CN107240606A - A kind of ferro-electric field effect transistor and preparation method thereof - Google Patents
A kind of ferro-electric field effect transistor and preparation method thereof Download PDFInfo
- Publication number
- CN107240606A CN107240606A CN201710426282.5A CN201710426282A CN107240606A CN 107240606 A CN107240606 A CN 107240606A CN 201710426282 A CN201710426282 A CN 201710426282A CN 107240606 A CN107240606 A CN 107240606A
- Authority
- CN
- China
- Prior art keywords
- layer
- source
- drain
- ferroelectric
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 238000002353 field-effect transistor method Methods 0.000 title 1
- 230000005669 field effect Effects 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 29
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 29
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000005468 ion implantation Methods 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims 3
- 239000010703 silicon Substances 0.000 claims 3
- 230000003471 anti-radiation Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 34
- 239000010408 film Substances 0.000 description 25
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 24
- 238000000206 photolithography Methods 0.000 description 17
- 230000005855 radiation Effects 0.000 description 17
- 230000008021 deposition Effects 0.000 description 14
- 230000015654 memory Effects 0.000 description 11
- 238000001755 magnetron sputter deposition Methods 0.000 description 10
- 238000005530 etching Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 229910052735 hafnium Inorganic materials 0.000 description 8
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 238000000231 atomic layer deposition Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 229910003855 HfAlO Inorganic materials 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 238000000603 solid-source molecular beam epitaxy Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000000407 epitaxy Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000004549 pulsed laser deposition Methods 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- CMIAIUZBKPLIOP-YZLZLFLDSA-N methyl (1r,4ar,4br,10ar)-7-(2-hydroperoxypropan-2-yl)-4a-methyl-2,3,4,4b,5,6,10,10a-octahydro-1h-phenanthrene-1-carboxylate Chemical compound C1=C(C(C)(C)OO)CC[C@@H]2[C@]3(C)CCC[C@@H](C(=O)OC)[C@H]3CC=C21 CMIAIUZBKPLIOP-YZLZLFLDSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005510 radiation hardening Methods 0.000 description 2
- 241001354791 Baliga Species 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910003781 PbTiO3 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/701—IGFETs having ferroelectric gate insulators, e.g. ferroelectric FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/689—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having ferroelectric layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明公开了一种铁电场效应晶体管,包括:衬底;在所述衬底上形成的沟道层;在所述沟道层上形成的源极区和漏极区,所述源极区和所述漏极区对称形成于所述沟道层的两端;在所述沟道层上且在所述源极区和所述漏极区之间形成的缓冲层;在所述缓冲层上形成的铁电栅介质层;在所述铁电栅介质层上形成的栅电极;在所述源极区上形成的源电极;以及在所述漏极区上形成的漏电极。本发明采用β‑Ga2O3作为沟道材料,所述晶体管具有较好的抗辐射性能。同时,本发明还提供一种所述铁电场效应晶体管的制备方法。
The invention discloses a ferroelectric field effect transistor, comprising: a substrate; a channel layer formed on the substrate; a source region and a drain region formed on the channel layer, the source region and the drain region are symmetrically formed at both ends of the channel layer; a buffer layer is formed on the channel layer and between the source region and the drain region; a ferroelectric gate dielectric layer formed on the ferroelectric gate dielectric layer; a gate electrode formed on the ferroelectric gate dielectric layer; a source electrode formed on the source region; and a drain electrode formed on the drain region. The present invention adopts β - Ga2O3 as the channel material, and the transistor has better anti-radiation performance. At the same time, the invention also provides a preparation method of the ferroelectric field effect transistor.
Description
技术领域technical field
本发明涉及一种晶体管及其制备方法,尤其是一种铁电场效应晶体管及其制备方法。The invention relates to a transistor and a preparation method thereof, in particular to a ferroelectric field effect transistor and a preparation method thereof.
背景技术Background technique
近年来,我国在航空航天领域的发展非常迅猛,如“神舟”系列飞船的成功发射和返回、“北斗”卫星导航系统的建设、“嫦娥”探月工程和“天宫”空间实验室的实施等,对存储器芯片长期使用的可靠性问题提出了更高的要求。然而,由于抗辐照加固技术在航空航天技术中属于高度敏感技术,世界上几乎所有航空航天大国的研究机构和大型微电子公司都在这个领域投入了大量的人力物力,开展半导体材料、器件、集成电路及存储器的辐照效应机理和加固技术研究,以抢占战略制高点、争夺制天权、获取最大的商业利益。以美日欧为首的西方33 国制定了“导弹技术控制制度(MTCR)”,明确规定抗辐照加固与模拟试验技术等对我国一律实行严格控制或禁运。In recent years, my country has developed rapidly in the field of aerospace, such as the successful launch and return of the "Shenzhou" series of spacecraft, the construction of the "Beidou" satellite navigation system, the implementation of the "Chang'e" lunar exploration project and the "Tiangong" space laboratory, etc. , put forward higher requirements on the long-term reliability of memory chips. However, because the anti-radiation hardening technology is a highly sensitive technology in aerospace technology, research institutions and large microelectronics companies in almost all aerospace countries in the world have invested a lot of manpower and material resources in this field to develop semiconductor materials, devices, Research on the radiation effect mechanism and reinforcement technology of integrated circuits and memories, in order to seize the strategic commanding heights, compete for the dominance of the sky, and obtain the greatest commercial benefits. The 33 Western countries headed by the United States, Japan and Europe have formulated the "Missile Technology Control Regime (MTCR)", which clearly stipulates that anti-radiation hardening and simulation test technologies are strictly controlled or embargoed on my country.
铁电存储器是当今信息高新技术的重要前沿和研究热点之一。与传统的半导体存储器相比,铁电存储器除了有信息高密度存储和快速擦写特性,还具备了电压低、成本低、损耗低、体积小、抗辐照等显著优点,具有极大的产业化潜力。由于铁电存储器的存储单元是根据铁电材料的极化来控制其“开”“关”状态,因α粒子、宇宙射线、重离子、γ射线、X射线等辐射源不可能造成其极化改变而去改变一个单元已给定的存储状态,因此它具有极强的强耐辐射能力,特别适合于空间和航天技术应用。现有研究表明,铁电存储器抗电离辐射能力达到105Gy以上,抗γ瞬时剂量率能力大于109Gy/s,抗中子辐射能力达到1015 cm-2,无单粒子扰动,而传统MOS场效应管γ辐射损伤容限仅为102Gy左右。Ferroelectric memory is one of the important frontiers and research hotspots of today's high-tech information. Compared with the traditional semiconductor memory, ferroelectric memory not only has the characteristics of high-density information storage and fast erasing and writing, but also has significant advantages such as low voltage, low cost, low loss, small size, and radiation resistance. It has great industrial potential. Since the storage unit of the ferroelectric memory controls its "on" and "off" states according to the polarization of the ferroelectric material, it is impossible to cause its polarization due to radiation sources such as alpha particles, cosmic rays, heavy ions, gamma rays, and X-rays. It can be changed to change the given storage state of a unit, so it has extremely strong radiation resistance, and is especially suitable for space and aerospace technology applications. Existing research shows that the anti-ionizing radiation ability of ferroelectric memory reaches more than 105Gy, the anti-gamma instantaneous dose rate ability is greater than 109Gy/s, the anti-neutron radiation ability reaches 1015 cm-2, and there is no single event disturbance, while the traditional MOS field effect transistor γ Radiation damage tolerance is only about 102Gy.
所以相对于传统的非挥发性存储器如Flash而言,采用铁电薄膜材料作为存储介质的铁电存储器具有较好的抗辐射性能。但是铁电存储器中包含了Si场效应晶体管阵列,其整体的抗辐射性能受限于Si场效应晶体管的抗辐射能力。为了延长铁电存储器在空间辐射环境下的服役寿命,需要对铁电存储器中的Si场效应晶体管进行抗辐射加固,与第一代半导体材料Si相比,第二代和第三代半导体材料普遍具有更大的原子位移阈能和禁带宽度,所以具有更好的抗辐射性能和温度稳定性。因此,近年来铁电薄膜材料与GaAs、SiC、GaN和金刚石等第二代和第三代半导体材料的集成受到了铁电领域科研工作者极大的关注。Therefore, compared with traditional non-volatile memories such as Flash, ferroelectric memories using ferroelectric thin film materials as storage media have better radiation resistance. However, the ferroelectric memory contains an array of Si field effect transistors, and its overall radiation resistance is limited by the radiation resistance of the Si field effect transistors. In order to prolong the service life of ferroelectric memory in space radiation environment, it is necessary to strengthen the Si field effect transistor in ferroelectric memory against radiation. Compared with the first-generation semiconductor material Si, the second-generation and third-generation semiconductor materials are generally It has larger atomic displacement threshold energy and forbidden band width, so it has better radiation resistance and temperature stability. Therefore, in recent years, the integration of ferroelectric thin film materials with second-generation and third-generation semiconductor materials such as GaAs, SiC, GaN and diamond has attracted great attention from researchers in the ferroelectric field.
发明内容Contents of the invention
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种功耗低、抗辐射性能好的铁电场效应晶体管。Based on this, the object of the present invention is to provide a ferroelectric field effect transistor with low power consumption and good anti-radiation performance to overcome the disadvantages of the above-mentioned prior art.
为实现上述目的,本发明所采取的技术方案为:一种铁电场效应晶体管,包括:In order to achieve the above object, the technical solution adopted by the present invention is: a ferroelectric field effect transistor, comprising:
衬底;Substrate;
在所述衬底上形成的沟道层;a channel layer formed on the substrate;
在所述沟道层上形成的源极区和漏极区,所述源极区和所述漏极区对称形成于所述沟道层的两端;a source region and a drain region formed on the channel layer, the source region and the drain region being symmetrically formed at both ends of the channel layer;
在所述沟道层上且在所述源极区和所述漏极区之间形成的缓冲层;a buffer layer formed on the channel layer and between the source region and the drain region;
在所述缓冲层上形成的铁电栅介质层;A ferroelectric gate dielectric layer formed on the buffer layer;
在所述铁电栅介质层上形成的栅电极;a gate electrode formed on the ferroelectric grid dielectric layer;
在所述源极区上形成的源电极;a source electrode formed on the source region;
以及as well as
在所述漏极区上形成的漏电极。A drain electrode is formed on the drain region.
优选地,所述沟道层由β-Ga2O3材料组成。Preferably, the channel layer is composed of β-Ga 2 O 3 material.
利用β-Ga2O3作为沟道材料为FeFET抗辐射加固和温度稳定性的提高提供保障。β-Ga2O3作为一种热稳定性和化学稳定性都良好的宽禁带半导体材料,且预期具有非常好的抗辐射性能,比SiC和GaN更大的禁带宽度、更高的Baliga 品质因数(BFOM)值和更便宜的价格,利用β-Ga2O3作为沟道材料可以提高铁电薄膜FeFET的整体抗辐射性能和温度稳定性。The use of β - Ga2O3 as the channel material provides a guarantee for the improvement of the radiation resistance and temperature stability of FeFET. β-Ga2O3, as a wide bandgap semiconductor material with good thermal and chemical stability, is expected to have very good radiation resistance, larger bandgap width and higher Baliga quality factor than SiC and GaN ( BFOM) value and cheaper price, using β-Ga2O3 as channel material can improve the overall radiation resistance and temperature stability of ferroelectric thin film FeFET.
优选地,所述沟道层还掺杂有锡,所述锡的掺杂浓度为1015~1016cm-3。Preferably, the channel layer is further doped with tin, and the tin doping concentration is 10 15 -10 16 cm -3 .
优选地,所述沟道层的厚度为200nm~300nm。Preferably, the thickness of the channel layer is 200nm-300nm.
优选地,所述源电极包括Ti源电极和Au源电极,所述Au源电极形成于所述Ti源电极的上;所述漏电极包括Ti漏电极和Au漏电极,所述Au漏电极形成于所述Ti漏电极的上。Preferably, the source electrode includes a Ti source electrode and an Au source electrode, and the Au source electrode is formed on the Ti source electrode; the drain electrode includes a Ti drain electrode and an Au drain electrode, and the Au drain electrode forms on the Ti drain electrode.
优选地,所述衬底由硅材料或锗材料组成。Preferably, the substrate is made of silicon material or germanium material.
优选地,所述缓冲层为绝缘层,或者所述缓冲层为绝缘层和金属层组成的双层结构。Preferably, the buffer layer is an insulating layer, or the buffer layer is a double-layer structure composed of an insulating layer and a metal layer.
优选地,所述铁电栅介质层的材料为Bi4Ti3O12、SrBi2Ta2O9、PbTiO3、BaTiO3、BiFeO3中的至少一种,或La、Nd、Ce、Sr、Zr、Mn、W、Na中的至少一种与 Bi4Ti3O12、SrBi2Ta2O9、PbTiO3、BaTiO3、BiFeO3中的至少一种掺杂形成的物质,或Zr掺杂HfO2、Si掺杂HfO2、Al掺杂HfO2、Y掺杂HfO2中的至少一种。Preferably, the material of the ferroelectric gate dielectric layer is at least one of Bi 4 Ti 3 O 12 , SrBi 2 Ta 2 O 9 , PbTiO 3 , BaTiO 3 , BiFeO 3 , or La, Nd, Ce, Sr, A substance formed by doping at least one of Zr, Mn, W, and Na with at least one of Bi 4 Ti 3 O 12 , SrBi 2 Ta 2 O 9 , PbTiO 3 , BaTiO 3 , and BiFeO 3 , or Zr doped At least one of HfO 2 , Si-doped HfO 2 , Al-doped HfO 2 , and Y-doped HfO 2 .
优选地,当所述缓冲层为绝缘层和金属组成的双层结构时,所述绝缘层的厚度为2nm~10nm,所述金属层的厚度为50nm~80nm。Preferably, when the buffer layer is a double-layer structure composed of an insulating layer and a metal, the thickness of the insulating layer is 2nm-10nm, and the thickness of the metal layer is 50nm-80nm.
优选地,所述铁电栅介质层的厚度为5nm~600nm。Preferably, the thickness of the ferroelectric gate dielectric layer is 5nm-600nm.
同时,本发明还提供一种上述铁电场效应晶体管的制备方法,包括如下步骤:Simultaneously, the present invention also provides a kind of preparation method of above-mentioned ferroelectric field effect transistor, comprises the following steps:
(1)在衬底上形成沟道层;(1) forming a channel layer on the substrate;
(2)在步骤(1)上形成的沟道层上形成源极层、漏极层;(2) forming a source layer and a drain layer on the channel layer formed in step (1);
(3)采用离子注入工艺,对步骤(2)中的源极层和漏极层进行离子注入,形成源极区和漏极区;(3) Using an ion implantation process, ion implantation is performed on the source layer and the drain layer in step (2) to form a source region and a drain region;
(4)对步骤(3)所得源极区和漏极区进行激活处理,得到源极和漏极;(4) Activating the source region and the drain region obtained in step (3) to obtain the source and drain;
(5)在经过步骤(4)处理后的沟道层上淀积缓冲层;(5) Depositing a buffer layer on the channel layer processed in step (4);
(6)在步骤(5)中的缓冲层上淀积铁电栅介质层;(6) depositing a ferroelectric gate dielectric layer on the buffer layer in step (5);
(7)在步骤(6)中的铁电栅介质层上淀积栅金属,得到栅电极;(7) deposit gate metal on the ferroelectric gate dielectric layer in step (6), obtain gate electrode;
(8)去除经过步骤(7)处理后的源极区和漏极区上的缓冲层、铁电栅介质层及栅电极;(8) removing the buffer layer, ferroelectric gate dielectric layer and gate electrode on the source region and the drain region after step (7);
(9)在经过步骤(8)处理后的源极和漏极上形成源电极和漏电极,即得所述铁电场效应晶体管。(9) Forming a source electrode and a drain electrode on the source electrode and the drain electrode processed in step (8) to obtain the ferroelectric field effect transistor.
优选地,所述步骤(1)中,采用低温固源分子束外延工艺,在衬底上外延生长一层沟道层,外延温度为500℃~700℃,沉积速率为0.6μm/h。Preferably, in the step (1), a channel layer is epitaxially grown on the substrate by using a low-temperature solid-source molecular beam epitaxy process, the epitaxy temperature is 500° C. to 700° C., and the deposition rate is 0.6 μm/h.
优选地,所述步骤(2)和(8)中采用365nm I线光刻工艺。本领域技术人员可根据需要选择合适的刻蚀配方。Preferably, a 365nm I-line photolithography process is used in the steps (2) and (8). Those skilled in the art can select a suitable etching formula according to needs.
优选地,所述步骤(2)中,离子注入工艺的条件为:在N+型源极区和N+型漏极区注入能量为20-25KeV、剂量为1018-1019cm-3的Si+离子。Preferably, in the step (2), the conditions of the ion implantation process are: the implantation energy is 20-25KeV in the N + type source region and the N + type drain region, and the dose is 10 18 -10 19 cm -3 Si + ions.
优选地,所述步骤(4)中激活处理的过程为:在800℃~950℃下对步骤(3) 中的源极区和漏极区进行热退火处理。Preferably, the process of the activation treatment in the step (4) is: performing thermal annealing treatment on the source region and the drain region in the step (3) at 800°C to 950°C.
所述步骤(6)中所采用的工艺为本领域所公认合适的薄膜淀积工艺,包括磁控溅射、脉冲激光沉积、原子层淀积等薄膜沉积工艺,但不局限于此。The process adopted in the step (6) is a suitable film deposition process recognized in the art, including magnetron sputtering, pulsed laser deposition, atomic layer deposition and other film deposition processes, but not limited thereto.
优选地,所述步骤(7)中的栅金属为TiN、TaN、Pt中的至少一种。Preferably, the gate metal in the step (7) is at least one of TiN, TaN and Pt.
优选地,所述步骤(10)中采用磁控溅射工艺,所述磁控溅射工艺的温度为200℃~300℃,所述源、漏电极溅射Ti金属厚度为20nm~30nm,所述源、漏电极溅射Au金属的厚度为100nm~150nm。Preferably, the magnetron sputtering process is adopted in the step (10), the temperature of the magnetron sputtering process is 200°C to 300°C, and the thickness of Ti metal sputtered on the source and drain electrodes is 20nm to 30nm. The thickness of the sputtered Au metal on the source and drain electrodes is 100nm-150nm.
相对于现有技术,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明采用β-Ga2O3作为沟道材料,一种热稳定性和化学稳定性都良好的宽禁带半导体材料,且预期具有非常好的抗辐射性能,可以加固沟道部位的抗辐射能力。The present invention uses β-Ga 2 O 3 as the channel material, a wide bandgap semiconductor material with good thermal stability and chemical stability, and is expected to have very good radiation resistance performance, which can strengthen the radiation resistance of the channel part ability.
附图说明Description of drawings
图1为本发明所述铁电场效应晶体管的一种剖面结构图;Fig. 1 is a kind of sectional structural diagram of ferroelectric field effect transistor of the present invention;
图2为本发明所述铁电场效应晶体管制作方法的一种流程图;Fig. 2 is a kind of flowchart of ferroelectric field effect transistor manufacturing method of the present invention;
其中,1、衬底;2、沟道层;3、源极区;4、缓冲层;5、铁电栅介质层;6、栅电极;7、漏极区;8、Ti漏电极;9、Au漏电极;10、Ti源电极;11、Au 源电极。Among them, 1. substrate; 2. channel layer; 3. source region; 4. buffer layer; 5. ferroelectric gate dielectric layer; 6. gate electrode; 7. drain region; 8. Ti drain electrode; 9 , Au drain electrode; 10, Ti source electrode; 11, Au source electrode.
具体实施方式detailed description
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。In order to better illustrate the purpose, technical solutions and advantages of the present invention, the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
本发明所述铁电场效应晶体管的一种实施例,本实施例所述铁电场效应晶体管的一种剖面结构图如附图1所示,包括:An embodiment of the ferroelectric field effect transistor of the present invention, a cross-sectional structure diagram of the ferroelectric field effect transistor described in this embodiment is shown in Figure 1, including:
衬底1,衬底1由硅材料组成;a substrate 1, the substrate 1 is composed of a silicon material;
在衬底1上形成的沟道层2,沟道层2由β-Ga2O3材料组成,沟道层2还掺杂有锡,所述锡的掺杂浓度为1015cm-3;A channel layer 2 formed on the substrate 1, the channel layer 2 is composed of β-Ga 2 O 3 material, the channel layer 2 is also doped with tin, and the doping concentration of the tin is 10 15 cm -3 ;
在沟道层2上形成的源极区3和漏极区7,源极区3和漏极区7对称形成于沟道层2的两端;The source region 3 and the drain region 7 formed on the channel layer 2, the source region 3 and the drain region 7 are symmetrically formed at both ends of the channel layer 2;
在沟道层2上且在源极区3和漏极区7之间形成的缓冲层4;a buffer layer 4 formed on the channel layer 2 and between the source region 3 and the drain region 7;
在缓冲层4上形成的铁电栅介质层5;A ferroelectric gate dielectric layer 5 formed on the buffer layer 4;
在铁电栅介质层5上形成的栅电极6;A gate electrode 6 formed on the ferroelectric gate dielectric layer 5;
在源极区3上形成的源电极,所述源电极包括Ti源电极10和Au源电极 11,Au源电极11形成于Ti源电极10的上;The source electrode formed on the source region 3, the source electrode includes a Ti source electrode 10 and an Au source electrode 11, and the Au source electrode 11 is formed on the Ti source electrode 10;
以及as well as
在漏极区7上形成的漏电极,所述漏电极包括Ti漏电极8和Au漏电极9, Au漏电极9形成于Ti漏电极8的上。The drain electrode formed on the drain region 7 , the drain electrode includes a Ti drain electrode 8 and an Au drain electrode 9 , and the Au drain electrode 9 is formed on the Ti drain electrode 8 .
其中,所述沟道层的厚度为200nm;缓冲层由绝缘层组成,具体为铪基介电材料组成,所述铪基介电材料为HfO2,所述缓冲层的厚度为8nm;铁电栅介质层的材料为Zr掺杂HfO2,所述铁电栅介质层的厚度为5nm。Wherein, the thickness of the channel layer is 200nm; the buffer layer is composed of an insulating layer, specifically a hafnium-based dielectric material, the hafnium-based dielectric material is HfO 2 , and the thickness of the buffer layer is 8nm; the ferroelectric The material of the gate dielectric layer is Zr-doped HfO 2 , and the thickness of the ferroelectric gate dielectric layer is 5 nm.
本实施例所述铁电场效应晶体管的制备方法的一种实施例,包括如下步骤:An embodiment of the method for preparing a ferroelectric field effect transistor described in this embodiment includes the following steps:
步骤1、外延生长β-Ga2O3层:Step 1. Epitaxial growth of β-Ga 2 O 3 layer:
利用低温固源分子束外延工艺,在衬底上外延生长一层β-Ga2O3层,厚度为200nm,外延温度为500℃,沉积速率为0.6μm/h,图2(a) 为衬底的结构示意图,图2(b)为外延生长β-Ga2O3沟道后的结构示意图;A β-Ga 2 O 3 layer was epitaxially grown on the substrate by low-temperature solid-source molecular beam epitaxy, with a thickness of 200 nm, an epitaxy temperature of 500 °C, and a deposition rate of 0.6 μm/h. Figure 2(a) is the substrate Schematic diagram of the bottom structure, Figure 2(b) is a schematic diagram of the structure after the epitaxial growth of β-Ga 2 O 3 channel;
步骤2、光刻形成有源层:Step 2, photolithography to form the active layer:
利用光刻工艺,在β-Ga2O3层上形成源极层、沟道和漏极层,其中沟道位于β-Ga2O3层正中央,源极层和漏极层分别位于沟道两侧;A source layer, a channel and a drain layer are formed on the β-Ga 2 O 3 layer by photolithography, wherein the channel is located in the center of the β-Ga 2 O 3 layer, and the source layer and the drain layer are respectively located in the channel. both sides of the road;
步骤3、掺杂形成源极区、漏极区:Step 3, doping to form source region and drain region:
采用离子注入工艺,对源极层和漏极层进行离子注入,注入条件:在N+型源极区和N+型漏极区注入能量为25KeV、剂量为1019cm-3的Si+离子,形成源极区和漏极区;Ion implantation is carried out on the source layer and the drain layer by using ion implantation process. The implantation conditions are: Si + ions are implanted in the N + type source region and the N + type drain region with an energy of 25KeV and a dose of 10 19 cm -3 , forming a source region and a drain region;
步骤4、激活:Step 4. Activate:
在950℃条件下对源极区和漏极区热退火30min进行激活处理,得到源极区和漏极区,图2(c)为激活处理得到源极区和漏极区的结果示意图;Thermal annealing of the source region and the drain region at 950°C for 30 minutes was activated to obtain the source region and the drain region. Figure 2(c) is a schematic diagram of the result of the activation treatment to obtain the source region and the drain region;
步骤5、淀积缓冲层:Step 5, deposit buffer layer:
利用原子层淀积工艺,在温度为280℃,压强为15hPa的环境下,在步骤4 形成的有源层上淀积厚度为8nm的HfO2层,形成绝缘电介质薄膜,图2(d)为淀积HfO2绝缘电介质薄膜后的结果示意图;Using the atomic layer deposition process, at a temperature of 280°C and a pressure of 15hPa, an HfO2 layer with a thickness of 8nm is deposited on the active layer formed in step 4 to form an insulating dielectric film, as shown in Figure 2(d). Schematic diagram of the result after depositing HfO2 insulating dielectric film;
步骤6、淀积铁电栅介质层:Step 6, depositing a ferroelectric gate dielectric layer:
利用原子层淀积工艺,在温度为300℃,压强为20hPa的环境下,在步骤5 形成绝缘电介质薄膜上淀积厚度为5nm的铁电Zr掺杂HfO2薄膜,图2(e)为淀积铁电Zr掺杂HfO2薄膜后的结果示意图;Using the atomic layer deposition process, at the temperature of 300°C and the pressure of 20hPa, a ferroelectric Zr-doped HfO2 film with a thickness of 5nm is deposited on the insulating dielectric film in step 5. Figure 2(e) shows the deposition Schematic diagram of the results after accumulating ferroelectric Zr-doped HfO2 thin films;
步骤7、淀积栅电极:Step 7, depositing the gate electrode:
利用磁控溅射工艺,在温度为300℃,压强为0.32Pa,溅射功率为115W的条件下,在铁电Zr掺杂HfO2薄膜上生长120nm的TiN,图2(f)为淀积栅金属 TiN后的结果示意图;Using the magnetron sputtering process, under the conditions of temperature 300 ℃, pressure 0.32Pa, and sputtering power 115W, 120nm TiN was grown on the ferroelectric Zr-doped HfO 2 film. Figure 2(f) shows the deposition Schematic diagram of the result after the gate metal TiN;
步骤8、光刻和刻蚀:Step 8, photolithography and etching:
通过光刻形成源漏电极窗口,刻蚀源极和漏极上的缓冲层/铁电HfO2/TiN,图2(g)为刻蚀源极和漏极上的缓冲层HfO2/铁电HfO2/TiN完成后的结果示意图;The source and drain electrode windows are formed by photolithography, and the buffer layer/ferroelectric HfO 2 /TiN on the source and drain are etched. Figure 2(g) shows the etching of the buffer layer HfO 2 /ferroelectric on the source and drain Schematic diagram of the result after completion of HfO 2 /TiN;
步骤9、淀积源、漏电极:Step 9, depositing source and drain electrodes:
利用磁控溅射工艺,在温度为260℃,压强为0.12Pa,溅射功率为200W的条件下在步骤8中形成的源漏电极窗口中,淀积形成Au/Ti源漏电极,厚度分别为20nm/100nm,再通过剥离,完成晶体管的制作,图2(h)为晶体管制作完毕的结果示意图。Using the magnetron sputtering process, under the conditions of temperature 260°C, pressure 0.12Pa, and sputtering power 200W, in the source-drain electrode window formed in step 8, deposit and form Au/Ti source-drain electrodes with thicknesses of The thickness is 20nm/100nm, and then the fabrication of the transistor is completed by peeling off. Fig. 2(h) is a schematic diagram of the result of the fabrication of the transistor.
实施例2Example 2
本发明所述铁电场效应晶体管的一种实施例,本实施例所述铁电场效应晶体管的一种剖面结构图如附图1所示,包括:An embodiment of the ferroelectric field effect transistor of the present invention, a cross-sectional structure diagram of the ferroelectric field effect transistor described in this embodiment is shown in Figure 1, including:
衬底1,衬底1由锗材料组成;A substrate 1, the substrate 1 is composed of a germanium material;
在衬底1上形成的沟道层2,沟道层2由β-Ga2O3材料组成,沟道层2还掺杂有锡,所述锡的掺杂浓度为1016cm-3;A channel layer 2 formed on the substrate 1, the channel layer 2 is composed of β-Ga 2 O 3 material, the channel layer 2 is also doped with tin, and the doping concentration of the tin is 10 16 cm -3 ;
在沟道层2上形成的源极区3和漏极区7,源极区3和漏极区7对称形成于沟道层2的两端;The source region 3 and the drain region 7 formed on the channel layer 2, the source region 3 and the drain region 7 are symmetrically formed at both ends of the channel layer 2;
在沟道层2上且在源极区3和漏极区7之间形成的缓冲层4;a buffer layer 4 formed on the channel layer 2 and between the source region 3 and the drain region 7;
在缓冲层4上形成的铁电栅介质层5;A ferroelectric gate dielectric layer 5 formed on the buffer layer 4;
在铁电栅介质层5上形成的栅电极6;A gate electrode 6 formed on the ferroelectric gate dielectric layer 5;
在源极区3上形成的源电极,所述源电极包括Ti源电极10和Au源电极 11,Au源电极11形成于Ti源电极10的上;The source electrode formed on the source region 3, the source electrode includes a Ti source electrode 10 and an Au source electrode 11, and the Au source electrode 11 is formed on the Ti source electrode 10;
以及as well as
在漏极区7上形成的漏电极,所述漏电极包括Ti漏电极8和Au漏电极9, Au漏电极9形成于Ti漏电极8的上。The drain electrode formed on the drain region 7 , the drain electrode includes a Ti drain electrode 8 and an Au drain electrode 9 , and the Au drain electrode 9 is formed on the Ti drain electrode 8 .
其中,所述沟道层的厚度为300nm;缓冲层由绝缘层和金属层组成的双层结构组成,所述绝缘层为铪基介电材料组成,所述金属层为TiN,所述铪基介电材料为Al2O3,所述绝缘层的厚度为2nm,所述金属TiN厚度为50nm;铁电栅介质层的材料为SrBi2Ta2O9,所述铁电栅介质层的厚度为100nm。Wherein, the thickness of the channel layer is 300nm; the buffer layer is composed of a double-layer structure composed of an insulating layer and a metal layer, the insulating layer is composed of a hafnium-based dielectric material, the metal layer is TiN, and the hafnium-based The dielectric material is Al 2 O 3 , the thickness of the insulating layer is 2nm, and the thickness of the metal TiN is 50nm; the material of the ferroelectric gate dielectric layer is SrBi 2 Ta 2 O 9 , the thickness of the ferroelectric gate dielectric layer is 100nm.
本实施例所述铁电场效应晶体管的制备方法的一种实施例,包括如下步骤:An embodiment of the method for preparing a ferroelectric field effect transistor described in this embodiment includes the following steps:
步骤1、外延生长β-Ga2O3层:Step 1. Epitaxial growth of β-Ga 2 O 3 layer:
利用低温固源分子束外延工艺,在衬底上外延生长一层β-Ga2O3层,厚度为 300nm,外延温度为700℃,沉积速率为0.6μm/h,图2(b)为外延生长β-Ga2O3沟道后的结果示意图;Using low-temperature solid-source molecular beam epitaxy, a layer of β-Ga 2 O 3 was epitaxially grown on the substrate with a thickness of 300nm. The epitaxial temperature was 700°C and the deposition rate was 0.6μm/h. Figure 2(b) shows the epitaxial Schematic diagram of the result after growing a β-Ga 2 O 3 channel;
步骤2、光刻形成有源层:Step 2, photolithography to form the active layer:
利用光刻工艺,在β-Ga2O3层上形成源极层、沟道和漏极层,其中沟道位于β-Ga2O3层正中央,源极层和漏极层分别位于沟道两侧;A source layer, a channel and a drain layer are formed on the β-Ga 2 O 3 layer by photolithography, wherein the channel is located in the center of the β-Ga 2 O 3 layer, and the source layer and the drain layer are respectively located in the channel. both sides of the road;
步骤3、掺杂形成源极区、漏极区:Step 3, doping to form source region and drain region:
采用离子注入工艺,对源极层和漏极层进行离子注入,注入条件:在N+型源极区和N+型漏极区注入能量为20KeV、剂量为1018cm-3的Si+离子,形成源极区和漏极区;Ion implantation is carried out on the source layer and the drain layer by using ion implantation technology. The implantation conditions are: Si + ions are implanted in the N + type source region and the N + type drain region with an energy of 20KeV and a dose of 10 18 cm -3 , forming a source region and a drain region;
步骤4、激活:Step 4. Activate:
在800℃条件下对源极区和漏极区热退火30min进行激活处理,得到源极区和漏极区,图2(c)为激活处理得到源极区和漏极区的结果示意图;Thermal annealing of the source region and the drain region at 800°C for 30 minutes was performed to activate the source region and the drain region. Figure 2(c) is a schematic diagram of the result of the activation treatment to obtain the source region and the drain region;
步骤5、淀积缓冲层:Step 5, deposit buffer layer:
利用原子层淀积工艺,在温度为260℃,压强为12hPa的环境下,在步骤4 形成的有源层上淀积厚度为2nm的Al2O3层,形成绝缘层薄膜,利用磁控溅射工艺,在温度为300℃,压强为0.32Pa,溅射功率为115W的条件下,在绝缘层薄膜Al2O3上生长50nm的TiN,图2(d)为淀积缓冲层后的结果示意图;Using the atomic layer deposition process, at a temperature of 260°C and a pressure of 12hPa, deposit an Al 2 O 3 layer with a thickness of 2nm on the active layer formed in step 4 to form an insulating layer film, and use magnetron sputtering Sputtering process, at a temperature of 300°C, a pressure of 0.32Pa, and a sputtering power of 115W, 50nm TiN was grown on the insulating layer film Al 2 O 3 , and Figure 2(d) shows the result after depositing a buffer layer schematic diagram;
步骤6、淀积铁电栅介质层:Step 6, depositing a ferroelectric gate dielectric layer:
利用原子层淀积工艺,在温度为280℃,压强为15hPa的环境下,在步骤5 形成绝缘电介质薄膜上淀积厚度为100nm的铁电SrBi2Ta2O9薄膜,图2(e)为淀积铁电SrBi2Ta2O9薄膜后的结果示意图;Using the atomic layer deposition process, at the temperature of 280°C and the pressure of 15hPa, a ferroelectric SrBi 2 Ta 2 O 9 film with a thickness of 100nm is deposited on the insulating dielectric film in step 5, as shown in Figure 2(e). Schematic diagram of the result after deposition of ferroelectric SrBi 2 Ta 2 O 9 film;
步骤7、淀积栅电极:Step 7, depositing the gate electrode:
利用磁控溅射工艺,在温度为300℃,压强为0.32Pa,溅射功率为115W的条件下,在铁电SrBi2Ta2O9薄膜上生长120nm的TiN,图2(f)为淀积栅金属TiN 后的结果示意图;Using the magnetron sputtering process, under the conditions of temperature 300℃, pressure 0.32Pa, and sputtering power 115W, 120nm TiN was grown on the ferroelectric SrBi 2 Ta 2 O 9 film. Figure 2(f) shows the deposition Schematic diagram of the result after accumulating gate metal TiN;
步骤8、光刻和刻蚀:Step 8, photolithography and etching:
通过光刻形成源漏电极窗口,刻蚀源极和漏极上的缓冲层/SrBi2Ta2O9/TiN,图2(g)为刻蚀源极和漏极上的缓冲层Al2O3/SrBi2Ta2O9/TiN完成后的结果示意图;The source and drain electrode windows are formed by photolithography, and the buffer layer/SrBi 2 Ta 2 O 9 /TiN on the source and drain is etched. Figure 2(g) shows the etching of the buffer layer on the source and drain Al 2 O 3 /SrBi 2 Ta 2 O 9 /TiN finished result schematic diagram;
步骤9、淀积源、漏电极:Step 9, depositing source and drain electrodes:
利用磁控溅射工艺,在温度为200℃,压强为0.12Pa,溅射功率为200W的条件下在步骤8中形成的源漏电极窗口中,淀积形成Au/Ti源漏电极,厚度分别为25nm/125nm,再通过剥离,完成晶体管的制作,图2(h)为晶体管制作完毕的结果示意图。Using the magnetron sputtering process, under the conditions of temperature 200°C, pressure 0.12Pa, and sputtering power 200W, in the source-drain electrode window formed in step 8, Au/Ti source-drain electrodes are deposited to form Au/Ti source-drain electrodes with thicknesses respectively It is 25nm/125nm, and then the fabrication of the transistor is completed by stripping, and Fig. 2(h) is a schematic diagram of the result of the fabrication of the transistor.
实施例3Example 3
本发明所述铁电场效应晶体管的一种实施例,本实施例所述铁电场效应晶体管的一种剖面结构图如附图1所示,包括:An embodiment of the ferroelectric field effect transistor of the present invention, a cross-sectional structure diagram of the ferroelectric field effect transistor described in this embodiment is shown in Figure 1, including:
衬底1,衬底1由硅材料组成;a substrate 1, the substrate 1 is composed of a silicon material;
在衬底1上形成的沟道层2,沟道层2由β-Ga2O3材料组成,沟道层2还掺杂有锡,所述锡的掺杂浓度为1015cm-3;A channel layer 2 formed on the substrate 1, the channel layer 2 is composed of β-Ga 2 O 3 material, the channel layer 2 is also doped with tin, and the doping concentration of the tin is 10 15 cm -3 ;
在沟道层2上形成的源极区3和漏极区7,源极区3和漏极区7对称形成于沟道层2的两端;The source region 3 and the drain region 7 formed on the channel layer 2, the source region 3 and the drain region 7 are symmetrically formed at both ends of the channel layer 2;
在沟道层2上且在源极区3和漏极区7之间形成的缓冲层4;a buffer layer 4 formed on the channel layer 2 and between the source region 3 and the drain region 7;
在缓冲层4上形成的铁电栅介质层5;A ferroelectric gate dielectric layer 5 formed on the buffer layer 4;
在铁电栅介质层5上形成的栅电极6;A gate electrode 6 formed on the ferroelectric gate dielectric layer 5;
在源极区3上形成的源电极,所述源电极包括Ti源电极10和Au源电极 11,Au源电极11形成于Ti源电极10的上;The source electrode formed on the source region 3, the source electrode includes a Ti source electrode 10 and an Au source electrode 11, and the Au source electrode 11 is formed on the Ti source electrode 10;
以及as well as
在漏极区7上形成的漏电极,所述漏电极包括Ti漏电极8和Au漏电极9, Au漏电极9形成于Ti漏电极8的上。The drain electrode formed on the drain region 7 , the drain electrode includes a Ti drain electrode 8 and an Au drain electrode 9 , and the Au drain electrode 9 is formed on the Ti drain electrode 8 .
其中,所述沟道层的厚度为250nm;缓冲层由绝缘层和金属层组成的双层结构组成,所述绝缘层为铪基介电材料组成,所述金属层为TiN,所述铪基介电材料为HfAlO,所述绝缘层的厚度为10nm,所述金属TiN厚度为80nm;铁电栅介质层的材料为Zr掺杂PbTiO3形成的物质,所述铁电栅介质层的厚度为 280nm。Wherein, the thickness of the channel layer is 250nm; the buffer layer is composed of a double-layer structure composed of an insulating layer and a metal layer, the insulating layer is composed of a hafnium-based dielectric material, the metal layer is TiN, and the hafnium-based The dielectric material is HfAlO, the thickness of the insulating layer is 10nm, and the thickness of the metal TiN is 80nm; the material of the ferroelectric grid dielectric layer is Zr doped with PbTiO3 The material formed, the thickness of the ferroelectric grid dielectric layer is 280nm.
本实施例所述铁电场效应晶体管的制备方法的一种实施例,包括如下步骤:An embodiment of the method for preparing a ferroelectric field effect transistor described in this embodiment includes the following steps:
步骤1、外延生长β-Ga2O3层:Step 1. Epitaxial growth of β-Ga 2 O 3 layer:
利用低温固源分子束外延工艺,在衬底上外延生长一层β-Ga2O3层,厚度为 250nm,外延温度为600℃,沉积速率为0.6μm/h,图2(b)为外延生长β-Ga2O3沟道后的结果示意图;Using low-temperature solid-source molecular beam epitaxy, a layer of β-Ga 2 O 3 was epitaxially grown on the substrate, with a thickness of 250 nm, an epitaxial temperature of 600 °C, and a deposition rate of 0.6 μm/h. Figure 2(b) shows the epitaxy Schematic diagram of the result after growing a β-Ga 2 O 3 channel;
步骤2、光刻形成有源层:Step 2, photolithography to form the active layer:
利用光刻工艺,在β-Ga2O3层上形成源极层、沟道和漏极层,其中沟道位于β-Ga2O3层正中央,源极层和漏极层分别位于沟道两侧;Form a source layer, a channel and a drain layer on the β-Ga2O3 layer by using a photolithography process, wherein the channel is located in the center of the β-Ga2O3 layer, and the source layer and drain layer are located on both sides of the channel;
步骤3、掺杂形成源极区、漏极区:Step 3, doping to form source region and drain region:
采用离子注入工艺,对源极层和漏极层进行离子注入,注入条件:在N+型源极区和N+型漏极区注入能量为25KeV、剂量为1019cm-3的Si+离子,形成源极区和漏极区;Ion implantation is carried out on the source layer and the drain layer by using ion implantation process. The implantation conditions are: Si + ions are implanted in the N + type source region and the N + type drain region with an energy of 25KeV and a dose of 10 19 cm -3 , forming a source region and a drain region;
步骤4、激活:Step 4. Activate:
在880℃条件下对源极区和漏极区热退火30min进行激活处理,得到源极区和漏极区,图2(c)为激活处理得到源极区和漏极区的结果示意图;Thermal annealing of the source and drain regions at 880°C for 30 minutes was performed to activate the source and drain regions. Figure 2(c) is a schematic diagram of the results of the activation treatment to obtain the source and drain regions;
步骤5、淀积缓冲层:Step 5, deposit buffer layer:
利用原子层淀积工艺,在温度为260℃,压强为12hPa的环境下,在步骤4 形成的有源层上淀积厚度为6nm的HfAlO层,形成绝缘电介质薄膜,图2(d)为淀积HfAlO绝缘电介质薄膜后的结果示意图;Using the atomic layer deposition process, at a temperature of 260 ° C and a pressure of 12 hPa, a HfAlO layer with a thickness of 6 nm is deposited on the active layer formed in step 4 to form an insulating dielectric film. Figure 2(d) shows the deposited Schematic diagram of the result after accumulating HfAlO insulating dielectric film;
步骤6、淀积铁电栅介质层:Step 6, depositing a ferroelectric gate dielectric layer:
利用脉冲激光沉积工艺,单脉冲能量300mJ,使激光脉冲的能量密度为 2J/cm2,激光重复频率为10Hz沉积氧压100mTorr,沉积温度为700℃,在步骤5 形成绝缘电介质薄膜HfAlO上淀积厚度为280nm的Pb(Zr0.53Ti0.47)O3铁电薄膜,图2(e)为淀积Pb(Zr0.53Ti0.47)O3铁电薄膜后的结果示意图;Using the pulsed laser deposition process, the single pulse energy is 300mJ, the energy density of the laser pulse is 2J/cm 2 , the laser repetition frequency is 10Hz, the deposition oxygen pressure is 100mTorr, and the deposition temperature is 700°C. In step 5, an insulating dielectric film is deposited on HfAlO A Pb(Zr 0.53 Ti 0.47 )O 3 ferroelectric film with a thickness of 280nm, Figure 2(e) is a schematic diagram of the result after depositing a Pb(Zr 0.53 Ti 0.47 )O 3 ferroelectric film;
步骤7、淀积栅电极:Step 7, depositing the gate electrode:
利用超高真空电子束工艺,在Pb(Zr0.53Ti0.47)O3铁电薄膜上生长80nm的TaN,图2(f)为淀积栅金属TaN后的结果示意图;80nm TaN was grown on the Pb(Zr 0.53 Ti 0.47 )O 3 ferroelectric film by ultra-high vacuum electron beam technology, and Fig. 2(f) is a schematic diagram of the result after deposition of gate metal TaN;
步骤8、光刻和刻蚀:Step 8, photolithography and etching:
通过光刻形成源漏电极窗口,刻蚀源极和漏极上的缓冲层HfAlO/ Pb(Zr0.53Ti0.47)O3/TaN,图2(g)为刻蚀源极和漏极上的缓冲层HfAlO/ Pb(Zr0.53Ti0.47)O3/TaN完成后的结果示意图;The source and drain electrode windows are formed by photolithography, and the buffer layer HfAlO/ Pb(Zr 0.53 Ti 0.47 )O 3 /TaN on the source and drain is etched. Figure 2(g) shows the etching of the buffer layer on the source and drain Schematic diagram of the result after the layer HfAlO/ Pb(Zr 0.53 Ti 0.47 )O 3 /TaN is completed;
步骤9、淀积源、漏电极:Step 9, depositing source and drain electrodes:
利用磁控溅射工艺,在温度为300℃,压强为0.12Pa,溅射功率为200W的条件下在步骤8中形成的源漏电极窗口中,淀积形成Au/Ti源漏电极,厚度分别为30nm/150nm,再通过剥离,完成晶体管的制作,图2(h)为晶体管制作完毕的结果示意图。Using the magnetron sputtering process, under the conditions of temperature 300°C, pressure 0.12Pa, and sputtering power 200W, in the source-drain electrode window formed in step 8, deposit and form Au/Ti source-drain electrodes with thicknesses respectively The thickness is 30nm/150nm, and then the fabrication of the transistor is completed by peeling off. Fig. 2(h) is a schematic diagram of the result of the fabrication of the transistor.
实施例4Example 4
本发明所述铁电场效应晶体管的一种实施例,本实施例所述铁电场效应晶体管的一种剖面结构图如附图1所示,包括:An embodiment of the ferroelectric field effect transistor of the present invention, a cross-sectional structure diagram of the ferroelectric field effect transistor described in this embodiment is shown in Figure 1, including:
衬底1,衬底1由锗材料组成;A substrate 1, the substrate 1 is composed of a germanium material;
在衬底1上形成的沟道层2,沟道层2由β-Ga2O3材料组成,沟道层2还掺杂有锡,所述锡的掺杂浓度为1016cm-3;A channel layer 2 formed on the substrate 1, the channel layer 2 is composed of β-Ga 2 O 3 material, the channel layer 2 is also doped with tin, and the doping concentration of the tin is 10 16 cm -3 ;
在沟道层2上形成的源极区3和漏极区7,源极区3和漏极区7对称形成于沟道层2的两端;The source region 3 and the drain region 7 formed on the channel layer 2, the source region 3 and the drain region 7 are symmetrically formed at both ends of the channel layer 2;
在沟道层2上且在源极区3和漏极区7之间形成的缓冲层4;a buffer layer 4 formed on the channel layer 2 and between the source region 3 and the drain region 7;
在缓冲层4上形成的铁电栅介质层5;A ferroelectric gate dielectric layer 5 formed on the buffer layer 4;
在铁电栅介质层5上形成的栅电极6;A gate electrode 6 formed on the ferroelectric gate dielectric layer 5;
在源极区3上形成的源电极,所述源电极包括Ti源电极10和Au源电极 11,Au源电极11形成于Ti源电极10的上;The source electrode formed on the source region 3, the source electrode includes a Ti source electrode 10 and an Au source electrode 11, and the Au source electrode 11 is formed on the Ti source electrode 10;
以及as well as
在漏极区7上形成的漏电极,所述漏电极包括Ti漏电极8和Au漏电极9, Au漏电极9形成于Ti漏电极8的上。The drain electrode formed on the drain region 7 , the drain electrode includes a Ti drain electrode 8 and an Au drain electrode 9 , and the Au drain electrode 9 is formed on the Ti drain electrode 8 .
其中,所述沟道层的厚度为250nm;缓冲层由铪基介电材料组成,所述铪基介电材料为HfN,所述缓冲层的厚度为10nm;铁电栅介质层的材料为Nd与 Bi4Ti3O12掺杂形成的物质,所述铁电栅介质层的厚度为600nm。Wherein, the thickness of the channel layer is 250nm; the buffer layer is composed of hafnium-based dielectric material, the hafnium-based dielectric material is HfN, and the thickness of the buffer layer is 10nm; the material of the ferroelectric gate dielectric layer is Nd The substance formed by doping with Bi 4 Ti 3 O 12 , the thickness of the ferroelectric grid dielectric layer is 600nm.
本实施例所述铁电场效应晶体管的制备方法的一种实施例,包括如下步骤:An embodiment of the method for preparing a ferroelectric field effect transistor described in this embodiment includes the following steps:
步骤1、外延生长β-Ga2O3层:Step 1. Epitaxial growth of β-Ga 2 O 3 layer:
利用低温固源分子束外延工艺,在衬底上外延生长一层β-Ga2O3层,厚度为 250nm,外延温度为500℃,沉积速率为0.6μm/h,图2(b)为外延生长β-Ga2O3沟道后的结果示意图;Using low-temperature solid-source molecular beam epitaxy, a layer of β-Ga 2 O 3 was epitaxially grown on the substrate with a thickness of 250 nm. The epitaxial temperature was 500°C and the deposition rate was 0.6 μm/h. Figure 2(b) shows the epitaxy Schematic diagram of the result after growing a β-Ga 2 O 3 channel;
步骤2、光刻形成有源层:Step 2, photolithography to form the active layer:
利用光刻工艺,在β-Ga2O3层上形成源极层、沟道和漏极层,其中沟道位于β-Ga2O3层正中央,源极层和漏极层分别位于沟道两侧;A source layer, a channel and a drain layer are formed on the β-Ga 2 O 3 layer by photolithography, wherein the channel is located in the center of the β-Ga 2 O 3 layer, and the source layer and the drain layer are respectively located in the channel. both sides of the road;
步骤3、掺杂形成源极区、漏极区:Step 3, doping to form source region and drain region:
采用离子注入工艺,对源极层和漏极层进行离子注入,注入条件:在N+型源极区和N+型漏极区注入能量为25KeV、剂量为1019cm-3的Si+离子,形成源极区和漏极区;Ion implantation is carried out on the source layer and the drain layer by using ion implantation process. The implantation conditions are: Si + ions are implanted in the N + type source region and the N + type drain region with an energy of 25KeV and a dose of 10 19 cm -3 , forming a source region and a drain region;
步骤4、激活:Step 4. Activate:
在950℃条件下对源极区和漏极区热退火30min进行激活处理,得到源极区和漏极区,图2(c)为激活处理得到源极区和漏极区的结果示意图;Thermal annealing of the source region and the drain region at 950°C for 30 minutes was activated to obtain the source region and the drain region. Figure 2(c) is a schematic diagram of the result of the activation treatment to obtain the source region and the drain region;
步骤5、淀积缓冲层:Step 5, deposit buffer layer:
利用原子层淀积工艺,在温度为280℃,压强为12hPa的环境下,在步骤4 形成的有源层上淀积厚度为10nm的HfO2层,形成绝缘电介质薄膜,图2(d)为淀积HfO2缓冲层薄膜后的结果示意图;Using the atomic layer deposition process, at a temperature of 280°C and a pressure of 12hPa, a HfO2 layer with a thickness of 10nm is deposited on the active layer formed in step 4 to form an insulating dielectric film, as shown in Figure 2(d). Schematic diagram of the result after depositing HfO buffer layer film ;
步骤6、淀积铁电栅介质层:Step 6, depositing a ferroelectric gate dielectric layer:
利用脉冲激光沉积工艺,单脉冲能量320mJ,使激光脉冲的能量密度为 2.5J/cm2,激光重复频率为12Hz,沉积氧压200mTorr,沉积温度为750℃,在步骤5形成绝缘电介质薄膜HfO2上淀积厚度为320nm的Bi3.15Nd0.85Ti3O12铁电薄膜,图2(e)为淀积Bi3.15Nd0.85Ti3O12铁电薄膜后的结果示意图;Using the pulsed laser deposition process, the single pulse energy is 320mJ, the energy density of the laser pulse is 2.5J/cm 2 , the laser repetition frequency is 12Hz, the deposition oxygen pressure is 200mTorr, and the deposition temperature is 750°C, and the insulating dielectric film HfO 2 is formed in step 5 Deposit a Bi 3.15 Nd 0.85 Ti 3 O 12 ferroelectric film with a thickness of 320nm, and Fig. 2(e) is a schematic diagram of the result after depositing a Bi 3.15 Nd 0.85 Ti 3 O 12 ferroelectric film;
步骤7、淀积栅电极:Step 7, depositing the gate electrode:
利用超高真空电子束工艺,在Bi3.15Nd0.85Ti3O12铁电薄膜上生长80nm的Pt,图2(f)为淀积栅金属Pt后的结果示意图;Using the ultra-high vacuum electron beam process, 80nm Pt is grown on the Bi 3.15 Nd 0.85 Ti 3 O 12 ferroelectric film. Figure 2(f) is a schematic diagram of the result after depositing the gate metal Pt;
步骤8、光刻和刻蚀:Step 8, photolithography and etching:
通过光刻形成源漏电极窗口,刻蚀源极和漏极上的缓冲层HfO2/Bi3.15Nd0.85Ti3O12/Pt,图2(g)为刻蚀源极和漏极上的缓冲层HfO2/ Bi3.15Nd0.85Ti3O12/Pt完成后的结果示意图;The source and drain electrode windows are formed by photolithography, and the buffer layer HfO 2 /Bi 3.15 Nd 0.85 Ti 3 O 12 /Pt on the source and drain is etched. Figure 2(g) shows the etching of the buffer layer on the source and drain Schematic diagram of the result after the layer HfO 2 /Bi 3.15 Nd 0.85 Ti 3 O 12 /Pt is completed;
步骤9、淀积源、漏电极:Step 9, depositing source and drain electrodes:
利用磁控溅射工艺,在温度为260℃,压强为0.12Pa,溅射功率为200W的条件下在步骤8中形成的源漏电极窗口中,淀积形成Au/Ti源漏电极,厚度分别为20nm/100nm,再通过剥离,完成晶体管的制作,图2(h)为晶体管制作完毕的结果示意图。Using the magnetron sputtering process, under the conditions of temperature 260°C, pressure 0.12Pa, and sputtering power 200W, in the source-drain electrode window formed in step 8, Au/Ti source-drain electrodes are deposited and formed, and the thicknesses are respectively The thickness is 20nm/100nm, and then the fabrication of the transistor is completed by peeling off. Fig. 2(h) is a schematic diagram of the result of the fabrication of the transistor.
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit the protection scope of the present invention. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that, The technical solution of the present invention can be modified or equivalently replaced without departing from the spirit and scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710426282.5A CN107240606B (en) | 2017-06-08 | 2017-06-08 | A kind of ferroelectric field effect transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710426282.5A CN107240606B (en) | 2017-06-08 | 2017-06-08 | A kind of ferroelectric field effect transistor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107240606A true CN107240606A (en) | 2017-10-10 |
CN107240606B CN107240606B (en) | 2020-10-23 |
Family
ID=59986229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710426282.5A Active CN107240606B (en) | 2017-06-08 | 2017-06-08 | A kind of ferroelectric field effect transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107240606B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108538920A (en) * | 2018-03-21 | 2018-09-14 | 湘潭大学 | A kind of flexibility ferroelectrical thin film transistor and preparation method thereof |
CN109728096A (en) * | 2018-12-20 | 2019-05-07 | 西安电子科技大学 | Ferroelectric field effect transistor based on nanocrystal embedded in alumina material and preparation method |
CN109742235A (en) * | 2019-01-09 | 2019-05-10 | 湘潭大学 | A kind of flexible ferroelectric field effect tube and preparation method thereof |
JP2019121633A (en) * | 2017-12-28 | 2019-07-22 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method of manufacturing the same |
CN110098256A (en) * | 2019-04-24 | 2019-08-06 | 中国科学院微电子研究所 | Field effect transistor and preparation method thereof |
CN113054023A (en) * | 2020-03-31 | 2021-06-29 | 台湾积体电路制造股份有限公司 | Ferroelectric field effect transistor and method of forming a semiconductor structure |
CN113224170A (en) * | 2021-05-08 | 2021-08-06 | 西安电子科技大学 | Ferroelectric doping based negative capacitance field effect transistor |
CN113241373A (en) * | 2021-05-08 | 2021-08-10 | 西安电子科技大学 | Ferroelectric doping-based field effect transistor and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101872769B (en) * | 2010-06-11 | 2012-05-23 | 清华大学 | Ferroelectric dynamic random access memory based on atomic layer deposition isolation layer and its preparation method |
-
2017
- 2017-06-08 CN CN201710426282.5A patent/CN107240606B/en active Active
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019121633A (en) * | 2017-12-28 | 2019-07-22 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method of manufacturing the same |
CN108538920A (en) * | 2018-03-21 | 2018-09-14 | 湘潭大学 | A kind of flexibility ferroelectrical thin film transistor and preparation method thereof |
CN109728096A (en) * | 2018-12-20 | 2019-05-07 | 西安电子科技大学 | Ferroelectric field effect transistor based on nanocrystal embedded in alumina material and preparation method |
CN109728096B (en) * | 2018-12-20 | 2020-08-04 | 西安电子科技大学 | Ferroelectric field effect transistor based on nanocrystal embedded in alumina material and preparation method |
CN109742235A (en) * | 2019-01-09 | 2019-05-10 | 湘潭大学 | A kind of flexible ferroelectric field effect tube and preparation method thereof |
CN110098256A (en) * | 2019-04-24 | 2019-08-06 | 中国科学院微电子研究所 | Field effect transistor and preparation method thereof |
CN113054023A (en) * | 2020-03-31 | 2021-06-29 | 台湾积体电路制造股份有限公司 | Ferroelectric field effect transistor and method of forming a semiconductor structure |
CN113224170A (en) * | 2021-05-08 | 2021-08-06 | 西安电子科技大学 | Ferroelectric doping based negative capacitance field effect transistor |
CN113241373A (en) * | 2021-05-08 | 2021-08-10 | 西安电子科技大学 | Ferroelectric doping-based field effect transistor and preparation method thereof |
CN113241373B (en) * | 2021-05-08 | 2023-12-19 | 西安电子科技大学 | Ferroelectric doping-based field effect transistor and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107240606B (en) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107240606B (en) | A kind of ferroelectric field effect transistor and preparation method thereof | |
CN107146759B (en) | Method for preparing hafnium oxide ferroelectric gate based on ion implantation doping | |
CN1557024B (en) | Insulated Gate AlGaN/KN High Electron Mobility Transistors (HEMTs) | |
CN107134487B (en) | A kind of ferroelectric gate structure based on hafnium oxide and its preparation process | |
US11011534B2 (en) | Multi-level cell thin-film transistor memory and method of fabricating the same | |
TW200917467A (en) | Highly scalable thin film transistor | |
CN101887910A (en) | A gate stack structure suitable for semiconductor flash memory devices and its preparation method | |
CN104471702A (en) | Semiconductor ferroelectric memory transistor and manufacturing method thereof | |
TW201242030A (en) | Semiconductor device and method for manufacturing the same | |
CN107170828A (en) | A kind of ferro-electric field effect transistor and preparation method thereof | |
WO2004036651A1 (en) | Semiconductor ferroelectric storage device and its manufacturing method | |
CN111986999B (en) | Method for forming semiconductor device | |
WO2013152458A1 (en) | Thin film transistor memory and preparation method therefor | |
Saeidi et al. | Near Hysteresis-Free Negative Capacitance InGaAs Tunnel FETs with Enhanced Digital and Analog Figures of Merit below $\mathrm {V} _ {\text {DD}}= 400\text {mV} $ | |
CN102593065A (en) | Preparation method for backgate thin film transistor storage | |
CN111627920A (en) | Ferroelectric memory cell | |
CN105206615A (en) | High-dielectric-coefficient composite oxide charge storage medium thin film and application | |
CN102117812A (en) | Nanocrystalline non-volatile memory based on strained silicon and manufacturing method thereof | |
Park et al. | Multibit ferroelectric field-effect transistor with epitaxial-like Pb (Zr, Ti) O3 | |
Park et al. | Notice of Removal: A Novel Metal-Ferroelectric-Insulator-Silicon FET With Selectively Nucleated Lateral Crystallized Pb (Zr, Ti) O 3 and ZrTiO 4 Buffer for Long Retention and Good Fatigue | |
Kim et al. | Ferroelectric gate field-effect transistors with 10nm thick nondoped HfO 2 utilizing pt gate electrodes | |
US20070267679A1 (en) | Nonvolatile memory devices including floating gates formed of silicon nano-crystals and methods of manufacturing the same | |
CN107302001A (en) | A kind of single tube single capacitor memory unit and preparation method thereof | |
CN109727992B (en) | Charge trap memory and method of making the same | |
CN101399209A (en) | Preparation method of non-volatile memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |