CN107293704B - 碳包覆硫化锂纳米晶体复合材料、其制备方法与应用 - Google Patents
碳包覆硫化锂纳米晶体复合材料、其制备方法与应用 Download PDFInfo
- Publication number
- CN107293704B CN107293704B CN201610224534.1A CN201610224534A CN107293704B CN 107293704 B CN107293704 B CN 107293704B CN 201610224534 A CN201610224534 A CN 201610224534A CN 107293704 B CN107293704 B CN 107293704B
- Authority
- CN
- China
- Prior art keywords
- lithium sulfide
- solvent
- preparation
- carbon
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 title claims abstract description 104
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 41
- 239000002131 composite material Substances 0.000 title claims abstract description 41
- 239000002159 nanocrystal Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000011248 coating agent Substances 0.000 title description 4
- 238000000576 coating method Methods 0.000 title description 4
- 229920000642 polymer Polymers 0.000 claims abstract description 33
- 239000002245 particle Substances 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 14
- 238000001354 calcination Methods 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims description 55
- 239000006185 dispersion Substances 0.000 claims description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical group CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 13
- 239000002105 nanoparticle Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 239000002861 polymer material Substances 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 230000001476 alcoholic effect Effects 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 239000010406 cathode material Substances 0.000 abstract description 6
- 239000003575 carbonaceous material Substances 0.000 abstract description 2
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 20
- 239000003792 electrolyte Substances 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 239000007774 positive electrode material Substances 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 6
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 6
- 239000005077 polysulfide Substances 0.000 description 5
- 229920001021 polysulfide Polymers 0.000 description 5
- 150000008117 polysulfides Polymers 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910000733 Li alloy Inorganic materials 0.000 description 3
- 229910013553 LiNO Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- -1 negative electrode Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种碳包覆硫化锂纳米晶体复合材料、其制备方法与应用。所述碳包覆硫化锂纳米晶体复合材料的制备方法包括:提供硫化锂溶液和高分子溶液,再将硫化锂溶液和高分子溶液混合制得复合物粉体,之后进行煅烧,获得所述碳包覆硫化锂纳米晶体复合材料。本发明的方法简单有效,条件温和,可以高效制备出粒径在5nm左右且包裹在碳材料内的硫化锂纳米晶体,此种材料可以显著降低硫化锂正极材料首次充电所需要克服的能垒、提高正极材料的导电率并且极大提升电池的循环性能。
Description
技术领域
本发明具体涉及一种碳包覆硫化锂纳米晶体复合材料、其制备方法与应用,属于电化学技术领域。
背景技术
随着传统资源和能源日益紧缺、环境问题日趋严重,开发新的能源储存及转换技术已经成为各国的能源战略重点。其中,锂硫电池是极具发展潜力和应用前景的高能量密度二次电池。它以硫做为主要正极活性物质,具有高比容量(1675mAh/g)和高能量密度(2600Wh/kg),实际能量密度也已经能达到400Wh/kg,同时硫具有廉价而无毒的特点,因此锂硫电池正日益受到关注。
从1960年至今,锂硫电池正极材料主要分为以下三类:单质硫、硫化锂和有机硫,而硫化锂由于其可以实现无锂负极匹配,可以提升电池安全性能从而备受关注。但是由于硫化锂是一种电子和离子的绝缘体,如何让硫化锂得到电子而充分反应就成为了问题,目前一般都是通过添加导电添加剂使之与硫化锂颗粒实现电接触进行的。从纳米科学的角度考虑,如果硫化锂颗粒越小,则比表面积越大,与导电成分接触越充分,电子在硫化锂颗粒中的运动距离越短,硫化锂的利用率将得到提高,因此制备硫化锂的纳米颗粒是解决硫化锂低的电子电导的有效手段。另外硫化锂作为硫的还原态,在首次充电的时候需要克服一个大约1V的势垒,而此势垒随着硫化锂颗粒的降低而降低,因此硫化锂的纳米化显得更加重要。
但是,现有的硫化锂纳米化工艺复杂,不容易重复,特别是其中的液相方法所得硫化锂颗粒的粒度偏大,产生这种情况原因是物料微观混合差,发生沉淀反应时成核量小,成核不均匀,直接影响了硫化锂颗粒的粒度,且锂硫电池中存在另一个问题,即电池充放电过程中硫形成多硫化物并大量溶解于电解液中,造成电池性能下降。
另一方面,虽然硫化锂的纳米化能在一定程度上解决硫的弱导电性缺陷,但是在锂硫电池中还存在另外的一些问题,例如,电池充放电过程中硫形成多硫化物并大量溶解于电解液中,造成电池性能下降。因此,利用有机或无机材料对含硫材料进行表面包覆以防止多硫化物溶出是锂硫电池研究生产另外一个关键的工作。例如,有研究人员利用聚吡咯包覆硫化锂颗粒制备了硫化锂正极。又如,还有研究人员利用N掺杂石墨烯和硫化锂复合形成硫化锂和碳的复合物正极材料。这些方案均可以不同程度的提高锂硫电池的性能,然而其无法解决硫化锂正极材料首次充电的势垒问题,首次充电的极化现象仍非常严重。
发明内容
本发明的主要目的在于提供一种碳包覆硫化锂纳米晶体复合材料、其制备方法与应用,以克服现有技术的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种碳包覆硫化锂纳米晶体复合材料的制备方法,其包括:
(1)将硫化锂溶解在第一溶剂中形成硫化锂溶液,以及将高分子材料溶解在第二溶剂中形成高分子溶液,所述第一溶剂与第二溶剂互溶,且室温下硫化锂在第二溶剂中的溶解度小于在第一溶剂中的溶解度,同时第二溶剂的沸点高于第一溶剂;
(2)在使所述高分子溶液保持被持续强烈扰动的状态下,将所述硫化锂溶液分批加入所述高分子溶液,形成均匀分散液;
(3)保持使所述均匀分散液被扰动的状态,并通过加热方式除去所述分散液内的溶剂,形成聚合物包覆硫化锂纳米颗粒的复合物粉体;
(4)将所述聚合物包覆硫化锂纳米颗粒的复合物粉体在保护性气氛中煅烧,获得所述碳包覆硫化锂纳米晶体复合材料。
较为优选的,室温下硫化锂在第二溶剂中的溶解度小于在第一溶剂中的溶解度的1/10。
较为优选的,硫化锂在第一溶剂中的溶解度为10~30g/L。
本发明还提供了由前述任一种方法制备的碳包覆硫化锂纳米晶体复合材料,其中硫化锂纳米晶体的粒径为2~5nm,碳包覆层厚度为10~20nm。
本发明还提供了所述碳包覆硫化锂纳米晶体复合材料于制备储能装置,例如锂硫电池中的用途。
与现有技术相比,本发明的优点包括:
(1)本发明提供的碳包覆硫化锂纳米晶体复合材料为粒径在5nm左右且包裹在碳材料内部的硫化锂纳米晶体,此种材料可以显著降低硫化锂正极材料首次充电所需要克服的能垒、提高正极材料的导电率并且极大提升电池的循环性能。
(2)本发明提供的碳包覆硫化锂纳米晶体复合材料制备工艺简便,效率高,条件温和,原料成本低,无需昂贵的生产设备,操作过程简便,产物粒径小,且可调控,重复性和稳定性好,特别是由于采用的溶剂之间沸点不同的限制作用,硫化锂纳米颗粒之间不会产生团聚,且可以实现聚合物在硫化锂晶体表面的均匀包覆。
附图说明
图1a和图1b为本发明实施例1中碳包覆硫化锂纳米晶体复合材料的透射电镜图;
图2a和图2b为本发明实施例1中基于碳包覆硫化锂纳米晶体复合材料的扣式电池(CR2025)后的首次活化及后续循环曲线图;
图3为本发明实施例1中基于碳包覆硫化锂纳米晶体复合材料的扣式电池(CR2025)后的循环性能曲线图。
具体实施方式
如下将对本发明的技术方案作更为详尽的解释说明。但是,应当理解,在本发明范围内,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
本发明实施例的一个方面提供了一种碳包覆硫化锂纳米晶体复合材料的制备方法,其包括:
(1)将硫化锂溶解在第一溶剂中形成硫化锂溶液,以及将高分子材料溶解在第二溶剂中形成高分子溶液,所述第一溶剂与第二溶剂互溶,且室温下硫化锂在第二溶剂中的溶解度小于在第一溶剂中的溶解度,同时第二溶剂的沸点高于第一溶剂;
(2)在使所述高分子溶液保持被持续强烈扰动的状态下,将所述硫化锂溶液分批加入所述高分子溶液,形成均匀分散液;
(3)保持使所述均匀分散液被扰动的状态,并通过加热方式除去所述分散液内的溶剂,形成聚合物包覆硫化锂纳米颗粒的复合物粉体;
(4)将所述聚合物包覆硫化锂纳米颗粒的复合物粉体在保护性气氛中煅烧,获得所述碳包覆硫化锂纳米晶体复合材料。
在一些较为优选的实施方案之中,室温下硫化锂在第二溶剂中的溶解度小于在第一溶剂中的溶解度的1/10。
在一些较为优选的实施方案之中,硫化锂在第一溶剂中的溶解度为10-30g/L。
在一些较为优选的实施方案之中,所述第一溶剂选自醇类溶剂,例如可以采用乙醇、乙二醇、甲醇中的任意一种或两种以上的组合,但不限于此。
在一些较为优选的实施方案之中,所述第二溶剂选自有机溶剂,例如可以采用二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮中的任意一种或两种以上的组合,但不限于此。
进一步的,在前述步骤(2)中,可以通过高速搅拌、剧烈振荡、超声等多种方式使所述高分子溶液保持被持续强烈扰动的状态,优选通过持续搅拌方式使所述高分子溶液保持被持续强烈扰动的状态。
进一步的,在前述步骤(3)中,可以通过高速搅拌、剧烈振荡、超声等多种方式使所述均匀分散液保持被持续强烈扰动的状态,优选通过持续搅拌方式使所述均匀分散液保持被持续扰动的状态。
本发明实施例所提供的碳包覆硫化锂纳米晶体复合材料的制备方法中,所选的制备纳米硫化锂颗粒的体系发生的是晶体析出反应,反应速度快,传递过程为制备过程中的控制步骤;对于此体系,利用两种可以互溶的溶剂,可以使得溶液分散性更好,热量传导更均匀,快速挥发溶剂的目的是防止晶体析出时之间相互碰撞生长,其次聚合物析出包覆也会起到抑制颗粒尺寸长大的作用,两者共同作用从而得到颗粒小的硫化锂纳米晶体。本发明中所选的制备碳包覆硫化锂纳米晶体的体系发生的是高分子单体吸附在硫化锂纳米晶体表面,然后高温碳化,最终形成碳包覆硫化锂纳米晶体结构;对于此体系,利用反应容易进行,反应程度容易控制的特性,可以实现聚合物在硫化锂颗粒表面均匀聚合包覆继而形成碳包覆硫化锂纳米晶体的材料。
在一些较为优选的实施方案之中,在所述高分子溶液中,高分子材料与第二溶剂的质量比为0.1~5:100。
在一些较为优选的实施方案之中,所述高分子材料选自聚合物,所述聚合物包括聚丙烯腈、聚乙烯吡咯烷酮、聚乙二醇和聚偏氟乙烯中的任意一种或两种以上的组合。
其中,聚合物具有柔性且易合成的优点,利用导电聚合物制备碳包覆纳米硫化锂晶体的复合材料可以防止多硫化物溶出、降低首次充电势垒,原理在于:首先聚合物在纳米硫化锂表面进行包裹,可以形成物理包覆,抑制多硫离子的溶出,其次聚合物碳化后形成的碳包覆硫化锂纳米晶体复合材料可以提升材料的电子导电率,降低电极材料的阻抗并且提升活性物质的利用率。
在一些较为优选的实施方案之中,步骤(3)包括:在持续搅拌所述分散液的情况下,通过将所述分散液加热至100~200℃而除去所述分散液内的溶剂。
在一些较为优选的实施方案之中,步骤(4)中采用的煅烧温度为600~900℃(不可超过900℃),时间为0.5~10小时。
进一步的,步骤(4)中采用的保护性气氛可以是氮气或者氩气气氛或该两者的混合气氛。
在一些较为具体的实施案例中,所述制备方法可以包括以下步骤:
(1)将硫化锂溶解在溶剂1(即前述的第一溶剂)中,形成溶液1(即前述的硫化锂溶液);
(2)将聚合物溶解在溶剂2(即前述的第二溶剂)中,形成溶液2(即前述的高分子溶液或聚合物溶液);
(3)在强烈搅拌的情况下,将溶液1垂直缓慢滴加到溶液2中,保持搅拌形成均匀分散液。
(4)将上述均匀分散液在搅拌、惰性气体保护下,加热去挥发溶剂,可得聚合物包覆硫化锂粉末。
(5)将上述粉末在高温、氩气保护下煅烧,即得碳包裹硫化锂纳米晶体复合材料。
本发明实施例的另一个方面提供了由前述任一种方法制备的碳包覆硫化锂纳米晶体复合材料,其中硫化锂纳米晶体的粒径为2~5nm,碳包覆层厚度为10~20nm。
本发明实施例的另一个方面提供了所述碳包覆硫化锂纳米晶体复合材料于制备化学储能装置,例如锂硫电池中的用途。
例如,在一些实施例中提供了一种锂硫电池正极材料,其包含所述碳包覆硫化锂纳米晶体复合材料。
进一步的,可以将所述碳包覆硫化锂纳米晶体复合材料与粘结剂混合后涂覆于铝箔等集流体上作为锂硫电池的正极材料,粘结剂可选用PVDF等锂硫电池常用的粘结剂。
例如,在一些实施例中提供了一种锂硫电池,其包含所述碳包覆硫化锂纳米晶体复合材料或所述正极材料。
其中,适用的负极可以是金属锂、锂合金、锂粉等。
其中,适用的电解液可以为LiTFSI+DOL/DME(1:1,体积比)或者LiTFSI+LiNO3+DOL/DME(1:1,体积比)等常用的锂硫电池的电解液。
以下将结合若干实施例及附图对本发明的技术方案作进一步的说明。
实施例1:
将1g市售的硫化锂粉末溶解于50mL乙醇中,得到溶液1,将1g聚丙烯腈(PAN)加入到50mL N,N-二甲基甲酰胺(DMF)中并搅拌分散得到溶液2。在搅拌下,溶液1缓慢逐滴加入到溶液2中,由于DMF与乙醇互溶,因此可形成均匀分散液。所述的均匀分散液经150℃加热挥发溶剂,干燥后得到PAN包覆硫化锂纳米颗粒。之后将所制得的PAN包覆硫化锂纳米颗粒在氩气保护下,保持5℃/min的升温速度至700℃,恒温2小时煅烧。冷却后即得碳包覆硫化锂纳米晶体(亦称碳包覆硫化锂纳米晶体复合材料)。如图1a-图1b所示,用透射电镜观察,该产物为颗粒状,其粒径为2-5纳米。
之后将上述碳包覆硫化锂纳米晶体复合材料与粘结剂混合后涂覆于铝箔作为锂硫电池的正极材料,其中粘结剂可选用PVDF等锂硫电池常用的粘结剂。其后将所述正极材料、负极、电解液等组配形成扣式电池(CR2025)。其中负极可采用金属锂、锂合金、锂粉等。电解液可以采用LiTFSI+DOL/DME(1:1,体积比)或者LiTFSI+LiNO3+DOL/DME(1:1,体积比)等常用的锂硫电池的电解液。如图2a、图2b和图3所示,该扣式电池(CR2025)经过100次循环之后仍有约80%的容量保留率。
实施例2:
将1g市售的硫化锂粉末溶解于50mL乙醇中,得到溶液1。将1g聚乙二醇(PEG)加入到50mL乙醇中并搅拌分散得到溶液2。在搅拌下,溶液1缓慢逐滴加入到溶液2中。由于选用相同的溶剂,因此可形成均匀分散液。产物经100℃加热挥发溶剂,干燥后得到PAN包覆硫化锂纳米颗粒。将所制得PAN包覆硫化锂纳米颗粒在氩气保护下,保持5℃/min的升温速度至600℃,恒温2小时煅烧。冷却后,即得碳包覆硫化锂纳米晶体(亦称碳包覆硫化锂纳米晶体复合材料)。
之后,参照实施例1,将上述碳包覆硫化锂纳米晶体复合材料制成锂硫电池的正极材料,其中粘结剂可选用PVDF等锂硫电池常用的粘结剂。其后将所述正极材料、负极、电解液等组配形成扣式电池(CR2025)。其中负极可采用金属锂、锂合金、锂粉等。电解液可以采用LiTFSI+DOL/DME(1:1,体积比)或者LiTFSI+LiNO3+DOL/DME(1:1,体积比)等常用的锂硫电池的电解液。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。
Claims (7)
1.一种碳包覆硫化锂纳米晶体复合材料的制备方法,其特征在于包括:
(1)将硫化锂溶解在第一溶剂中形成硫化锂溶液,以及将高分子材料溶解在第二溶剂中形成高分子溶液,其中高分子材料与第二溶剂的质量比为0.1~5:100,所述第一溶剂与第二溶剂互溶,且室温下硫化锂在第二溶剂中的溶解度小于在第一溶剂中的溶解度的1/10,同时第二溶剂的沸点高于第一溶剂,所述高分子材料选自聚合物,所述聚合物包括聚丙烯腈、聚乙烯吡咯烷酮、聚乙二醇和聚偏氟乙烯中的任意一种或两种以上的组合;
(2)在使所述高分子溶液保持被持续强烈扰动的状态下,将所述硫化锂溶液分批加入所述高分子溶液,形成均匀分散液;
(3)保持使所述均匀分散液被扰动的状态,并通过加热方式除去所述分散液内的溶剂,形成聚合物包覆硫化锂纳米颗粒的复合物粉体;
(4)将所述聚合物包覆硫化锂纳米颗粒的复合物粉体在保护性气氛中煅烧,获得所述碳包覆硫化锂纳米晶体复合材料。
2.根据权利要求1所述的制备方法,其特征在于:室温下硫化锂在第一溶剂中的溶解度为10~30 g/L。
3.根据权利要求1所述的制备方法,其特征在于:所述第一溶剂选自醇类溶剂,所述醇类溶剂选自乙醇、乙二醇、甲醇中的任意一种或两种以上的组合。
4.根据权利要求1所述的制备方法,其特征在于:所述第二溶剂选自有机溶剂,所述有机溶剂选自二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮中的任意一种或两种以上的组合。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)包括:在持续搅拌所述分散液的情况下,通过将所述分散液加热至100~200℃而除去所述分散液内的溶剂。
6.根据权利要求1所述的制备方法,其特征在于:步骤(4)中采用的煅烧温度为600~900℃,时间为0.5~10小时,所采用的保护性气氛包括氮气和/或氩气气氛。
7.根据权利要求1所述的制备方法,其特征在于:所述碳包覆硫化锂纳米晶体复合材料之中硫化锂纳米晶体的粒径为2~5nm,碳包覆层厚度为10~20nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610224534.1A CN107293704B (zh) | 2016-04-12 | 2016-04-12 | 碳包覆硫化锂纳米晶体复合材料、其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610224534.1A CN107293704B (zh) | 2016-04-12 | 2016-04-12 | 碳包覆硫化锂纳米晶体复合材料、其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107293704A CN107293704A (zh) | 2017-10-24 |
CN107293704B true CN107293704B (zh) | 2019-11-05 |
Family
ID=60093759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610224534.1A Active CN107293704B (zh) | 2016-04-12 | 2016-04-12 | 碳包覆硫化锂纳米晶体复合材料、其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107293704B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108987713B (zh) * | 2018-07-20 | 2021-08-13 | 广东工业大学 | 一种碳/硫化锂复合材料的制备方法 |
CN110444812B (zh) * | 2019-07-01 | 2021-03-12 | 合肥工业大学 | 一种电解液和包括其的锂硫电池 |
CN111313018B (zh) * | 2019-12-06 | 2022-04-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | 纳米碳质/硫化锂复合材料及其制备方法与应用 |
CN111628150B (zh) * | 2020-06-04 | 2021-10-08 | 合肥工业大学 | 一种用于锂-硫电池的碳包覆硫化锂复合电极及其制备方法 |
CN112133919B (zh) * | 2020-09-23 | 2022-03-15 | 杭州怡莱珂科技有限公司 | 一种硫化物-碳原位复合材料、电极及其制备方法与电池 |
CN115332514B (zh) * | 2022-08-26 | 2024-11-22 | 北京理工大学 | 硫化锂-聚合物复合正极材料及其制备方法与锂硫电池 |
CN115986112B (zh) * | 2023-03-21 | 2023-06-13 | 成都顿威新型金属材料有限公司 | 一种硫化锂的制备方法及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004175698A (ja) * | 2002-11-26 | 2004-06-24 | Toray Ind Inc | 塞栓粒子材料の製造方法 |
CN104716306A (zh) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | 一种锂-硫电池正极用复合电极材料及其制备方法 |
WO2015103305A1 (en) * | 2013-12-30 | 2015-07-09 | The Regents Of The University Of California | Lithium sulfide materials and composites containing one or more conductive coatings made therefrom |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10950849B2 (en) * | 2011-06-30 | 2021-03-16 | Cornell University | Hybrid materials and nanocomposite materials, methods of making same, and uses thereof |
US10147966B2 (en) * | 2014-02-20 | 2018-12-04 | Sila Nanotechnologies, Inc. | Metal sulfide composite materials for batteries |
-
2016
- 2016-04-12 CN CN201610224534.1A patent/CN107293704B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004175698A (ja) * | 2002-11-26 | 2004-06-24 | Toray Ind Inc | 塞栓粒子材料の製造方法 |
CN104716306A (zh) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | 一种锂-硫电池正极用复合电极材料及其制备方法 |
WO2015103305A1 (en) * | 2013-12-30 | 2015-07-09 | The Regents Of The University Of California | Lithium sulfide materials and composites containing one or more conductive coatings made therefrom |
Also Published As
Publication number | Publication date |
---|---|
CN107293704A (zh) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107293704B (zh) | 碳包覆硫化锂纳米晶体复合材料、其制备方法与应用 | |
Man et al. | Interfacial design of silicon/carbon anodes for rechargeable batteries: A review | |
Chen et al. | Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries | |
WO2021104201A1 (zh) | 负极材料及其制备方法,电池和终端 | |
Guo et al. | Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium‐storage material | |
JP6563477B2 (ja) | 多元系複合負極材料、その製造方法及びそれを含むリチウムイオン電池 | |
CN105000548B (zh) | 一种新型三维氮掺杂石墨烯复合材料体系的制备方法 | |
CN105374991B (zh) | 金属锂-骨架碳复合材料及其制备方法、负极和二次电池 | |
CN102723470B (zh) | 一种含有多孔金属的锂-硫电池正极材料 | |
JP5754855B2 (ja) | 非水電解質二次電池用負極及び非水電解質二次電池 | |
Di Lecce et al. | Multiwalled carbon nanotubes anode in lithium-ion battery with LiCoO2, Li [Ni1/3Co1/3Mn1/3] O2, and LiFe1/4Mn1/2Co1/4PO4 cathodes | |
WO2015188726A1 (zh) | 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用 | |
CN111924887B (zh) | 一种微米二硫化钴复合材料的制备方法 | |
Zhu et al. | Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li–S batteries | |
CN108183039B (zh) | 碳修饰铌酸钛材料的制备方法、碳修饰铌酸钛材料、锂离子电容器及其负极浆料 | |
CN107710463A (zh) | 锂‑硫电池用正极、其制造方法以及包含其的锂‑硫电池 | |
CN105914369B (zh) | 一种纳米级碳包覆硫化锂复合材料及其制备方法和应用 | |
JP6354895B2 (ja) | 電極材料、該電極材料の製造方法、電極、及びリチウムイオン電池 | |
CN106784690A (zh) | 一种复合正极材料及其制备方法以及全固态锂硫电池 | |
CN111769272A (zh) | 一种Bi@C空心纳米球复合材料及其制备方法与应用 | |
CN103915602A (zh) | 新型锂硫电池正极及包括此正极的锂硫电池 | |
Pathak et al. | A new strategic approach to modify electrode and electrolyte for high performance Li–S battery | |
Peng et al. | Enhanced electrochemical performance of sulfur/polyacrylonitrile composite by carbon coating for lithium/sulfur batteries | |
He et al. | Confining SnSe nanobelts in 3D rGO aerogel for achieving stable and fast lithium storage | |
CN105000545A (zh) | 一种锂离子电池人造石墨/焦炭负极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |