CN107282025B - 纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法 - Google Patents

纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法 Download PDF

Info

Publication number
CN107282025B
CN107282025B CN201710259035.0A CN201710259035A CN107282025B CN 107282025 B CN107282025 B CN 107282025B CN 201710259035 A CN201710259035 A CN 201710259035A CN 107282025 B CN107282025 B CN 107282025B
Authority
CN
China
Prior art keywords
nano
cellulose
aeroge
functionalized
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710259035.0A
Other languages
English (en)
Other versions
CN107282025A (zh
Inventor
刘宏治
耿璧垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN201710259035.0A priority Critical patent/CN107282025B/zh
Publication of CN107282025A publication Critical patent/CN107282025A/zh
Application granted granted Critical
Publication of CN107282025B publication Critical patent/CN107282025B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Abstract

本发明公开了一种纳米纤维素基官能化气凝胶型重金属离子吸附材料的制备方法,其通过结合化学预处理和机械处理的方法制备一种表面功能化的纳米纤维,并对该纳米纤维进行化学修饰制备出官能化气凝胶作为重金属离子吸附材料,制得的官能化气凝胶的孔隙率达到99%以上,对重金属的移除率超过96%以上,可广泛适用于重金属污染处理。

Description

纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法
技术领域
本发明涉及一种有重金属吸附材料的制备方法,具体涉及一种纳米纤维素基官能化气凝胶的制备方法。
背景技术
随着我国经济的高速发展,近年来在金属采选及冶炼、金属表面处理及热处理加工、制革及电池制造等过程中带来的重金属工业废水污染问题日益恶化,这不仅给生态环境造成了严重危害,而且也威胁到人类的健康。由于重金属一般具有很大的毒性、高的移动性和低的中毒浓度,在水体中不能被生物降解,易在生物体内富集。人通过饮水及食物链的作用,可使重金属在人体内富集而中毒,甚至导致死亡。因此,重金属污染也已成为近些年来一直被人们提及的重大环境污染问题。
目前,工业重金属废水处理方法有很多,主要包括化学沉淀法、电解法、离子交换法、氧化还原法和吸附法等。较其他处理方法而言,吸附法具有高效节能、操作简单、试用性强、二次污染小、对低浓度污染去除能力较好等优点,是目前处理处理重金属污染废水最为有效且经济的方法之一。吸附法主要是利用吸附材料与污染物之间物理或化学作用达到移除效果,因此材料表面官能团类型和比表面积对吸附效果影响很大。粉末或颗粒状活性炭、生物质碳是目前最常用的处理工业重金属废水污染的吸附材料,虽然它们吸附效果较好,但是也普遍存在回收再生难、生物降解性差及成本偏高等缺点。综上所述,研制开发一种具有回收再生性好、且表面富有对重金属离子兼具有良好吸附能力化学基团的新型“绿色”吸附材料,具有非常重要的意义。
纳米纤维素基气凝胶(Aerogel)是一种由力学性能优异、直径为纳米级(1~100nm)的微纤组成的连续三维网络结构纳米多孔材料,其孔隙率可高达90%以上,密度最低可至0.001g/cm3,比表面积也较微米级的多孔材料更大,纤维素分子链上含有大量易化学改性的活性羟基,同时纳米来源广泛、可再生、易降解、化学和热稳定性好等。此外,与无机气凝胶(如石墨烯、硅气凝胶)和聚合物气凝胶相比,它们韧性更好且环境友好,因此是一种理想的吸附材料载体。
目前,纳米纤维素气凝胶用作重金属吸附材料研究较少,现有报道采用纳米纤维素基气凝胶作为吸附材料,虽然有一定吸附能力,但其吸附效果不太好,且该气凝胶的湿强度差,压缩回弹性不佳,不利于其吸附回收再利用,导致其实用性下降。因此,纳米纤维素基气凝胶对重金属的吸附性能和强度仍有待进一步提高。
发明内容
本发明所要解决的技术问题是通过结合化学预处理和机械处理的方法制备一种表面功能化的纳米纤维,以该纳米纤维素为基体制备出官能化气凝胶作为重金属吸附材料,其具有良好的吸附性能、和可再回收性、适应范围广的优点。
本发明解决其技术问题所采用的技术方案是:一种纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法,包括如下步骤:
(1)表面带负电荷的纳米纤维素的制备:取竹浆或木浆在水中机械搅拌使其分散且固含量为0.1~2wt%,按每克竹浆或木浆加入0.01~0.3mmol的TEMPO和0.1~3mmol溴化钠,搅拌溶解后,按每克竹浆或木浆滴加1~20mmol/g的次氯酸钠到混合体系中,反应过程中用0.1~0.5mol/L NaOH稀溶液调控pH值在10,直到溶液的pH值不再改变,停止反应,抽滤并用蒸馏水将氧化后的纤维洗至中性,最后将纤维悬浮液通过高压均质机打磨后得到均匀透明的表面带负电荷的NFC分散液,电荷滴定后的微纤表面羧基电荷含量在0.4~2.3mmol/g;
(2)表面带正电荷的纳米纤维素的制备:将竹浆或木浆或经过打浆预处理后的竹浆或木浆分散于质量浓度1~10%NaOH溶液中,定量加入2,3-环氧丙基三甲基氯化铵,搅拌混匀后在25~70℃反应2-10h;反应完毕后,用质量浓度0.5~1%盐酸调pH至7,用蒸馏水抽滤洗涤至无剩余反应试剂;最后将纤维悬浮液通过高压均质机打磨,得到表面带正电荷的NFC分散液。电荷滴定结果显示微纤表面季铵盐基团含量为0.3~1.5mmol/g;
(3)官能化气凝胶的制备:将步骤1制得的表面带负电荷的纳米纤维素和官能化试剂按任意比例混合反应,得到第一混合溶液;将步骤2制得的表面带正电荷的纳米纤维素和官能化试剂在酸性条件下任意比例混合,得到第二混合溶液;将第一混合溶液、第二混合溶液溶液分别置于-70~-40℃预冷冻2~4h后再冷冻干燥48h,然后把冷冻干燥得到的气凝胶放入烘箱中85℃下干燥2~5h进行烘干固化,分别得到表面带负电荷兼官能化基团、表面带正电荷兼官能化基团的纳米纤维素基官能化气凝胶,将上述气凝胶作为重金属离子的吸附材料。
进一步地,所述步骤4中官能化试剂:半胱氨酸、乙二胺四乙酸、乙二胺三乙酸、聚丙烯酰胺、3-巯基丙基三甲氧基硅烷、3-氨丙基三甲氧基硅烷、双(三甲基硅烷基)氨基钾、N,O-双(三甲基硅烷基)乙酰胺、氨甲基三甲基硅烷。
本发明的有益效果是:本发明通过结合化学预处理和机械处理的方法制备一种表面功能化的纳米纤维,并将该纳米纤维与官能化试剂混合反应制备官能化气凝胶,制得的官能化气凝胶的孔隙率达到90%以上,在用于种重金属离子吸附时5小时的吸附率超过96%以上,可广泛适用于吸附各种重金属离子的水体污染,如汞离子、镉离子、铬离子、铜离子、铅离子等。
附图说明
图1为本发明实施例1、2和对比例1、2、3的吸附性能对比图;
图2为本发明实施例1和对比例4的吸附性能对比图;
图3为本发明实施例2和对比例2的对不同重金属的吸附性能对比图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
实施例1
高电荷阴离子纳米纤维素与3-巯基丙基三甲氧基硅烷1:0.5(w/w)的官能化气凝胶的制备如下:
取1g竹浆在50g水中机械搅拌使其分散,加入0.01mmol的TEMPO和1mmol溴化钠,搅拌溶解后,滴加2.5mmol/g的次氯酸钠到混合体系中,反应过程中用0.5mol/L NaOH稀溶液调控pH值在10,直到溶液的pH值不再改变,停止反应,抽滤并用蒸馏水将氧化后的纤维洗至中性,最后将纤维悬浮液通过高压均质机打磨后得到均匀透明的表面带负电荷的NFC分散液。
将阴离子纳米纤维素分散液pH调至4,加入3-巯基丙基三甲氧基硅烷(固体质量比=1:0.5(w/w)搅拌反应3h,将其改性液置于-60℃冷冻4h后冷冻干燥,干燥好的气凝胶置于烘箱中(85℃)5h即可。其性能见表1及图1。
实施例2
高电荷阴离子纳米纤维素与3-巯基丙基三甲氧基硅烷1:1.5(w/w)的官能化气凝胶的制备如下:
取1g竹浆在50g水中机械搅拌使其分散,加入0.01mmol的TEMPO和1mmol溴化钠,搅拌溶解后,滴加2.5mmol/g的次氯酸钠到混合体系中,反应过程中用0.5mol/L NaOH稀溶液调控pH值在10,直到溶液的pH值不再改变,停止反应,抽滤并用蒸馏水将氧化后的纤维洗至中性,最后将纤维悬浮液通过高压均质机打磨后得到均匀透明的表面带负电荷的NFC分散液。
将阴离子纳米纤维素分散液pH调至4,加入3-巯基丙基三甲氧基硅烷(固体质量比=1:0.5(w/w)搅拌反应3h,将其改性液置于-60℃冷冻4h后冷冻干燥,干燥好的气凝胶置于烘箱中(85℃)5h即可。其性能见表1及图1,见表3及图3。
实施例3
无电荷纳米纤维素制备如下:
取1g竹浆在50g水中机械搅拌使其充分散,将其置于细胞破碎机中超声破碎(1200w)1h,制备的NFC悬液。其性能见表3。
实施例4
低电荷纳米纤维素制备如下:
取1g竹浆在50g水中机械搅拌使其分散,加入0.01mmol的TEMPO和1mmol溴化钠,搅拌溶解后,滴加1.5mmol/g的次氯酸钠到混合体系中,反应过程中用0.5mol/L NaOH稀溶液调控pH值在10,直到溶液的pH值不再改变,停止反应,抽滤并用蒸馏水将氧化后的纤维洗至中性,最后将纤维悬浮液通过高压均质机打磨后得到均匀透明的表面带负电荷的NFC分散液。其性能见表3。
实施例5
高电荷纳米纤维素制备如下:
取1g竹浆在50g水中机械搅拌使其分散,加入0.01mmol的TEMPO和1mmol溴化钠,搅拌溶解后,滴加2.5mmol/g的次氯酸钠到混合体系中,反应过程中用0.5mol/L NaOH稀溶液调控pH值在10,直到溶液的pH值不再改变,停止反应,抽滤并用蒸馏水将氧化后的纤维洗至中性,最后将纤维悬浮液通过高压均质机打磨后得到均匀透明的表面带负电荷的NFC分散液。其性能见表3。
对比例1
无电荷纳米纤维素气凝胶的制备如下:
将纳米纤维素分散液置于-60℃冷冻4h后冷冻干燥即可。其性能见表1及图1。
对比例2
高电荷阴离子纳米纤维素气凝胶的制备如下:
将高电荷阴离子纳米纤维素分散液置于-60℃冷冻4h后冷冻干燥即可。其性能见表1及图1,见表3及图3。
对比例3
低电荷阴离子纳米纤维素与3-巯基丙基三甲氧基硅烷1:1.5(w/w)的官能化气凝胶的制备如下:
将低电荷阴离子纳米纤维素分散液pH调至4,加入3-巯基丙基三甲氧基硅烷(固体质量比=1:0.5(w/w)搅拌反应3h,将其改性液置于-60℃冷冻4h后冷冻干燥,干燥好的气凝胶置于烘箱中(85℃)5h即可。其性能见表1及图1。
对比例4
商业化活性炭(200目),比表面积1482.4g/m2。其性能见表2及图2
表1本发明阴离子纳米纤维素基官能化气凝胶实施例和对比例的吸附性能数据
孔隙率 27mg/L Hg2+吸附量 27mg/L Hg2+移除率
实施例1 99.3% 123.3mg/g 91.3%
实施例2 99.09% 129.6mg/g 96.1%
对比例1 99.1% 3.7mg/g 2.42%
对比例2 99.6% 32.5mg/g 24.1%
对比例3 99.1% 121.1mg/g 89.7%
表2本发明阴离子纳米纤维素基官能化气凝胶实施例和对比例的吸附性能数据
孔隙率 27mg/L Hg2+吸附量 27mg/L Hg2+移除率
实施例2 99.09% 129.7mg/g 96.1%
对比例4 102.3mg/g 75.1%
表3本发明阴离子纳米纤维素基官能化气凝胶实施例和对比例的吸附性能数据
孔隙率计算公式:孔隙率P=[(ρ-ρ0)/ρ]×100%
式中:ρ0材料的表观密度,g/cm3;ρ材料的真实密度,g/cm3
移除率(%)计算公式为:[(Co-C)/Co]×100%;
式中,Co为吸附金属离子前的初始浓度,C为吸附金属离子后的平衡浓度;表4本发明实施例电荷数据
上述所述的实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,凡在本发明的精神和原则之内所做的任何修改、等同替换。改进等,均应包括在本发明的保护范围之内。

Claims (1)

1.一种纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法,其特征在于:包括如下步骤:
(1)表面带负电荷的纳米纤维素的制备:取竹浆或木浆在水中机械搅拌使其分散且固含量为0.1~2wt%,按每克竹浆或木浆加入0.01~0.3mmol的TEMPO和0.1~3mmol溴化钠,搅拌溶解后,按每克竹浆或木浆滴加1~20mmol/g的次氯酸钠到混合体系中,反应过程中用0.1~0.5mol/L NaOH稀溶液调控pH值在10,直到溶液的pH值不再改变,停止反应,抽滤并用蒸馏水将氧化后的纤维洗至中性,最后将纤维悬浮液通过高压均质机打磨后得到均匀透明的表面带负电荷的NFC分散液,电荷滴定后的微纤表面羧基电荷含量在0.4~2.3mmol/g;
(2)表面带正电荷的纳米纤维素的制备:将竹浆或木浆或经过打浆预处理后的竹浆或木浆分散于质量浓度1~10%NaOH溶液中,定量加入2,3-环氧丙基三甲基氯化铵,搅拌混匀后在25~70℃反应2-10h;反应完毕后,用质量浓度0.5~1%盐酸调pH至7,用蒸馏水抽滤洗涤至无剩余反应试剂;最后将纤维悬浮液通过高压均质机打磨,得到表面带正电荷的NFC分散液;电荷滴定结果显示微纤表面季铵盐基团含量为0.3~1.5mmol/g;
(3)官能化气凝胶的制备:将步骤(1)制得的表面带负电荷的纳米纤维素和官能化试剂按任意比例混合反应,得到第一混合溶液;所述官能化试剂选自半胱氨酸、乙二胺四乙酸、乙二胺三乙酸、聚丙烯酰胺、3-巯基丙基三甲氧基硅烷、3-氨丙基三甲氧基硅烷、双(三甲基硅烷基)氨基钾、N,O-双(三甲基硅烷基)乙酰胺、氨甲基三甲基硅烷;
将步骤(2)制得的表面带正电荷的纳米纤维素和官能化试剂在酸性条件下任意比例混合,得到第二混合溶液;
将第一混合溶液、第二混合溶液分别置于-70~-40℃预冷冻2~4h后再冷冻干燥48h,然后把冷冻干燥得到的气凝胶放入烘箱中85℃下干燥2~5h进行烘干固化,分别得到表面带负电荷兼官能化基团、表面带正电荷兼官能化基团的纳米纤维素基官能化气凝胶,将上述气凝胶作为重金属离子的吸附材料。
CN201710259035.0A 2017-04-20 2017-04-20 纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法 Active CN107282025B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710259035.0A CN107282025B (zh) 2017-04-20 2017-04-20 纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710259035.0A CN107282025B (zh) 2017-04-20 2017-04-20 纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法

Publications (2)

Publication Number Publication Date
CN107282025A CN107282025A (zh) 2017-10-24
CN107282025B true CN107282025B (zh) 2018-09-21

Family

ID=60093921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710259035.0A Active CN107282025B (zh) 2017-04-20 2017-04-20 纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN107282025B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569527A (zh) * 2018-12-14 2019-04-05 北京化工大学 一种基于纤维素基的多功能吸附材料及其制备方法及其应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840988B (zh) * 2017-11-24 2020-08-28 中国科学技术大学 一种纳米纤维素气凝胶的制备方法及保温隔热材料
CN109158088A (zh) * 2018-09-06 2019-01-08 潘钕 一种纤维素气凝胶吸附剂的制备方法
CN109289811A (zh) * 2018-11-06 2019-02-01 大连理工大学 含有巯基和氨基的纤维素纳米晶体吸附剂及其制备方法
CN109225162B (zh) * 2018-11-09 2022-03-01 华东理工大学 一种天冬氨酸改性核桃壳吸附剂的制备方法
CN109575364B (zh) * 2018-11-14 2020-09-22 华南理工大学 一种透明且油墨强粘附性的印刷式柔性电子基底材料及其制备和应用
CN110437503B (zh) * 2019-07-30 2021-10-08 武汉理工大学 基于静电吸附协同化学交联增强的纳米纤维素基气凝胶及其制备方法
CN110824101B (zh) * 2019-11-14 2022-05-13 兰州蓝星纤维有限公司 一种测定碳纤维表面官能团的方法
CN112626882B (zh) * 2020-12-11 2021-09-03 四川大学 一种合成革用水性聚氨酯发泡层的制备方法
CN112680277B (zh) * 2020-12-16 2022-06-03 正大国际科技(常德)集团有限公司 一种利用餐厨废弃油制备硫化脂肪酸的方法及润滑油的方法
CN112591733B (zh) * 2020-12-16 2022-07-12 正大国际科技(常德)集团有限公司 改性的气凝胶纳米颗粒及其应用
CN113150364B (zh) * 2021-03-29 2022-04-08 南京林业大学 一种光热响应型生物基气凝胶及其制备方法
CN113845672B (zh) * 2021-11-05 2023-09-26 内蒙古农业大学 一种沙柳纤维素纳米纤维、气凝胶球及制备与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733079A (zh) * 2009-12-30 2010-06-16 东南大学 功能化纳米纤维重金属离子吸附材料及其制备方法
CN103497476A (zh) * 2013-10-16 2014-01-08 苏州大学 一种基于两性纤维素的复合材料及其应用
CN104761749A (zh) * 2015-04-03 2015-07-08 四川大学 纤维素纳米纤维的超支化改性方法
CN105148868A (zh) * 2015-09-17 2015-12-16 浙江农林大学 纳米纤维素基复合气凝胶型有机染料吸附材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733079A (zh) * 2009-12-30 2010-06-16 东南大学 功能化纳米纤维重金属离子吸附材料及其制备方法
CN103497476A (zh) * 2013-10-16 2014-01-08 苏州大学 一种基于两性纤维素的复合材料及其应用
CN104761749A (zh) * 2015-04-03 2015-07-08 四川大学 纤维素纳米纤维的超支化改性方法
CN105148868A (zh) * 2015-09-17 2015-12-16 浙江农林大学 纳米纤维素基复合气凝胶型有机染料吸附材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109569527A (zh) * 2018-12-14 2019-04-05 北京化工大学 一种基于纤维素基的多功能吸附材料及其制备方法及其应用

Also Published As

Publication number Publication date
CN107282025A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107282025B (zh) 纳米纤维素基官能化气凝胶型重金属吸附材料的制备方法
Jiang et al. Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion
CN107983300B (zh) 二氧化锰修饰的生物炭复合材料及其制备方法和应用
CN104772113B (zh) 一种石墨烯/蒙脱石纳米复合材料及其制备方法与应用
CN105148868B (zh) 纳米纤维素基复合气凝胶型有机染料吸附材料的制备方法
CN105498707B (zh) 一种改性氧化石墨烯/壳聚糖复合材料的制备方法及应用
CN105236507B (zh) 利用β‑环糊精壳聚糖与核桃壳生物炭复合的吸附剂去除废水中的六价铬的方法
CN109019597A (zh) 一种纤维素/氧化石墨烯碳气凝胶的制备方法及其应用
CN102247811B (zh) 天然火山渣-海藻酸钠复合微球水体净化材料制备方法及其应用
Wang et al. Polyacrylic acid/carboxymethyl cellulose/activated carbon composite hydrogel for removal of heavy metal ion and cationic dye
CN111229157A (zh) 一种无机聚合物改性膨润土吸附材料的制备方法
CN109809519A (zh) 一种有机-无机复合污水处理剂及其制备方法
US11369943B2 (en) Starch-based carbon composite and use thereof in selective and efficient adsorption of mercury ion and methylene blue
Zhang et al. Uranium extraction from seawater by novel materials: A review
CN106390949A (zh) 壳聚糖/纳米氧化纤维素/纳米季铵盐纤维素醚共混膜的制备方法
CN107051393B (zh) 硅酸镁-水热碳复合材料及其制备方法和应用
CN106215883B (zh) 一种重金属废水吸附材料及其制备方法
Sikdar et al. Synthesis of MgO micro-rods coated with charred dextrose and its application for the adsorption of selected heavy metals from synthetic and real groundwater
CN107790099B (zh) 一种用于磷和重金属污染水的吸附材料及其制备方法
Luo et al. Hydrothermal synthesis of hydroxyl terminated polymer boron adsorbents
Singha et al. Adsorption behavior of potato starch-silica nanobiocomposite
CN109231341A (zh) 一种饮用水中重金属离子的去除方法
CN115121228B (zh) 一种镧改性碳纳米管水凝胶其制备方法和应用
CN108530935B (zh) 一种聚苯胺基复合功能材料、制备方法及应用
CN105692583A (zh) 软模板法制备β-环糊精基掺硼介孔碳材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant