parameters of the wire mesh, etc., for the form-finding analysis of the future cable-net-wire mesh structure and the laying process of the warp-knitted wire mesh for reference.
以下将结合附图对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为本发明方法的流程图;Fig. 1 is the flowchart of the inventive method;
图2为经编金属丝网最小重复结构的图像化处理示意图;Fig. 2 is the schematic diagram of image processing of the minimum repeating structure of warp knitted wire mesh;
图3为网眼式经编金属丝网的最小重复结构CAD模型;Fig. 3 is the minimum repetitive structure CAD model of mesh type warp-knitted wire mesh;
图4为经编金属丝网线圈之间的横、纵距定义示图;Fig. 4 is the definition diagram of horizontal and vertical distances between warp knitted wire mesh coils;
图5为网眼式经编金属丝网的最小重复结构有限元模型;Fig. 5 is the minimum repeated structure finite element model of mesh type warp-knitted wire mesh;
图6为网眼式经编金属丝网的整体有限元模型;Fig. 6 is the integral finite element model of mesh type warp knitted wire mesh;
图7为网眼式经编金属丝网的不同接触分类示意图;Fig. 7 is the different contact classification schematic diagram of mesh type warp knitted wire mesh;
图8为15mm×15mm尺寸的经编金属丝网横、纵向受载荷0.75N所产生的X方向变形示图;Fig. 8 is a schematic view of deformation in the X direction produced by a warp-knitted wire mesh with a size of 15 mm × 15 mm and a load of 0.75 N in the horizontal and vertical directions;
图9为15mm×15mm尺寸的经编金属丝网横、纵向受载荷0.75N所产生的Y方向变形示图;Fig. 9 is a schematic diagram of deformation in the Y direction produced by a warp-knitted wire mesh with a size of 15 mm × 15 mm and a load of 0.75 N in the horizontal and vertical directions;
具体实施方式detailed description
本发明公开了一种基于有限元法的经编金属丝网力学特性分析,是利用图像数据处理技术和有限元法实现金属丝网的有限元建模及力学特性分析,其流程图如图1所示,详细步骤如下:The invention discloses a warp-knitted wire mesh mechanical property analysis based on the finite element method, which uses image data processing technology and finite element method to realize the finite element modeling and mechanical property analysis of the metal mesh, and its flow chart is shown in Figure 1 As shown, the detailed steps are as follows:
步骤1)获取经编金属丝网最小重复结构型值点的三维坐标,具体包括以下步骤:Step 1) obtain the three-dimensional coordinates of the minimum repetitive structure value point of the warp-knitted wire mesh, specifically comprising the following steps:
步骤1.1)通过摄影测量技术,获取经编金属丝网的高清晰照片;Step 1.1) Obtain a high-resolution photo of the warp-knitted wire mesh by photogrammetry;
步骤1.2)基于目前图像数据处理技术,可将步骤1.1)得到的经编金属丝网的高清晰图像导入到图像处理软件GetData Graph Digitizer中,通过图像处理软件GetDataGraph Digitizer对其单丝走向进行勾勒,可得到的最小重复结构型值点x、y二维坐标,GetData Graph Digitizer软件处理图像的示意图如图2所示,进而根据金属丝网的编织结构,可确定最小重复结构的型值点z坐标;Step 1.2) Based on the current image data processing technology, the high-definition image of the warp-knitted wire mesh obtained in step 1.1) can be imported into the image processing software GetData Graph Digitizer, and the direction of its monofilament is outlined by the image processing software GetDataGraph Digitizer, The x and y two-dimensional coordinates of the minimum repeating structure can be obtained, and the schematic diagram of the image processed by GetData Graph Digitizer software is shown in Figure 2. Then, according to the weaving structure of the wire mesh, the z coordinate of the minimum repeating structure can be determined ;
步骤1.3)基于步骤1.2)得到的最小重复结构的型值点三维坐标,将其导入CAD软件Pro/E中,利用Pro/E中的B样条曲线命令生成最小重复结构的单丝走向,建立最小重复结构初始的几何模型;Step 1.3) Based on the three-dimensional coordinates of the minimum repetitive structure obtained in step 1.2), import it into the CAD software Pro/E, utilize the B-spline curve command in Pro/E to generate the single filament direction of the minimum repetitive structure, and establish The initial geometric model of the minimal repeating structure;
步骤1.4)观察最小重复结构的几何模型,统计其发生相互嵌入的单丝,对发生相互嵌入的单丝的型值点进行上下或左右移动,使得单丝间发生接触的地方为临界接触状态,最终得到接近实际的最小重复结构,如图3所示,导出所有经Pro/E软件处理后的最小重复结构型值点坐标。Step 1.4) Observe the geometric model of the minimum repeating structure, count the monofilaments that are embedded in each other, and move the value points of the monofilaments that are embedded in each other up and down or left and right, so that the contact between the monofilaments is a critical contact state, Finally, the minimum repetitive structure close to the actual is obtained, as shown in Figure 3, and the coordinates of all the minimum repetitive structure type value points processed by Pro/E software are derived.
步骤2)根据金属丝网的编织形式,确定线圈之间的横、纵距,其中,丝网线圈之间的横、纵距定义如图4所示,基于Pro/E软件导出的所有型值点三维坐标,可利用MATLAB软件确定整体丝网的型值点三维坐标。详细过程如下:Step 2) Determine the horizontal and vertical distances between the coils according to the weaving form of the wire mesh, wherein the horizontal and vertical distances between the wire mesh coils are defined as shown in Figure 4, based on all type values derived from the Pro/E software The three-dimensional coordinates of the points can be determined by using MATLAB software to determine the three-dimensional coordinates of the model points of the overall screen. The detailed process is as follows:
步骤2.1)基于步骤1.1)获取的经编金属丝网的高清晰照片,对其进行图像处理分析,分析照片中最小重复结构的拓扑关系,可测出照片中其线圈间的横、纵距,以及照片中的单丝直径。假设图像中线圈间的横距为L′横,纵距为L′纵,单丝直径为d′,则图像中线圈间横距与单丝直径的比值k横=L′横/d′,纵距与单丝直径的比值为k纵=L′纵/d′;Step 2.1) Based on the high-resolution photo of the warp-knitted wire mesh obtained in step 1.1), image processing and analysis is carried out to it, and the topological relationship of the smallest repeating structure in the photo is analyzed, and the horizontal and vertical distances between its coils in the photo can be measured, And the diameter of the monofilament in the photo. Assuming that the horizontal distance between the coils in the image is L' horizontal , the vertical distance is L' vertical , and the diameter of the single wire is d', then the ratio of the horizontal distance between the coils in the image to the single wire diameter k horizontal = L' horizontal /d', The ratio of longitudinal distance to monofilament diameter is k longitudinal =L' long /d';
步骤2.2)基于步骤2.1)获得的横距与单丝直径的比值k横和纵距与单丝直径的比值k纵,根据实际单丝直径d,由比例关系求出实际线圈间的横、纵距:假设实际线圈间的横距为L横,纵距为L纵,则实际线圈间横距L横表示为L横=L′横·d/d′,纵距表示为L纵=L′纵·d/d′;Step 2.2) based on step 2.1) the ratio k of the horizontal distance and the monofilament diameter obtained and the ratio k of the longitudinal distance and the monofilament diameter are vertical , according to the actual monofilament diameter d, the horizontal and vertical ratios between the actual coils are obtained by the proportional relationship Distance: Assuming that the horizontal distance between the actual coils is L horizontal , and the vertical distance is L vertical , then the actual horizontal distance L horizontal between the coils is expressed as L horizontal = L' horizontal · d/d', and the vertical distance is expressed as L vertical = L' Longitudinal d/d';
步骤2.3)基于经编金属丝网的最小重复结构型值点三维坐标和经编金属丝网的拓扑关系,确定整体的经编金属丝网的型值点三维坐标:假设整体的经编金属丝网结构共有m行,n列,最小重复结构的型值点三维坐标向量表示为C=[X,Y,Z]T,其中T为矩阵的转置运算符,则第i行第j列最小重复结构的型值点三维坐标向量表示为Cij=[X+(i-1)·L横,Y+(j-1)·L纵,Z]T,其中,i=1,2,…m,i表示最小重复结构所处于整体经编金属丝网的行编号,j=1,2,…n,j表示最小重复结构所处于整体经编金属丝网的列编号,进而得到整体经编金属丝网的型值点三维坐标。Step 2.3) determine the three-dimensional coordinates of the warp-knitted wire mesh as a whole based on the three-dimensional coordinates of the minimum repeated structure type value point of the warp-knitted wire mesh and the topological relationship of the warp-knitted wire mesh: assuming that the warp-knitted wire mesh of the whole The network structure has m rows and n columns. The three-dimensional coordinate vector of the type-value point of the minimum repeating structure is expressed as C=[X,Y,Z] T , where T is the transposition operator of the matrix, and the i-th row and the j-column are the smallest The three-dimensional coordinate vector of the type-value point of the repeating structure is expressed as C ij =[X+(i-1) L horizontal , Y+(j-1) L vertical , Z] T , wherein, i=1,2,...m, i represents the row number of the overall warp-knitted wire mesh where the minimum repeating structure is located, j=1, 2, ... n, j represents the column number of the overall warp-knitted wire mesh where the minimum repeating structure is located, and then the overall warp-knitted wire is obtained The three-dimensional coordinates of the type value point of the net.
步骤3)利用ANSYS有限元仿真软件实现整体金属丝网的有限元建模及力学性能分析。首先,以步骤2.3)获取的整体经编金属丝网的型值点三维坐标作为ANSYS软件建立整体丝网几何模型的关键点坐标,利用ANSYS软件的BSPLIN命令拟合得到整体丝网的三维几何模型;然后,在ANSYS前处理模块,定义BEAM188单元类型,定义单元的材料参数和实常数,具体参数如表1所示;最终,对丝网的三维几何模型进行有限元网格划分。其中,最小重复结构的有限元模型如图5所示,15mm×15mm尺寸金属丝网的有限元模型如图6所示。Step 3) Use ANSYS finite element simulation software to realize finite element modeling and mechanical performance analysis of the whole wire mesh. First, the three-dimensional coordinates of the integral warp-knitted wire mesh obtained in step 2.3) are used as the key point coordinates of the overall mesh geometric model by the ANSYS software, and the BSPLIN command of the ANSYS software is used to fit the three-dimensional geometric model of the integral mesh ; Then, in the ANSYS pre-processing module, define the BEAM188 element type, define the material parameters and real constants of the element, and the specific parameters are shown in Table 1; finally, perform finite element mesh division on the three-dimensional geometric model of the wire mesh. Among them, the finite element model of the minimum repeating structure is shown in Figure 5, and the finite element model of the 15mm×15mm wire mesh is shown in Figure 6.
表1丝网有限元模型的几何、材料参数Table 1 Geometric and material parameters of wire mesh finite element model
步骤4)基于步骤3)建立的整体丝网有限元模型,假设拉伸过程中丝网发生接触的单丝一直处于黏结接触状态且单丝间为交叉接触,对有限元模型中处于临界接触的单丝施加接触约束,具体步骤为:Step 4) Based on the overall screen finite element model established in step 3), it is assumed that the monofilaments in contact with the screen during the stretching process are always in a bonded contact state and the monofilaments are in cross contact. For the critical contact in the finite element model The monofilament imposes contact constraints, and the specific steps are:
步骤4.1)由于丝网在双向拉伸过程中单丝间的滑动位移量相比于线圈的变形量是微小的,进而可假设拉伸过程中丝网发生接触的单丝一直处于黏结接触状态,并假设处于临界接触的单丝全为交叉接触;Step 4.1) Since the sliding displacement between the single filaments of the screen during the biaxial stretching process is small compared to the deformation of the coil, it can be assumed that the single filaments in contact with the screen during the stretching process are always in a bonded contact state. And assume that the monofilaments in critical contact are all cross-contact;
步骤4.2)基于步骤3)建立的整体经编金属丝网的有限元模型,整理统计处于临界接触的单丝间,根据接触方式的不同进行分组,其中,钩结接触的地方分为一组,拖动接触的地方分为另一组,接触方式的分类示意图如图7所示。利用ANSYS有限元仿真软件对经编金属丝网有限元建模施加接触约束:首先,对步骤1.3)得到的临界接触单丝建立接触对,其中定义的接触单元为ANSYS软件中的CONTA176单元,目标单元为ANSYS软件中的TARGE170单元;其次,将CONTA176单元的单元选项KEYOPT(3)设置为1,设置为1表示将单丝间的接触行为为交叉梁接触;将CONTA176单元的单元选项KEYOPT(5)设置为3,设置为3表示ANSYS静力学分析时自动闭合间隙或降低侵入;将CONTA176单元的单元选项KEYOPT(12)设置为5,设置为5表示单丝间的接触行为为不分离可滑动接触;然后,对不同编号的接触对设置不同的实常数,利用ANSYS软件的接触向导对建立的接触对进行检测处理,对于警告或者错误的地方,相应地修改CONTA176单元的单元选项,进而实现经编金属丝网有限元模型的接触约束施加。Step 4.2) Based on the finite element model of the whole warp-knitted wire mesh set up in step 3), sort and count the monofilaments that are in critical contact, and group them according to the different contact modes, wherein the places where the hooks are in contact are divided into one group, The place where the dragging contact is divided into another group, and the classification schematic diagram of the contact mode is shown in Figure 7. Use the ANSYS finite element simulation software to impose contact constraints on the finite element modeling of warp-knitted wire mesh: first, establish a contact pair for the critical contact monofilament obtained in step 1.3), and the defined contact element is the CONTA176 element in the ANSYS software. The unit is the TARGE170 unit in the ANSYS software; secondly, the unit option KEYOPT(3) of the CONTA176 unit is set to 1, which means that the contact behavior between monofilaments is a cross-beam contact; the unit option KEYOPT(5 ) is set to 3, which means that the gap is automatically closed or the intrusion is reduced during ANSYS static analysis; the unit option KEYOPT(12) of the CONTA176 unit is set to 5, and the setting is 5, which means that the contact behavior between monofilaments is not separated and can slide Then, set different real constants for contact pairs with different numbers, use the contact wizard of ANSYS software to detect and process the established contact pairs, and modify the unit options of CONTA176 units accordingly for warnings or errors, so as to realize economic Contact constraint imposition of finite element model of braided wire mesh.
步骤5)实现经编金属丝网的静力学分析,具体步骤如下:Step 5) realize the static analysis of warp knitted wire mesh, concrete steps are as follows:
步骤5.1)首先,以固结约束方式约束经编金属丝网有限元模型原本要受载荷的边界,对经编金属丝网原本要铰接约束的边界施加载荷,进行一次静力学分析;Step 5.1) First, constrain the bounds of the warp-knitted wire mesh finite element model to be loaded originally by means of consolidation constraints, apply a load to the bounds of the warp-knitted wire mesh originally to be hinged, and perform a static analysis;
步骤5.2)基于步骤5.1)的静力学分析结果,可获取受固结约束边界的节点支反力编号,此组节点支反力编号作为经编金属丝网原本要施加载荷的节点编号;Step 5.2) Based on the static analysis results of step 5.1), the nodal support reaction number of the boundary subject to consolidation constraints can be obtained, and this group of nodal support reaction number is used as the nodal number of the warp-knitted wire mesh to apply the load originally;
步骤5.3)对步骤5.2)得到的节点编号施加载荷,铰接经编金属丝网的另一边边界,最终实现经编金属丝网的静力学分析。Step 5.3) Apply a load to the node numbers obtained in step 5.2), and hinge the other side boundary of the warp-knitted wire mesh, and finally realize the static analysis of the warp-knitted wire mesh.
以网眼式经编金属丝网为研究对象,采用基于有限元法的经编金属丝网力学特性分析,建立其15mm×15mm尺寸的有限元模型,对其施加载荷约束,模拟其双向拉伸过程。图8为15mm×15mm尺寸经编金属丝网横、纵向受载荷0.75N所产生的X方向变形示图;图9为15mm×15mm尺寸经编金属丝网横、纵向受载荷0.75N所产生的Y方向变形示图;15mm×15mm尺寸经编金属丝网结构的力学分析结果如表2所示。Taking the mesh-type warp-knitted wire mesh as the research object, using the finite element method to analyze the mechanical properties of the warp-knitted wire mesh, establish its finite element model with a size of 15mm×15mm, apply load constraints to it, and simulate its bidirectional stretching process . Figure 8 is a schematic diagram of the X-direction deformation of warp-knitted wire mesh with a size of 15mm×15mm under a horizontal and vertical load of 0.75N; FIG. The deformation diagram in the Y direction; the mechanical analysis results of the 15mm×15mm warp-knitted wire mesh structure are shown in Table 2.
表2双向拉伸的15mm×15mm经编金属丝网横纵向应变值Table 2 Transverse and longitudinal strain values of biaxially stretched 15mm×15mm warp-knitted wire mesh
综上,本发明具备如下技术优点:In summary, the present invention has the following technical advantages:
1、本发明针对各种编织结构的金属丝网具有一般性,根据经编金属丝网的图像可得到最小重复结构的型值点,从而确定单丝走向,进而根据整体经编金属丝网的型值点可快速参数化建立整体的经编金属丝网的有限元模型。1. The present invention has generality for wire meshes of various weaving structures. According to the image of the warp-knitted wire mesh, the type value point of the minimum repeating structure can be obtained, thereby determining the direction of the monofilament, and then according to the overall warp-knitted wire mesh Type value points can quickly parameterize the finite element model of the overall warp-knitted wire mesh.
2、本发明基于有限元法实现经编金属丝网的有限元建模及其静力学分析,可以真实反映出经编金属丝网普遍存在的各向异性特性,从而指导各向同性经编金属丝网的研制,降低经编金属丝网的制作成本。2. The present invention realizes the finite element modeling and static analysis of the warp-knitted wire mesh based on the finite element method, which can truly reflect the ubiquitous anisotropic characteristics of the warp-knitted wire mesh, thereby guiding isotropic warp-knitted metal The development of wire mesh reduces the production cost of warp knitted wire mesh.
3、本发明基于有限元法建立的有限元模型,可对其进行载荷分析及经编金属丝网弹性参数的等效等,为未来索网-丝网结构找形分析、经编金属丝网的铺设过程提供参考。3. The present invention is based on the finite element model established by the finite element method, which can carry out load analysis and the equivalent of the elastic parameters of the warp-knitted wire mesh, etc., for future cable net-wire mesh structure form-finding analysis, warp-knitted wire mesh The laying process provides a reference.
本实施方式中没有详细叙述的部分属本行业的公知的常用手段,这里不一一叙述。以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。The parts that are not described in detail in this embodiment are commonly known and commonly used means in this industry, and will not be described here one by one. The above examples are only illustrations of the present invention, and do not constitute a limitation to the protection scope of the present invention. All designs that are the same as or similar to the present invention fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710418285.4A CN107357954B (en) | 2017-06-06 | 2017-06-06 | Analysis of mechanical properties of warp-knitted wire mesh based on finite element method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710418285.4A CN107357954B (en) | 2017-06-06 | 2017-06-06 | Analysis of mechanical properties of warp-knitted wire mesh based on finite element method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107357954A true CN107357954A (en) | 2017-11-17 |
CN107357954B CN107357954B (en) | 2020-12-18 |
Family
ID=60271741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710418285.4A Active CN107357954B (en) | 2017-06-06 | 2017-06-06 | Analysis of mechanical properties of warp-knitted wire mesh based on finite element method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107357954B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109325252A (en) * | 2018-08-01 | 2019-02-12 | 中国人民解放军海军工程大学 | Method, device and electronic equipment for testing mechanical properties of threaded connection structure |
CN113158510A (en) * | 2021-03-02 | 2021-07-23 | 同济大学 | Optimized shape finding method for cable net structure |
CN113297762A (en) * | 2021-05-24 | 2021-08-24 | 航天晨光股份有限公司 | Three-dimensional modeling method of metal net and equivalent model modeling method thereof |
CN116187134A (en) * | 2023-02-10 | 2023-05-30 | 西安电子科技大学 | Method for analyzing transmission and reflection coefficients of mesh antenna wire mesh |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101930495A (en) * | 2010-09-25 | 2010-12-29 | 西安电子科技大学 | An electromechanical comprehensive analysis method for planar slotted array antenna based on grid conversion |
CN103761368A (en) * | 2014-01-02 | 2014-04-30 | 西安电子科技大学 | Cable net reflecting surface antenna surface accuracy and tension state simultaneous design method |
US8914258B2 (en) * | 2011-06-28 | 2014-12-16 | Space Systems/Loral, Llc | RF feed element design optimization using secondary pattern |
CN104278779A (en) * | 2014-10-31 | 2015-01-14 | 中国建筑第二工程局有限公司 | Cable net of large decorative curtain wall and installation stretch-draw forming method thereof |
CN104504284A (en) * | 2015-01-04 | 2015-04-08 | 西安电子科技大学 | Loose cable net form-finding method based on catenary element |
CN104573372A (en) * | 2015-01-19 | 2015-04-29 | 西安电子科技大学 | Reticular deployable antenna deploying process cable force analysis method |
CN106156429A (en) * | 2016-07-05 | 2016-11-23 | 西安电子科技大学 | A kind of Electrostatic deformation film antenna finite element modeling method based on information in kind |
CN106204741A (en) * | 2016-06-23 | 2016-12-07 | 西安空间无线电技术研究所 | A kind of Mesh reflector antenna metal silk screen 3D solid structure implementation method |
CN106295025A (en) * | 2016-08-15 | 2017-01-04 | 东南大学 | Crossed metal wires thermal contact resistance limited element analysis technique based on Rough Surfaces |
CN106446385A (en) * | 2016-09-14 | 2017-02-22 | 西安电子科技大学 | A Method for On-orbit Vibration Analysis of Spaceborne Antenna with Cable Net Reflector |
CN106599504A (en) * | 2016-12-23 | 2017-04-26 | 西安电子科技大学 | Electromechanical coupling model-based space net-shaped antenna power load analysis method |
-
2017
- 2017-06-06 CN CN201710418285.4A patent/CN107357954B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101930495A (en) * | 2010-09-25 | 2010-12-29 | 西安电子科技大学 | An electromechanical comprehensive analysis method for planar slotted array antenna based on grid conversion |
US8914258B2 (en) * | 2011-06-28 | 2014-12-16 | Space Systems/Loral, Llc | RF feed element design optimization using secondary pattern |
CN103761368A (en) * | 2014-01-02 | 2014-04-30 | 西安电子科技大学 | Cable net reflecting surface antenna surface accuracy and tension state simultaneous design method |
CN104278779A (en) * | 2014-10-31 | 2015-01-14 | 中国建筑第二工程局有限公司 | Cable net of large decorative curtain wall and installation stretch-draw forming method thereof |
CN104504284A (en) * | 2015-01-04 | 2015-04-08 | 西安电子科技大学 | Loose cable net form-finding method based on catenary element |
CN104573372A (en) * | 2015-01-19 | 2015-04-29 | 西安电子科技大学 | Reticular deployable antenna deploying process cable force analysis method |
CN106204741A (en) * | 2016-06-23 | 2016-12-07 | 西安空间无线电技术研究所 | A kind of Mesh reflector antenna metal silk screen 3D solid structure implementation method |
CN106156429A (en) * | 2016-07-05 | 2016-11-23 | 西安电子科技大学 | A kind of Electrostatic deformation film antenna finite element modeling method based on information in kind |
CN106295025A (en) * | 2016-08-15 | 2017-01-04 | 东南大学 | Crossed metal wires thermal contact resistance limited element analysis technique based on Rough Surfaces |
CN106446385A (en) * | 2016-09-14 | 2017-02-22 | 西安电子科技大学 | A Method for On-orbit Vibration Analysis of Spaceborne Antenna with Cable Net Reflector |
CN106599504A (en) * | 2016-12-23 | 2017-04-26 | 西安电子科技大学 | Electromechanical coupling model-based space net-shaped antenna power load analysis method |
Non-Patent Citations (9)
Title |
---|
FENG GAO ET AL: "Shape Control of Membrane Reflector with Electrostatic Forming", 《IEEE》 * |
YIQUN ZHANG ET AL: "Deployment analysis considering the cable-net tension effect for deployable antennas", 《AEROSPACE SCIENCE AND TECHNOLOGY》 * |
丛红莲 等: "基于NURBS曲面的经编针织物三维模型", 《纺织学报》 * |
刘轶群: "拉索索丝应力分布规律及索夹节点优化研究", 《中国优秀硕士学位论文全文数据库电子期刊 工程科技II辑》 * |
张丽哲 等: "经编组织的三维仿真与动态实现", 《纺织学报》 * |
张丽哲: "经编针织物的计算机三维仿真", 《中国博士学位论文全文数据库电子期刊 工程科技I辑》 * |
温建荣: "地面大型轻柔索网结构的索网设计与分析", 《中国优秀硕士学位论文全文数据库电子期刊 工程科技II辑》 * |
王伟: "三维编织复合材料的细观建模", 《中国优秀硕士学位论文全文数据库电子期刊 工程科技I辑》 * |
高扬: "大型星载网状天线分析模型调整与测量", 《中国优秀硕士学位论文全文数据库电子期刊 信息科技辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109325252A (en) * | 2018-08-01 | 2019-02-12 | 中国人民解放军海军工程大学 | Method, device and electronic equipment for testing mechanical properties of threaded connection structure |
CN113158510A (en) * | 2021-03-02 | 2021-07-23 | 同济大学 | Optimized shape finding method for cable net structure |
CN113158510B (en) * | 2021-03-02 | 2022-06-14 | 同济大学 | Optimized shape finding method for cable net structure |
CN113297762A (en) * | 2021-05-24 | 2021-08-24 | 航天晨光股份有限公司 | Three-dimensional modeling method of metal net and equivalent model modeling method thereof |
CN113297762B (en) * | 2021-05-24 | 2023-09-08 | 航天晨光股份有限公司 | Three-dimensional modeling method of metal net sleeve and equivalent model modeling method thereof |
CN116187134A (en) * | 2023-02-10 | 2023-05-30 | 西安电子科技大学 | Method for analyzing transmission and reflection coefficients of mesh antenna wire mesh |
CN116187134B (en) * | 2023-02-10 | 2023-11-21 | 西安电子科技大学 | Analysis method of transmission and reflection coefficient of wire mesh for mesh antenna |
Also Published As
Publication number | Publication date |
---|---|
CN107357954B (en) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107357954A (en) | A kind of knitted wire mesh mechanical characteristic analysis based on FInite Element | |
Meng et al. | A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation | |
Drach et al. | Processing of fiber architecture data for finite element modeling of 3D woven composites | |
CN109063275B (en) | Method for constructing three-dimensional polycrystalline microstructure material model based on FEAP | |
Zhang et al. | Finite element analysis of 3D braided composites based on three unit-cells models | |
CN108629147A (en) | A kind of polycrystal Geometric Modeling Method | |
Joglekar et al. | Modeling of 3D woven composites using the digital element approach for accurate prediction of kinking under compressive loads | |
Liu et al. | Topological design of microstructures using periodic material-field series-expansion and gradient-free optimization algorithm | |
Weeger et al. | Nonlinear multi-scale modelling, simulation and validation of 3D knitted textiles | |
CN103455670B (en) | Based on the method for layout optimal design of multi-assembly structure system of multi-point constraint | |
EP1817703A2 (en) | Fabric modelling | |
CN107742047B (en) | A kind of design method becoming relative density octet lattice structure | |
Zhang et al. | Form-finding design of cable–mesh deployable reflector antennas considering wire mesh properties | |
McCartney et al. | Pattern flattening for orthotropic materials | |
US20240181714A1 (en) | Integrated optimal designing and manufacturing method involving structure layout, geometry and 3d printing | |
Mikeš et al. | Quasicontinuum method extended to irregular lattices | |
Liu et al. | An equivalent continuum multiscale formulation for 2D geometrical nonlinear analysis of lattice truss structure | |
Nomura et al. | Simultaneous optimization of topology and orientation of anisotropic material using isoparametric projection method | |
Balzani et al. | Construction of statistically similar representative volume elements | |
US10650173B2 (en) | Support apparatus, design support method, and program | |
US20190258763A1 (en) | Methods And Systems For Manufacturing Products/Parts Made Of Carbon Fiber Reinforced Composite Based On Numerical Simulations | |
Bouzidi et al. | Finite elements for 2D problems of pressurized membranes | |
CN111737906B (en) | A method for calculating the maximum horizontal deformation of the mining area based on FLAC3D | |
US12021302B1 (en) | Analysis method for transmission and reflection coefficients of wire mesh of mesh antenna | |
Cui et al. | Shape design of curved surface of membrane structure using developable surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |