CN107261871A - A kind of preparation method of polyethyleneimine/sodium lignin sulfonate composite membrane - Google Patents
A kind of preparation method of polyethyleneimine/sodium lignin sulfonate composite membrane Download PDFInfo
- Publication number
- CN107261871A CN107261871A CN201710668477.0A CN201710668477A CN107261871A CN 107261871 A CN107261871 A CN 107261871A CN 201710668477 A CN201710668477 A CN 201710668477A CN 107261871 A CN107261871 A CN 107261871A
- Authority
- CN
- China
- Prior art keywords
- membrane
- composite
- preparation
- deionized water
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 98
- 239000002131 composite material Substances 0.000 title claims abstract description 48
- 229920002873 Polyethylenimine Polymers 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 title abstract description 5
- 210000004379 membrane Anatomy 0.000 claims abstract description 64
- 229920002492 poly(sulfone) Polymers 0.000 claims abstract description 16
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 13
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000001338 self-assembly Methods 0.000 claims abstract description 11
- 238000004132 cross linking Methods 0.000 claims abstract description 9
- 210000002469 basement membrane Anatomy 0.000 claims abstract description 6
- 238000001728 nano-filtration Methods 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 229920005552 sodium lignosulfonate Polymers 0.000 claims description 25
- 239000008367 deionised water Substances 0.000 claims description 23
- 229910021641 deionized water Inorganic materials 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 12
- 238000000108 ultra-filtration Methods 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 4
- 230000009881 electrostatic interaction Effects 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 32
- 238000000926 separation method Methods 0.000 description 25
- 230000004907 flux Effects 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- 229920001732 Lignosulfonate Polymers 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229920005610 lignin Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004537 pulping Methods 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical class CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/74—Natural macromolecular material or derivatives thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Water Supply & Treatment (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种层层自组装聚乙烯亚胺/木质素磺酸钠复合纳滤膜及其制备方法,属于分离膜技术领域。The invention relates to a layer-by-layer self-assembled polyethyleneimine/sodium lignosulfonate composite nanofiltration membrane and a preparation method thereof, belonging to the technical field of separation membranes.
背景技术Background technique
膜分离技术是一种新兴的混合物分离技术,其利用膜对混合物中各组分的选择透过性以外界能量或化学位差为驱动力来分离、提纯、浓缩及富集目的产物。相较于可传统的分离手段,膜分离技术具有分离条件温和、能耗低、可以实现连续分离、易于工业放大、操作简便、运行稳定性高、无污染等优越特性。膜分离技术分类繁多,根据膜截留粒子直径从大到小可以分为微滤、超滤、纳滤和反渗透。纳滤膜的截留粒子直径介于超滤与反渗透之间,因此纳滤可以在相对较低的操作压力下对大分子或高价离子实现截留,与此同时还能保证较高的通量。纳滤膜这种特殊的选择性截留性能使其在某些分离过程中具有特别的优势,例如饮用水软化、污水处理、食品工程、生物工程等。Membrane separation technology is an emerging mixture separation technology, which uses the selective permeability of the membrane to each component in the mixture to separate, purify, concentrate and enrich the target product with external energy or chemical potential difference as the driving force. Compared with traditional separation methods, membrane separation technology has the advantages of mild separation conditions, low energy consumption, continuous separation, easy industrial scale-up, simple operation, high operational stability, and no pollution. There are many types of membrane separation technologies, which can be divided into microfiltration, ultrafiltration, nanofiltration and reverse osmosis according to the diameter of the membrane intercepted particles from large to small. The intercepted particle diameter of nanofiltration membrane is between ultrafiltration and reverse osmosis, so nanofiltration can intercept macromolecules or high-valent ions under relatively low operating pressure, while ensuring high flux. The special selective rejection performance of nanofiltration membrane makes it have special advantages in certain separation processes, such as drinking water softening, sewage treatment, food engineering, biological engineering, etc.
纳滤膜自二十世纪80年代被开发出来之后,很多研究者已经做过丰富的研究,最主要的研究就是开发和制备新型的膜材料。目前纳滤膜可以分为有机纳滤膜、无机纳滤膜和复合型纳滤膜。有机聚合物膜是目前商业化程度比较高的一类纳滤膜,其材料基本上与反渗透膜材料类似,主要有磺化聚砜类纳滤膜、聚酰胺类纳滤膜、纤维素纳滤膜等。无机纳滤膜目前主要有陶瓷膜、金属氧化膜等,其有极为良好的化学稳定性、机械强度和生物耐受性,但有机纳滤膜脆性大、弹性小、价格高,因此为得到广泛的应用。近年来,以有机纳滤膜和无机纳滤膜为基础开发的复合型纳滤膜的相关研究已经成为纳滤膜制备研究的一个热门话题。Since the nanofiltration membrane was developed in the 1980s, many researchers have done a lot of research, the most important research is to develop and prepare new membrane materials. At present, nanofiltration membranes can be divided into organic nanofiltration membranes, inorganic nanofiltration membranes and composite nanofiltration membranes. Organic polymer membranes are a type of nanofiltration membrane with a relatively high degree of commercialization at present. Their materials are basically similar to reverse osmosis membrane materials, mainly including sulfonated polysulfone nanofiltration membranes, polyamide nanofiltration membranes, cellulose filter membrane, etc. At present, inorganic nanofiltration membranes mainly include ceramic membranes, metal oxide membranes, etc., which have extremely good chemical stability, mechanical strength and biological tolerance, but organic nanofiltration membranes are brittle, less elastic, and expensive, so they are widely used. Applications. In recent years, research on composite nanofiltration membranes developed on the basis of organic nanofiltration membranes and inorganic nanofiltration membranes has become a hot topic in nanofiltration membrane preparation research.
通过聚电解质层层自组装法可以制备具有特殊功能或者高通量、高截留的复合纳滤膜。其分离层比较均匀,致密,排列组装比较整齐,最大的优点就是能将单层膜厚控制在纳米级,能够通过改变自组装条件在分子水平上控制膜的组成、结构,进而改变其分离性能。聚电解质指的是单体上具有带电基团的聚合物,此类聚合物在极性溶剂中溶解的时会电离出与带电基团相应的阴阳离子,从而带上电荷。因此,利用带有不同电荷的电解质之间的静电相互作用,可以将阴阳离子聚电解质逐层吸附在基底材料的表面上,从而实现聚电解质的层层自组装。Composite nanofiltration membranes with special functions or high flux and high rejection can be prepared by polyelectrolyte layer-by-layer self-assembly method. The separation layer is relatively uniform and compact, and the arrangement and assembly are relatively neat. The biggest advantage is that the single-layer film thickness can be controlled at the nanometer level, and the composition and structure of the film can be controlled at the molecular level by changing the self-assembly conditions, thereby changing its separation performance. . Polyelectrolyte refers to a polymer with a charged group on a monomer. When this type of polymer is dissolved in a polar solvent, it will ionize anion and cation corresponding to the charged group, thereby being charged. Therefore, by utilizing the electrostatic interaction between electrolytes with different charges, the anion and cation polyelectrolytes can be adsorbed layer by layer on the surface of the substrate material, thereby realizing the layer-by-layer self-assembly of polyelectrolytes.
木质素是一种非结晶性的、三维网状酚类的复杂天然高分子聚合物,木质素与纤维素、半纤维素是构成高等植物细胞壁的主要组分。木质素是仅次于纤维素的,储量最为丰富的天然高分子化合物。木质素磺酸钠(SL)主要可以从亚硫酸盐法煮浆造纸废液中提取出来,即酸法制浆产生的红液及碱法制浆产生的黑液,也可以通过碱木质素磺化而制得。木质素磺酸钠的基本组分是苯甲基丙烷衍生物,木质素的苯环或侧链上的氢、甲氧基、羟基等基团被磺酸基取代而生成了木质素磺酸盐,常见的木质素磺酸盐为黄褐色粉末。木质素磺酸钠的相对分子量分布很不均匀,随来源原料和制浆工艺的不同有很大的差别,常见的木质素磺酸钠分子量在3500-15000 Da以上。木素磺酸钠的基本组分为苯甲基丙烷衍生物,是具有非极性的芳香基团,同时其含有极性的磺酸基、羟基、羧基等亲水性基团,因此其亲水性很强,而亲油性较弱,易溶于水,但不溶于丙酮、乙醇等有机溶剂。因此木质素磺酸钠有良好的表面活性,可作为一种阴离子表面活性剂。Lignin is a non-crystalline, three-dimensional reticular phenolic complex natural polymer. Lignin, cellulose, and hemicellulose are the main components of higher plant cell walls. Lignin is the most abundant natural polymer compound after cellulose. Sodium lignosulfonate (SL) can be mainly extracted from the waste liquor of sulfite pulping and papermaking, that is, the red liquor produced by acid pulping and the black liquor produced by alkaline pulping, and it can also be extracted by alkali lignosulfonate made. The basic components of sodium lignosulfonate are benzyl propane derivatives, and the hydrogen, methoxyl, and hydroxyl groups on the benzene ring or side chain of lignin are replaced by sulfonic acid groups to form lignosulfonate , common lignin sulfonate is yellow-brown powder. The relative molecular weight distribution of sodium lignosulfonate is very uneven, and it varies greatly with the source of raw materials and pulping process. The molecular weight of common sodium lignosulfonate is above 3500-15000 Da. The basic components of sodium lignosulfonate are benzyl propane derivatives, which are non-polar aromatic groups, and contain polar sulfonic acid groups, hydroxyl groups, carboxyl groups and other hydrophilic groups, so it is hydrophilic Strong water, but weak lipophilicity, soluble in water, but insoluble in acetone, ethanol and other organic solvents. Therefore, sodium lignosulfonate has good surface activity and can be used as an anionic surfactant.
如果将聚乙烯亚胺(Polyethyleneimine,PEI)作为聚阳离子电解质和木质素磺酸钠(Sodium Ligninsulfonate,SL)作为聚阴离子电解质在聚砜超滤膜表面形成自组装复合层,之后通过戊二醛交联使其形成结构稳定的复合层,从而制成具有良好分离性能的聚电解质层层自组装纳滤膜。If polyethyleneimine (PEI) is used as the polycation electrolyte and sodium ligninsulfonate (Sodium Ligninsulfonate, SL) is used as the polyanion electrolyte to form a self-assembled composite layer on the surface of the polysulfone ultrafiltration membrane, then through glutaraldehyde exchange Combined to form a structurally stable composite layer, thereby making a self-assembled polyelectrolyte layer-by-layer nanofiltration membrane with good separation performance.
发明内容Contents of the invention
本发明的目的在于提供一种层层自组装聚乙烯亚胺/木质素磺酸钠复合纳滤膜的制备方法,通过在聚砜超滤膜的表面利用聚乙烯亚胺与木质素磺酸钠之间的正负电解质间静电力吸附作用形成自组装复合层,之后通过戊二醛交联使其形成结构稳定的复合层,提高纳滤膜的选择性能。The object of the present invention is to provide a kind of preparation method of layer by layer self-assembly polyethyleneimine/sodium lignosulfonate composite nanofiltration membrane, by utilizing polyethyleneimine and sodium lignosulfonate on the surface of polysulfone ultrafiltration membrane The electrostatic force adsorption between the positive and negative electrolytes forms a self-assembled composite layer, which is then cross-linked by glutaraldehyde to form a structurally stable composite layer to improve the selectivity of the nanofiltration membrane.
为了达到上述目的,本发明提供了一种层层自组装聚乙烯亚胺/木质素磺酸钠复合纳滤膜的制备方法,其包括以下步骤:In order to achieve the above object, the invention provides a kind of preparation method of self-assembled layer by layer polyethyleneimine/sodium lignosulfonate composite nanofiltration membrane, which comprises the following steps:
1)基膜的预处理,采用聚砜(PSF)超滤膜作为基膜,将其在去离子中浸泡一定时间后浸入NaOH水溶液中,恒温水浴一段时间;之后将膜取出,用去离子水洗至中性;1) Pretreatment of the base membrane, using polysulfone (PSF) ultrafiltration membrane as the base membrane, soaking it in deionized water for a certain period of time, then immersing it in NaOH aqueous solution, and keeping it in a constant temperature water bath for a period of time; then take out the membrane and wash it with deionized water to neutral;
2) 复合纳滤膜的制备,将聚砜基膜浸入聚乙烯亚胺溶液中一定时间,将PEI溶液倒出,用去离子水冲洗数次;随后将其浸入木质素磺酸钠溶液中同样的时间,用去离子水冲洗数次;至此完成一个双层的自组装,重复上述步骤多次,可得到复合不同层数的纳滤膜;2) Preparation of composite nanofiltration membrane, immerse polysulfone-based membrane in polyethyleneimine solution for a certain period of time, pour out PEI solution, rinse several times with deionized water; then immerse it in sodium lignosulfonate solution Rinse several times with deionized water; so far a double-layer self-assembly is completed, and the above steps are repeated several times to obtain nanofiltration membranes with different layers;
3)复合纳滤膜的交联,将不同层数的复合纳滤膜浸入戊二醛水溶液中静置一段时间后将其取出,用去离子水清洗复合膜数次,完成交联。3) Cross-linking of composite nanofiltration membranes, immerse composite nanofiltration membranes of different layers in glutaraldehyde aqueous solution and let them stand for a period of time, take them out, wash the composite membranes with deionized water several times, and complete cross-linking.
作为优选:As preferred:
所述步骤1)中,基膜在去离子水中浸泡时间为6~24 h,NaOH水溶液质量浓度为0.2~1.0wt%,恒温水浴的温度为30~60℃,时间为15~60 min。In the step 1), the basement membrane is soaked in deionized water for 6-24 h, the mass concentration of NaOH aqueous solution is 0.2-1.0 wt%, the temperature of the constant temperature water bath is 30-60°C, and the time is 15-60 min.
所述步骤2)中,聚砜基膜在聚电解质溶液中静置的时间为10~60 min,去离子水清洗数次为5~10次。In the step 2), the polysulfone-based membrane is left to stand in the polyelectrolyte solution for 10-60 minutes, and is washed with deionized water for 5-10 times.
所述步骤2)中,聚乙烯亚胺水溶液的质量浓度为0.1~1.0 wt%,木质素磺酸钠的质量浓度为0.1~1.6 wt%,自组装的双层数位2~12。In the step 2), the mass concentration of polyethyleneimine aqueous solution is 0.1-1.0 wt%, the mass concentration of sodium lignosulfonate is 0.1-1.6 wt%, and the number of self-assembled double layers is 2-12.
所述步骤3)中,戊二醛水溶液的质量浓度为0.2~2.0 wt%,复合纳滤膜在戊二醛水溶液中静置时间为0.5~4.5 h,去离子水清洗次数为5~15次。In the step 3), the mass concentration of the glutaraldehyde aqueous solution is 0.2~2.0 wt%, the resting time of the composite nanofiltration membrane in the glutaraldehyde aqueous solution is 0.5~4.5 h, and the number of times of washing with deionized water is 5~15 times .
有益效果:Beneficial effect:
通过聚乙烯亚胺与木质素磺酸钠之间的正负电解质间静电力吸附作用形成自组装复合层,之后通过戊二醛交联使其形成结构稳定的复合层。本发明制备的聚乙烯亚胺/木质素磺酸钠复合纳滤膜用于纳滤膜分离水溶液中的MgSO4,可表现出优异的分离性能。本发明的制膜工艺简单,所制复合纳滤膜的分离性能提升,可提高纳滤的分离效率,具有极大的发展潜力。The self-assembled composite layer is formed by electrostatic adsorption between positive and negative electrolytes between polyethyleneimine and sodium lignosulfonate, and then cross-linked by glutaraldehyde to form a structurally stable composite layer. The polyethyleneimine/sodium lignosulfonate composite nanofiltration membrane prepared by the invention is used for the nanofiltration membrane to separate MgSO 4 in aqueous solution, and can exhibit excellent separation performance. The membrane-making process of the invention is simple, the separation performance of the prepared composite nanofiltration membrane is improved, the separation efficiency of the nanofiltration can be improved, and the membrane has great development potential.
附图说明Description of drawings
图1是聚砜基膜和七层复合膜的表面扫电镜图。Fig. 1 is a surface scanning electron microscope image of a polysulfone base membrane and a seven-layer composite membrane.
具体实施方式detailed description
本发明提供一种用于纳滤分离MgSO4水溶液的聚乙烯亚胺/木质素磺酸钠复合纳滤膜及其制备方法,下面结合实施例对本发明作进一步的说明,但不能理解为对本发明的可实施范围的限定。 The present invention provides a kind of polyethylene imine/lignosulfonate sodium composite nanofiltration membrane and preparation method thereof for separating MgSO aqueous solution by nanofiltration, below in conjunction with embodiment the present invention is described further, but can not be interpreted as to the present invention limitations on the scope of implementation.
分离性能评测:采用平板膜性能评测装置测定聚乙烯亚胺/木质素磺酸钠复合纳滤膜分离水溶液体系的纳滤分离性能:料液浓度为2.0 g/L的MgSO4水溶液,操作温度25°C,纳滤操作压差为1.0 MPa。Separation performance evaluation: The nanofiltration separation performance of the polyethyleneimine/sodium lignosulfonate composite nanofiltration membrane separation aqueous solution system was measured by using a flat-plate membrane performance evaluation device: MgSO 4 aqueous solution with a feed concentration of 2.0 g/L, operating temperature 25 °C, the operating pressure difference of nanofiltration is 1.0 MPa.
纳滤分离性能的评价,即膜的渗透通量和截留率;Evaluation of nanofiltration separation performance, that is, membrane permeation flux and rejection rate;
1)渗透通量(J),反应膜的渗透性,其定义式为:J = M / (A · t) 或J = V / (A · t)1) Permeate flux ( J ), the permeability of the reaction membrane, its definition is: J = M / ( A t ) or J = V / ( A t )
式中,M和V分别为渗透过膜的渗透液质量(kg)和体积(m3);A为膜面积,m2;t为操作时间,h;In the formula, M and V are the mass (kg) and volume (m 3 ) of permeate permeated through the membrane respectively; A is the membrane area, m 2 ; t is the operation time, h;
2)截留率(R),反应膜的选择性,其定义式为:R = (C f – C p ) / C f × 100%2) Rejection rate ( R ), the selectivity of the reaction membrane, its definition formula is: R = ( C f – C p ) / C f × 100%
式中,C f 与C p 分别为溶质组分在料液和渗透液中的浓度。In the formula, C f and C p are the concentrations of the solute components in the feed liquid and the permeate, respectively.
实施例1~5Example 1~5
基膜的预处理:将聚砜膜裁剪为14×14 cm大小,在去离子中浸泡12 h。浸泡完成后浸入0.5 wt%的NaOH水溶液中,在50℃恒温水浴1 h。之后将膜取出,用去离子水洗至中性。预处理后的基膜淋去离子水后用自封袋封好放冰箱冷藏备用;Pretreatment of the basement membrane: the polysulfone membrane was cut to a size of 14×14 cm and soaked in deionized water for 12 h. After soaking, immerse in 0.5 wt% NaOH aqueous solution, and keep in a constant temperature water bath at 50 °C for 1 h. Then the membrane was taken out and washed with deionized water until neutral. Drain the pretreated basement membrane with deionized water, seal it in a ziplock bag and store it in the refrigerator for later use;
聚电解质复合层的自组装:将聚砜基膜的四个角用防水胶带固定在培养皿底面上,用去离子水清洗基膜。在培养皿中倒入约适量0.15 wt% PEI溶液,静置30 min。将PEI溶液倒出,用去离子水冲洗数次,除去膜表面靠弱作用力吸附的多余的聚电解质。随后倒入约适量0.2 wt% SL溶液,静置30 min后倒出SL溶液,用去离子水冲洗数次。至此完成一个双层的自组装,重复上述步骤多次,得到双层数分别为1、3、5、7、11的复合纳滤膜;Self-assembly of the polyelectrolyte composite layer: the four corners of the polysulfone base membrane were fixed on the bottom of the culture dish with waterproof tape, and the base membrane was cleaned with deionized water. Pour an appropriate amount of 0.15 wt% PEI solution into the Petri dish and let it stand for 30 min. Pour out the PEI solution and rinse it several times with deionized water to remove excess polyelectrolyte adsorbed by weak force on the surface of the membrane. Then pour about an appropriate amount of 0.2 wt% SL solution, let stand for 30 min, pour out the SL solution, and rinse with deionized water several times. So far, a double-layer self-assembly is completed, and the above steps are repeated several times to obtain composite nanofiltration membranes with double-layer numbers of 1, 3, 5, 7, and 11 respectively;
聚电解质多层膜的交联:将上述复合膜用去离子水清洗后,在表面皿中倒入适量1.0wt%的戊二醛水溶液,静置1 h。之后将戊二醛水溶液倒出,用离子水清洗复合膜数次,交联即完成。用于分离MgSO4水溶液,分离性能见表1。Cross-linking of the polyelectrolyte multilayer film: After the above composite film was washed with deionized water, an appropriate amount of 1.0 wt% glutaraldehyde aqueous solution was poured into a watch glass and left to stand for 1 h. Afterwards, the glutaraldehyde aqueous solution was poured out, and the composite membrane was washed several times with ionized water, and the cross-linking was completed. For the separation of MgSO 4 aqueous solution, the separation performance is shown in Table 1.
由表1可看出聚乙烯亚胺/木质素磺酸钠复合膜的渗透通量随着膜层数的增加而降低,其原因可能是分离层变厚使料液越来越难透过所致。而复合膜截留性能开始时随膜层数上升,到7层之后逐渐趋于稳定。为了兼顾通量与截留性能,可认为聚乙烯亚胺/木质素磺酸钠复合膜自组装的较优层数为7个双层。该结果与SEM观察到的7层复合膜的表面最为光滑,致密一致,因为光滑致密的表面分离层可以提供良好的分离效果。It can be seen from Table 1 that the permeation flux of the polyethyleneimine/sodium lignosulfonate composite membrane decreases with the increase of the number of membrane layers. The reason may be that the thickening of the separation layer makes it more difficult for the feed liquid to pass through Sincerely. The interception performance of the composite membrane increases with the number of membrane layers at the beginning, and gradually tends to be stable after 7 layers. In order to balance flux and interception performance, it can be considered that the optimal number of self-assembled layers of polyethyleneimine/sodium lignosulfonate composite membrane is 7 bilayers. This result is consistent with the smoothest and densest surface of the 7-layer composite membrane observed by SEM, because the smooth and dense surface separation layer can provide a good separation effect.
表1 聚乙烯亚胺/木质素磺酸钠复合纳滤膜的分离性能Table 1 Separation performance of polyethyleneimine/sodium lignosulfonate composite nanofiltration membrane
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710668477.0A CN107261871A (en) | 2017-08-08 | 2017-08-08 | A kind of preparation method of polyethyleneimine/sodium lignin sulfonate composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710668477.0A CN107261871A (en) | 2017-08-08 | 2017-08-08 | A kind of preparation method of polyethyleneimine/sodium lignin sulfonate composite membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107261871A true CN107261871A (en) | 2017-10-20 |
Family
ID=60077593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710668477.0A Pending CN107261871A (en) | 2017-08-08 | 2017-08-08 | A kind of preparation method of polyethyleneimine/sodium lignin sulfonate composite membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107261871A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108905642A (en) * | 2018-09-17 | 2018-11-30 | 北京林业大学 | A kind of sodium lignosulfonate being preferentially dehydrated/sodium alginate blending infiltrating and vaporizing membrane |
CN109126743A (en) * | 2018-09-19 | 2019-01-04 | 鲁东大学 | A kind of preparation method of polyurethane foam adsorbent material |
FR3078267A1 (en) * | 2018-02-27 | 2019-08-30 | Li Shengmin | ULTRAFILTRATION MEMBRANE AND METHOD FOR PREPARING THE SAME |
CN110438805A (en) * | 2019-07-29 | 2019-11-12 | 武汉纺织大学 | A kind of hydrophobically modified method of layer-by-layer to surface of cotton fabric |
CN111437740A (en) * | 2020-03-09 | 2020-07-24 | 哈尔滨工业大学 | Preparation method of sodium lignosulphonate-based high-flux high-interception nanofiltration membrane |
CN111659268A (en) * | 2020-06-17 | 2020-09-15 | 埃隆水处理技术(上海)有限公司 | Preparation method of low-pressure multi-electrolyte-layer hollow fiber nanofiltration membrane |
CN111992041A (en) * | 2020-09-10 | 2020-11-27 | 德州学院 | A kind of lignin-based polyelectrolyte nanofiltration membrane and preparation method thereof |
CN112263918A (en) * | 2020-10-19 | 2021-01-26 | 天津工业大学 | Preparation method of oxalic acid crosslinked layer-by-layer self-assembled hydrogel filtering membrane and application of filtering membrane in molecular ion separation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100559A1 (en) * | 2001-06-12 | 2002-12-19 | Biocoat Incorporated | Coatings appropriate for medical devices |
CN104759214A (en) * | 2015-03-27 | 2015-07-08 | 北京工业大学 | Preparation method of superhydrophilic/superhydrophobic composite nanofiltration membrane |
-
2017
- 2017-08-08 CN CN201710668477.0A patent/CN107261871A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100559A1 (en) * | 2001-06-12 | 2002-12-19 | Biocoat Incorporated | Coatings appropriate for medical devices |
CN104759214A (en) * | 2015-03-27 | 2015-07-08 | 北京工业大学 | Preparation method of superhydrophilic/superhydrophobic composite nanofiltration membrane |
Non-Patent Citations (1)
Title |
---|
杨秀丽: "层层自组装复合纳滤膜的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3078267A1 (en) * | 2018-02-27 | 2019-08-30 | Li Shengmin | ULTRAFILTRATION MEMBRANE AND METHOD FOR PREPARING THE SAME |
CN108905642A (en) * | 2018-09-17 | 2018-11-30 | 北京林业大学 | A kind of sodium lignosulfonate being preferentially dehydrated/sodium alginate blending infiltrating and vaporizing membrane |
CN109126743A (en) * | 2018-09-19 | 2019-01-04 | 鲁东大学 | A kind of preparation method of polyurethane foam adsorbent material |
CN109126743B (en) * | 2018-09-19 | 2021-12-24 | 鲁东大学 | Preparation method of polyurethane foam adsorption material |
CN110438805A (en) * | 2019-07-29 | 2019-11-12 | 武汉纺织大学 | A kind of hydrophobically modified method of layer-by-layer to surface of cotton fabric |
CN111437740A (en) * | 2020-03-09 | 2020-07-24 | 哈尔滨工业大学 | Preparation method of sodium lignosulphonate-based high-flux high-interception nanofiltration membrane |
CN111437740B (en) * | 2020-03-09 | 2022-07-01 | 哈尔滨工业大学 | Preparation method of sodium lignosulfonate-based high-flux high-interception nanofiltration membrane |
CN111659268A (en) * | 2020-06-17 | 2020-09-15 | 埃隆水处理技术(上海)有限公司 | Preparation method of low-pressure multi-electrolyte-layer hollow fiber nanofiltration membrane |
CN111992041A (en) * | 2020-09-10 | 2020-11-27 | 德州学院 | A kind of lignin-based polyelectrolyte nanofiltration membrane and preparation method thereof |
CN112263918A (en) * | 2020-10-19 | 2021-01-26 | 天津工业大学 | Preparation method of oxalic acid crosslinked layer-by-layer self-assembled hydrogel filtering membrane and application of filtering membrane in molecular ion separation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107261871A (en) | A kind of preparation method of polyethyleneimine/sodium lignin sulfonate composite membrane | |
Li et al. | Polyelectrolytes self-assembly: versatile membrane fabrication strategy | |
CN103551049B (en) | A kind of LBL self-assembly composite nanometer filtering film based on natural cellulose polyelectrolyte and preparation method | |
CN101274222A (en) | A method of dynamic self-assembly to prepare low-voltage high-flux charged nanofiltration membranes | |
CN102688701B (en) | Preparation method of polyelectrolyte self-assembled composite nonafiltration membrane based on coordination | |
CN100411720C (en) | An assembly method for polyelectrolyte composite pervaporation membrane | |
CN113332859B (en) | Method for treating phosphoric acid-containing feed liquid | |
WO2018120476A1 (en) | Supramolecular composite nano-filtration membrane and preparation method therefor and use thereof | |
CN106823854A (en) | A kind of preparation method of polymer-based metal organic backbone hybridized film | |
CN107252637A (en) | A kind of preparation method of the LBL self-assembly composite nanometer filtering film based on support electrolyte optimization | |
CN102008900A (en) | Method for assembling multilayer composite separation membrane based on coordination effect | |
CN104524984A (en) | Preparation method of layer-by-layer self-assembling forward osmosis membrane and layer-by-layer self-assembling forward osmosis membrane prepared by method | |
CN108187511A (en) | High flux and high retention ratio polyamide composite reverse osmosis membrane and preparation method thereof | |
CN103212309B (en) | Preparation method of supportless forward osmosis membrane | |
CN103785301B (en) | A kind of Cellulose acetate forward osmotic membrane material and preparation method thereof | |
CN109304088A (en) | A kind of seawater desalination membrane resistant to strong acid and alkali and its preparation method and application | |
Zhou et al. | A facile method to fabricate anti-fouling nanofiltration membrane with aminated lignin | |
CN107433143B (en) | Polyelectrolyte-loaded antibacterial cellulose nanofiltration membrane and preparation method thereof | |
CN113797763B (en) | Cellulose gel layer modified loose nanofiltration membrane for high-flux dye separation and preparation method and application thereof | |
Tang et al. | Ultrafiltration membranes with ultrafast water transport tuned via different substrates | |
CN102626595A (en) | Formula for industrial high-strength anti-pollution ultrafiltration flat plate membrane and preparation method thereof | |
CN110743383B (en) | Modification method for improving permeation flux of polyamide composite membrane | |
CN105771695B (en) | Method for improving performance of polyamide reverse osmosis membrane through surface modification | |
Fu et al. | Study on high-performance pervaporation desalination membranes prepared by interfacial reactions between two aqueous monomers | |
Guo et al. | Macrocyclic pillararene-based polyester loose nanofiltration membranes for efficient dye/salt separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171020 |