CN107238568A - 基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置 - Google Patents

基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置 Download PDF

Info

Publication number
CN107238568A
CN107238568A CN201710439979.6A CN201710439979A CN107238568A CN 107238568 A CN107238568 A CN 107238568A CN 201710439979 A CN201710439979 A CN 201710439979A CN 107238568 A CN107238568 A CN 107238568A
Authority
CN
China
Prior art keywords
baffle
test block
loading
corrosion
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710439979.6A
Other languages
English (en)
Inventor
林红威
赵羽习
刘承斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Publication of CN107238568A publication Critical patent/CN107238568A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating

Abstract

本发明提供了一种基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试装置,包括一外部反力架,外部反力架上设有MTS试验机,MTS试验机的端部安装有转换接头和锚具;MTS试验机正下方设有内部反力架,内部反力架上设有放置待测试块用的工位,该工位为由第一挡板、第二挡板、第一紧固螺杆和第二紧固螺杆共同围成的方形空间;第一挡板顶端安装有第一夹具,第一夹具上固定有第一位移传感器;第二挡板底端安装有第二夹具,第二夹具上固定有第二位移传感器。本发明提供的加载装置及测试方法,能够客观、准确的测量锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能等参数,方法简单,测试便捷。

Description

基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的 测试方法及加载装置
技术领域
本发明涉及土木工程混凝土结构试验技术领域,具体涉及一种基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置。
背景技术
钢筋混凝土结构中钢筋与混凝土之间的应力传递和变形协调是通过两者间的粘结作用实现的,钢筋与混凝土之间的化学胶着力、摩擦力和机械咬合力组成了钢筋混凝土结构的粘结力。钢筋与混凝土之间充分的粘结作用是钢筋混凝土结构发挥良好工作性能的前提和基础。钢筋局部粘结应力和局部相对滑移之间的关系称为粘结滑移本构关系,它反映了钢筋和混凝土的全过程的接触行为,是钢筋混凝土构件有限元分析、受弯构件裂缝宽度计算、挠度计算,以及梁柱节点地震作用下力学性能研究的理论基础。然而,随着钢筋混凝土结构服役时间的延长,钢筋和混凝土之间的粘结作用将会在外部环境或荷载的作用下产生退化,其中包括钢筋锈蚀引起的粘结强度的退化以及疲劳荷载引起的刚度降低。
当混凝土结构中钢筋生锈以后,钢筋与混凝土的粘结性能会产生很大变化。钢筋发生锈蚀以后,体积变大,混凝土保护层会因此而产生环向拉应力。当锈蚀率较小时,保护层不会开裂,锈胀压力会使粘结力略微增大;而当锈蚀率较大时,混凝土保护层将产生径向裂缝甚至出现剥落,钢筋和混凝土之间的粘结力因约束减小而降低,粘结力的降低将显著影响构件的极限承载力和抗弯刚度,进而影响整个混凝土结构的安全性和适用性等服役性能。
除锈蚀以外,许多工程结构,如桥梁、吊车梁以及铁路轨枕等在服役过程中承受更多的是重复荷载(亦称:疲劳荷载)的作用,因此面临着较为突出的疲劳问题。在疲劳荷载的反复作用下,钢筋和混凝土之间相对滑移不断发展,导致构件刚度减小,挠度增大,裂缝逐渐变宽,严重时还会导致粘结疲劳破坏,引起钢筋混凝土结构的失效,从而对钢筋混凝土结构的服役性能产生显著影响。
目前,国内外对锈蚀引起的粘结退化进行了一定的研究,但是多集中于粘结强度的退化,关于锈蚀钢筋混凝土的粘结滑移本构关系仍然非常少。如国外Auyeung et al.[1],Bhargava et al.[2]和Lee et al.[3]等提出了指数关系模型来描述粘结强度随锈蚀率的变化规律,Cabrera[4]和 Stanish et al.[5]提出了线性关系模型来描述粘结强度随锈蚀率的变化规律,又如国内袁迎曙教授等[6]提出了考虑保护层厚度影响的粘结强度退化线性公式。纵观国内外已有研究,大多研究基于中心拔出无箍筋试件,箍筋对粘结强度退化的影响缺乏深入认识,且保护层厚度较大,与实际结构中钢筋的外部约束条件并不完全符合。而关于疲劳荷载作用下的粘结滑移性能,国内外的研究更少,Rehm and Eligehausen[7]和Kochand Balázs[8,9]发现疲劳加载不会对粘结强度产生显著影响,但可以使钢筋和混凝土产生较大的残余滑移,使构件的刚度降低;Byung et al.[10]同样观察到此现象,并提出了疲劳荷载作用后的粘结滑移本构关系模型。但是,基于钢筋锈蚀与疲劳荷载对钢筋混凝土粘结滑移性能的耦合影响,国内外相关研究仍未见报道。
同样的,在现有技术中,关于钢筋混凝土的粘结性能、粘结强度、粘结应力等参数的测试方法及配套测试装置,大多是基于钢筋锈蚀对钢筋混凝土粘结滑移性能的影响关系而设计的测试模型,并不能综合考虑钢筋锈蚀以及疲劳荷载对钢筋混凝土粘结滑移性能的耦合影响关系,故难以应用于实际工程,真实、客观地反映出钢筋混凝土的粘结滑移本构关系。如:
申请号为201210162916.8的中国发明专利,公开了一种用于测量钢筋和混凝土粘结力的圆柱体试件,其把钢筋穿过圆柱形PVC管,并通过直径等于圆柱形PVC管外径的圆形钢板来固定钢筋位置,该技术方案的不足之处在于:①通过胶带来固定PVC管和钢板,振捣混凝土时极易漏浆,并且效率较低,并不适合大规模的对比试验;②圆柱形试块保护层厚度比实际结构中要大很多,并且无法放置箍筋,在对试块进行加载时,混凝土受压易使钢筋受拉,使其无法真正模拟钢筋混凝土梁中的粘结受力状态。
申请号为201510688835.5的中国发明专利,公开了一种测定钢筋与混凝土粘结性能的拉拔装置,该装置利用万能试验机、并借助由钢板和螺杆组成的加载架对中心拔出试块进行静力加载,该技术方案的不足之处在于:保护层过大,使得试块加载后,受力方式与实际不符。
申请号为201510690612.2的中国发明专利,公开了一种挤压式测定钢筋与混凝土粘结性能的装置及测试方法,该技术方案的不足之处在于:保护层过大,加载速率无法控制,无法进行重复加载,并且千斤顶与钢筋不易对中,致使加载失败;
申请号为201410306597.2的中国发明专利,公开了一种钢筋混凝土粘结应力及滑移测量装置,该技术方案的不足之处在于:保护层过大与实际不符,未考虑重复加载及锈蚀的情况;
申请号为201310578387.4的中国发明专利,公开了一种测定钢筋与砼粘结性能的液压固定装置,该技术方案的不足之处在于:中心试件保护层过大,混凝土双面受压与实际结构中混凝土受力状态不符;
综上所述,如何提供一种真实、客观的测试钢筋混凝土粘结滑移性能的方法及其加载装置,以用于准确研究不同保护层厚度、箍筋间距、锈蚀和疲劳荷载对钢筋混凝土粘结滑移性能的耦合影响,进而建立不同约束条件下的粘结滑移本构模型,以应用于实际工程检测,是本领域技术人员急需解决的技术难题。
发明内容
本发明目的在于,提供一种钢筋混凝土粘结滑移性能的测试方法及加载装置,来真实、客观地反映出实际工程中梁端式构件受锈蚀与疲劳荷载耦合影响的粘结滑移本构关系,解决了上述现有技术的缺陷。
为实现本发明目的,采用的技术方案具体如下:
一种基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的加载装置,包括一外部反力架,外部反力架上设有MTS试验机,MTS试验机的端部安装有转换接头和锚具;MTS 试验机正下方设有内部反力架,内部反力架上设有放置待测试块用的工位,该工位为由第一挡板、第二挡板、第一紧固螺杆和第二紧固螺杆共同围成的方形空间;其中第一挡板位于靠近MTS试验机的一侧,第二挡板位于第一挡板的正下方,第一紧固螺杆和第二紧固螺杆分别与第一挡板、第二挡板相连接;第一挡板与第二挡板之间,还设有上压板,上压板的一端固定在第一紧固螺杆上,另一端固定在第二紧固螺杆上;第一挡板顶端安装有第一夹具,第一夹具上固定有第一位移传感器;第二挡板底端安装有第二夹具,第二夹具上固定有第二位移传感器;第一位移传感器和第二位移传感器均设于第一挡板与第二挡板的中轴线上。
优选的,外部反力架为工字形结构,由垂直于地面且互相平行的两根竖梁、与地面平行的一根横梁组成。
优选的,内部反力架由第一支撑槽钢,第二支撑槽钢,第三支撑槽钢,竖向工字钢和支撑底板组成,其中,第一支撑槽钢设于地面上,第二支撑槽钢垂直固定于第一支撑槽钢上,第三支撑槽钢与竖向工字钢互相平行且均垂直固定于第二支撑槽钢上,支撑底板固定于竖向工字钢上。
一种基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法,包括如下步骤:
(1)试块浇筑:制作木模,木模内依次放入PVC管、纵筋和箍筋并绑扎,在木模顶部浇筑混凝土并振捣、养护、拆模,切割后得到试块;
(2)试块加速锈蚀:对试块的底部从里到外依次用海绵、不锈钢网和塑料薄膜进行绑扎,将试块中的钢筋接通直流电源的正极,不锈钢网接通直流电源的负极,用氯化钠溶液润湿海绵,对试块进行加速锈蚀;
(3)安装加载装置:将如前任一项所述的加载装置的外部反力架和内部反力架固定于水平反力墙上,在内部反力架的工位上放置步骤(2)得到的试块,调节MTS试验机,使试块中的钢筋穿过转换接头并被锚具锚固,且钢筋、MTS试验机同处于中轴线上;
(4)预加载:对试块进行预加载,先施加不超过1吨的竖向荷载,使得试块底部与第一挡板、第二挡板均紧密接触;再操作MTS试验机,卸载至零,并于第一挡板上安装第一位移传感器,于第二挡板上安装第二位移传感器,且第一位移传感器和第二位移传感器的顶针分别与试块接触;
(5)加载:操作MTS试验机进入加载模式,加载模式分为静力加载或疲劳加载,分别采样两种模式下位移、荷载的试验数据;
(6)数据处理与分析:对试验数据进行处理,计算平均粘结应力和平均滑移,绘制平均粘结应力-平均滑移关系曲线,根据曲线分析试块的粘结强度、残余粘结强度,据此判断在不同荷载作用情况下的试块粘结滑移性能;
所述的试块,为梁端式试块。
优选的,步骤(1)中,试块长、宽、高的尺寸为300×150×250mm,并且试块中的钢筋处于偏心位置。
优选的,步骤(2)中,加速锈蚀时的氯化钠溶液的质量分数为5%,腐蚀电流密度为不超过200μA/cm2
优选的,步骤(5)中,当加载模式为静力加载时,施加荷载的加载速率为0.5mm/min;或,当加载模式为疲劳加载时,施加荷载的加载速率先升至最大疲劳荷载水平Pmax,再降至最小疲劳荷载水平Pmin,并进行重复加载,且疲劳荷载水平下限Pmin>0。
优选的,步骤(6)中,平均粘结应力r的计算公式为:式中F是拔出力,d 是钢筋直径,la是锚固长度;平均滑移的计算公式为:s=(sl+sf-sΔ)/2,式中sf为对自由端位移传感器滑移值进行平均得到的相对滑移,sl为对加载端位移传感器滑移值进行平均得到的相对滑移,sΔ为加载端钢筋的拉伸变形;且,式中lΔ是位移传感器夹具固定点到加载端混凝土表面距离,为50mm;E是钢筋弹性模量;A是钢筋横截面积。
与现有技术相比,本发明的有益效果具体如下:
(1)本发明提供的一种钢筋混凝土粘结滑移性能的测试方法,适用于梁端式构件,能准确测得不同保护层厚度及箍筋约束条件下的较为完整的粘结滑移曲线,客观反应了梁端式构件受钢筋锈蚀与疲劳荷载耦合影响的粘结滑移本构关系,与工程实际吻合度高,避免了传统方法下与实际不符的缺点。
(2)本发明提供的测试方法,操作便捷,测量精度高,可以实现对普通钢筋混凝土试件、锈蚀钢筋混凝土试件在静力荷载或疲劳荷载下粘结滑移性能的研究。
(3)本发明还提供了一种加载装置,专用于前述的基于锈蚀与疲劳荷载耦合影响的粘结滑移性能的测试方法,该装置结构简单,拆装方便,为自制的、原创设计结构,该装置可以实现对大尺寸梁端式构件进行水平、竖向、单调以及重复等多种形式的加载。
附图说明
图1为本发明中梁端式构件剖面图示意图。
图2为本发明中梁端式构件拆模以后示意图。
图3为本发明中梁端式构件加速锈蚀示意图。
图4为本发明中加载系统示意图。
图5为本发明中内部反力架主视示意图。
图6为本发明中内部反力架后视示意图。
图7为本发明中内部反力架侧视示意图。
图8为本发明中MTS转换接头示意图。
图9为本发明测得的静力荷载作用下的粘结滑移曲线。
图10为本发明测得的疲劳荷载作用下的粘结滑移曲线。
具体实施方式
以下结合附图具体说明本发明基于梁端式构件研究普通变形钢筋、锈蚀变形钢筋与混凝土粘结滑移性能的方法。
如图1所示,步骤一:试块浇筑
制作长宽高尺寸为300×150×250mm的木模,木模沿长度方向两端打孔。位于木模底侧并且孔径为25mm的圆孔两个,孔中心至底部的距离由保护层厚度决定,至两侧的距离为 75mm;位于木模顶部并且孔径为8mm的圆孔四个,孔中心至两侧和顶部的距离分别为30mm 和50mm。木模内放置好箍筋,将20mm热轧变形钢筋以及PVC塑料套管从底部孔穿入,PVC 塑料套管内径略大于钢筋直径。调整钢筋和套管位置,使其符合图1中所示尺寸要求,钢筋粘结段和非粘结段交界面处用硅胶进行密封,防止漏浆。将两根8mm光圆钢筋从上部两孔穿入充当架立筋,调整箍筋位置并进行绑扎。从非保护层侧即木模顶部浇筑混凝土并振捣、养护、拆模,用磨光机除去裸露部分架立筋以及PVC塑料管,最终试块如图2所示。所述的试块,为梁端式试块。
步骤二:试块加速锈蚀
制作长宽尺寸为350×300mm的吸水海绵、不锈钢网以及塑料薄膜,海绵厚度为30mm。将海绵、不锈钢网以及塑料薄膜包裹在梁端式试块底部(保护层区域),绑扎顺序从里到外为海绵、不锈钢网和塑料薄膜。将梁端式试块中拉拔钢筋用导线与稳压直流电源正极连接,不锈钢网用导线与电源负极连接,用5%的NaCl溶液充份润湿吸水海绵24小时,待锈蚀钢筋区域的混凝土充份浸湿后,开启直流电源进行通电试验,腐蚀电流密度控制为不超过 200μA/cm2。通电期间,用5%的NaCl溶液保持棉花布充份湿润,并保持电流为恒定值。加速锈蚀实验的设计如图3所示,加速锈蚀通电时间由法拉第定律确定,达到预期通电时间后,关闭直流电源,试块加速锈蚀试验结束。
步骤三:安装加载装置
本发明的加载装置,如图4~图8所示,包括一外部反力架1,外部反力架上设有MTS试验机2,MTS试验机2的端部安装有转换接头201和锚具202;MTS试验机2正下方设有内部反力架3,内部反力架3上设有放置待测试块用的工位4,该工位4为由第一挡板401、第二挡板402、第一紧固螺杆403和第二紧固螺杆404共同围成的方形空间;其中第一挡板 401位于靠近MTS试验机2的一侧,第二挡板402位于第一挡板401的正下方,第一紧固螺杆403和第二紧固螺杆404分别与第一挡板401、第二挡板402相连接;第一挡板401与第二挡板402之间,还设有上压板5,上压板5的一端固定在第一紧固螺杆403上,另一端固定在第二紧固螺杆404上;第一挡板401顶端安装有第一夹具6,第一夹具6上固定有第一位移传感器7;第二挡板402底端安装有第二夹具8,第二夹具8上固定有第二位移传感器9;第一位移传感器7和第二位移传感器9均设于第一挡板401与第二挡板402的中轴线上。
更进一步的,外部反力架1为工字形结构,由垂直于地面且互相平行的两根竖梁(101 和102)、与地面平行的一根横梁(103)组成。
更进一步的,内部反力架3由第一支撑槽钢301,第二支撑槽钢302,第三支撑槽钢303,竖向工字钢304和支撑底板305组成,其中,第一支撑槽钢301设于地面上,第二支撑槽钢 302垂直固定于第一支撑槽钢301上,第三支撑槽钢303与竖向工字钢304互相平行且均垂直固定于第二支撑槽钢302上,支撑底板305固定于竖向工字钢304上;支撑底板305上焊接有工位4。
更进一步的,锚具202由一套筒和夹片组成。
本加载装置的安装过程具体如下:
首先,将本加载装置的外部反力架1和内部反力架3固定于水平反力墙上,调整MTS试验机2的高度,通过四根螺杆将转换接头2固定于MTS试验机2上。
其次,将步骤(2)得到的试块放置于内部反力架3的工位4上(即放置于第二挡板402 上),使试块中的钢筋穿过转换接头2上的圆孔,调整试块位置,保证钢筋和MTS试验机2处于同一中轴线上,利用锚具202将钢筋锚固。
此时,工位4焊接于支撑底板305;上压板7通过螺母固定于第一紧固螺杆403和第二紧固螺杆404之间;第一支撑槽钢301,第二支撑槽钢302,第三支撑槽钢303和竖向工字钢304以焊接方式连接;第一支撑槽钢301通过锚杆固定于水平反力墙上。
步骤四:预加载
操作MTS试验机2,力控制模式下对试块进行预加载,先施加不超过一吨的竖向荷载,使得试块底部与第一挡板401、第二挡板402均紧密接触,使得试块保持紧固;再操作MTS试验机2,卸载至零,并于第一挡板401(即加载端,下同)上安装第一位移传感器7,于第二挡板402(即自由端,下同)上安装第二位移传感器9,保证第一位移传感器7和第二位移传感器9的顶针分别与试块的良好接触;利用动态数据采集仪归零。
步骤五:加载
操作MTS试验机2进入加载模式,加载模式分为静力加载或疲劳加载,同时启动动态数据采集仪按一定频率进行采样,须分别采样两种模式下位移、荷载的试验数据。
当对试块采取的加载模式为静力加载时,按位移控制模式施加荷载,施加荷载的加载速率为0.5mm/min,自由端滑移达到一倍钢筋肋间距时停止加载;或,
当对试块采取的加载模式为疲劳加载时,按位移控制模式施加荷载,施加荷载的加载速率先升至最大疲劳荷载水平Pmax,再降至最小疲劳荷载水平Pmin(且疲劳荷载水平下限Pmin>0),随后按一定频率对试块进行重复加载,相应的力和位移的数据采样频率提高至不低于疲劳加载频率。达到预设疲劳次数以后,在未发生粘结疲劳破坏的情况下按位移控制模式继续单调加载,加载速率仍控制为0.5mm/min,直至自由端滑移达到一倍钢筋肋间距时停止加载。
步骤六:数据处理与分析
对试验数据进行处理,计算平均粘结应力和平均滑移,绘制平均粘结应力-平均滑移关系曲线,根据曲线分析试块的粘结强度、残余粘结强度,据此判断在不同荷载作用情况下的试块粘结滑移性能。
(1)平均粘结应力和平均滑移的计算
本发明中,锚固段粘结长度设置为5d钢筋直径,可近似认为粘结应力沿锚固段均匀分布,故,平均粘结应力(即粘结强度)的计算公式为:
式a中:F是拔出力, d是钢筋直径,la是锚固长度。
平均滑移的计算公式为:s=(sl+sf-sΔ)/2 (b),
式b中:sf为对自由端位移传感器滑移值进行平均得到的相对滑移,sl为对加载端位移传感器滑移值进行平均得到的相对滑移,sΔ为加载端钢筋的拉伸变形。
加载端钢筋的拉伸变形sΔ的计算公式为:
式c中:lΔ是位移传感器夹具固定点到加载端混凝土表面距离,为50mm;E是钢筋弹性模量;A是钢筋横截面积。
(2)绘制粘结应力-滑移曲线
以平均相对滑移值为横坐标、平均粘结应力为纵坐标绘制粘结应力-滑移曲线,如图9和图10所示。
图9是静力荷载作用下,不同锈蚀率试块所对应的粘结应力滑移曲线,可以看出随着锈蚀率增大,粘结应力滑移曲线形态发生变化,残余粘结应力与峰值粘结应力的比值逐渐变小。与非锈蚀试块相比,锈蚀试块粘结强度明显降低,但残余粘结强度变化不是很明显。
图10是疲劳荷载作用下,不同锈蚀率试块所测得的粘结应力滑移曲线。与图9中静力加载试块相比,疲劳加载试块粘结滑移曲线形态明显发生变化。由于疲劳荷载的作用,钢筋和混凝土之间不断产生不可恢复的残余滑移(见图中滞回环),这在实际工程中表明:疲劳荷载会导致构件刚度降低、变形增大,这也反映了:受锈蚀与疲劳荷载耦合影响的试块,其粘结滑移性能与普通的静力荷载下的粘结滑移性能是截然不同的。
图9和图10表明,本发明可以测得完整的锈蚀与疲劳荷载耦合作用下的粘结应力滑移曲线,这在上述背景技术所提到的专利中是没有的。
需要补充说明的是,本发明中加载装置不仅适用于对普通梁端式构件、锈蚀梁端式构件进行静力加载和疲劳加载,还可以在此基础上考虑梁端弯矩以及剪力对粘结性能的影响对试件进行梁端式加载,以模拟钢筋混凝土梁梁端粘结滑移性能,此种研究方法国内尚未出现。进行梁端式加载时,本发明提供的测试方法之步骤(1)对梁端式试块的尺寸进行设计时,应注意保护层厚度最好不要超过35mm,以免发生剪切破坏;在步骤(1)中,第一挡板401沿试块高度方向尺寸应不大于250mm,具体根据需要实现的弯矩大小而决定。
附:参考文献
[1]Auyeung Y,Balaguru P,Chung L.Bond behavior of corrodedreinforcement bars[J].ACI Materials Journal.2000,97(2).
[2]Bhargava K,Ghosh AK,Mori Y,et al.Suggested empirical models forcorrosion-induced bond degradation in reinforced concrete[J].Journal ofStructural Engineering.2008,134(2):221-230.
[3]Lee H,Noguchi T,Tomosawa F.Evaluation of the bond propertiesbetween concrete and reinforcement as a function of the degree ofreinforcement corrosion[J].Cement and Concrete research.2002,32(8):1313-1318.
[4]Cabrera J G.Deterioration of concrete due to reinforcement steelcorrosion[J].Cement and Concrete Composites.1996,18(1):47-59.
[5]Stanish K,Hooton R D,Pantazopoulou S J.Corrosion effects on bondstrength in reinforced concrete[J].ACI Structural Journal.1999,96(6):915-921.
[6]袁迎曙,余索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的试验研究[J].工业建筑.1999, 29(11):47-50.
[7]Rehm G,Eligehausen R.Bond of ribbed bars under high cycle repeatedloads[J].1979.
[8]Koch R,Balazs G.Influence of preloading on bond strength andrelated slip[J].Proceedings of the bond in concrete–from research topractice,October,Riga,Latvia.1992:7-11.
[9]Koch R,Balazs G L.Slip increase under cyclic and long term loads[J].Otto Graf J.1993,4: 160-191.
[10]Oh B H,Kim S H.Realistic models for local bond stress-slip ofreinforced concrete under repeated loading[J].Journal of StructuralEngineering.2007,133(2):216-224。

Claims (8)

1.一种基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的加载装置,包括一外部反力架,所述的外部反力架上设有MTS试验机,MTS试验机的端部安装有转换接头和锚具;
所述的MTS试验机正下方设有内部反力架,内部反力架上设有放置待测试块用的工位,该工位为由第一挡板、第二挡板、第一紧固螺杆和第二紧固螺杆共同围成的方形空间;其中第一挡板位于靠近MTS试验机的一侧,第二挡板位于第一挡板的正下方,第一紧固螺杆和第二紧固螺杆分别与第一挡板、第二挡板相连接;
所述的第一挡板与第二挡板之间,还设有上压板,上压板的一端固定在第一紧固螺杆上,另一端固定在第二紧固螺杆上;
所述的第一挡板顶端安装有第一夹具,第一夹具上固定有第一位移传感器;所述的第二挡板底端安装有第二夹具,第二夹具上固定有第二位移传感器;第一位移传感器和第二位移传感器均设于第一挡板与第二挡板的中轴线上。
2.根据权利要求1所述的加载装置,其特征在于,所述的外部反力架为工字形结构,由垂直于地面且互相平行的两根竖梁、与地面平行的一根横梁组成。
3.根据权利要求2所述的加载装置,其特征在于,所述的内部反力架由第一支撑槽钢,第二支撑槽钢,第三支撑槽钢,竖向工字钢和支撑底板组成,其中,第一支撑槽钢设于地面上,第二支撑槽钢垂直固定于第一支撑槽钢上,第三支撑槽钢与竖向工字钢互相平行且均垂直固定于第二支撑槽钢上,支撑底板固定于竖向工字钢上。
4.一种基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法,包括如下步骤:
(1)试块浇筑:制作木模,木模内依次放入PVC管、纵筋和箍筋并绑扎,在木模顶部浇筑混凝土并振捣、养护、拆模,切割后得到试块;
(2)试块加速锈蚀:对试块的底部从里到外依次用海绵、不锈钢网和塑料薄膜进行绑扎,将试块中的钢筋接通直流电源的正极,不锈钢网接通直流电源的负极,用氯化钠溶液润湿海绵,对试块进行加速锈蚀;
(3)安装加载装置:将如权1~权3任一项所述的加载装置的外部反力架和内部反力架固定于水平反力墙上,在内部反力架的工位上放置步骤(2)得到的试块,调节MTS试验机,使试块中的钢筋穿过转换接头并被锚具锚固,且钢筋、MTS试验机同处于中轴线上;
(4)预加载:对试块进行预加载,先施加不超过1吨的竖向荷载,使得试块底部与第一挡板、第二挡板均紧密接触;再操作MTS试验机,卸载至零,并于第一挡板上安装第一位移传感器,于第二挡板上安装第二位移传感器,且第一位移传感器和第二位移传感器的顶针分别与试块接触;
(5)加载:操作MTS试验机进入加载模式,加载模式分为静力加载或疲劳加载,分别采样两种模式下位移、荷载的试验数据;
(6)数据处理与分析:对试验数据进行处理,计算平均粘结应力和平均滑移,绘制平均粘结应力-平均滑移关系曲线,根据曲线分析试块的粘结强度、残余粘结强度,据此判断在不同荷载作用情况下的试块粘结滑移性能;
所述的试块,为梁端式试块。
5.根据权利要求4所述的基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法,其特征在于,所述的步骤(1)中,试块长、宽、高的尺寸为300×150×250mm,并且试块中的钢筋处于偏心位置。
6.根据权利要求4所述的基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法,其特征在于,所述的步骤(2)中,加速锈蚀时的氯化钠溶液的质量分数为5%,腐蚀电流密度为不超过200μA/cm2
7.根据权利要求4所述的基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法,其特征在于,所述的步骤(5)中,当加载模式为静力加载时,施加荷载的加载速率为0.5mm/min;或,当加载模式为疲劳加载时,施加荷载的加载速率先升至最大疲劳荷载水平Pmax,再降至最小疲劳荷载水平Pmin,并进行重复加载,且疲劳荷载水平下限Pmin>0。
8.根据权利要求4所述的基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法,其特征在于,所述的步骤(6)中,平均粘结应力r的计算公式为:式中F是拔出力,d是钢筋直径,la是锚固长度;平均滑移的计算公式为:s=(sl+sf-sΔ)/2,式中sf为对自由端位移传感器滑移值进行平均得到的相对滑移,sl为对加载端位移传感器滑移值进行平均得到的相对滑移,sΔ为加载端钢筋的拉伸变形;且,式中lΔ是位移传感器夹具固定点到加载端混凝土表面距离,为50mm;E是钢筋弹性模量;A是钢筋横截面积。
CN201710439979.6A 2017-03-31 2017-06-12 基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置 Pending CN107238568A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210202 2017-03-31
CN2017102102022 2017-03-31

Publications (1)

Publication Number Publication Date
CN107238568A true CN107238568A (zh) 2017-10-10

Family

ID=59987812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710439979.6A Pending CN107238568A (zh) 2017-03-31 2017-06-12 基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置

Country Status (1)

Country Link
CN (1) CN107238568A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741361A (zh) * 2017-11-14 2018-02-27 江苏城市职业学院 一种测量钢筋粘结性能的装置及方法
CN108007860A (zh) * 2017-11-28 2018-05-08 深圳大学 荷载与腐蚀作用下钢筋混凝土粘结性能的试验装置
CN108168870A (zh) * 2018-01-23 2018-06-15 中钢集团郑州金属制品研究院有限公司 一种适用于锚具连接器进行疲劳性能测试的装置及其方法
CN108426791A (zh) * 2018-04-15 2018-08-21 中南林业科技大学 一种木-混凝土组合结构低周反复荷载试验加载装置
CN109211763A (zh) * 2018-09-14 2019-01-15 深圳大学 一种微型锈蚀钢筋力学性能测试方法及系统
CN109238822A (zh) * 2018-09-11 2019-01-18 浙江大学 一种密封胶加速老化试验加载装置
CN109444040A (zh) * 2018-11-01 2019-03-08 东南大学 一种测试frp板与钢界面粘结性能的试验装置
CN109696400A (zh) * 2019-02-20 2019-04-30 中铁隧道集团二处有限公司 一种隧道初期支护与土质围岩粘结强度的测试装置
CN109709032A (zh) * 2019-01-04 2019-05-03 浙江大学 一种基于霍普金森压杆发射装置的动态粘结性能测试装置
CN109724886A (zh) * 2019-02-14 2019-05-07 重庆交通大学 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析系统
CN109724887A (zh) * 2019-02-14 2019-05-07 重庆交通大学 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法
CN112146998A (zh) * 2020-09-29 2020-12-29 福建工程学院 一种模拟钢筋混凝土梁纵筋腐蚀的方法
CN112816288A (zh) * 2021-01-07 2021-05-18 郑州大学 一种增强地聚合物复合材料与钢筋粘结性能的方法
CN113125338A (zh) * 2019-12-31 2021-07-16 悉地(苏州)勘察设计顾问有限公司 一种透水混凝土骨料与浆体间粘聚力的定量测试装置与测试方法
CN113466065A (zh) * 2021-06-22 2021-10-01 钢铁研究总院 一种液态铅铋合金中金属材料疲劳裂纹扩展速率测试方法
CN114062256A (zh) * 2021-11-29 2022-02-18 兰州交通大学 钢筋与混凝土粘结性能的试验加载装置及试验方法
CN114509382A (zh) * 2022-04-19 2022-05-17 交通运输部公路科学研究所 一种钢筋混凝土梁测试装置及测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519871A (zh) * 2011-11-25 2012-06-27 北京交通大学 预应力作用下钢筋与混凝土粘结强度的测定方法及测定装置
CN102539319A (zh) * 2011-12-27 2012-07-04 河海大学 直接测往复荷载下砼与钢筋动态粘结性能装置及测定方法
CN104122201A (zh) * 2014-07-01 2014-10-29 三峡大学 一种钢筋混凝土粘结应力及滑移测量装置
CN204422393U (zh) * 2015-02-17 2015-06-24 沈阳建筑大学 一种frp筋混凝土粘结滑移单端拉拔试验装置
CN106644930A (zh) * 2016-11-01 2017-05-10 长安大学 一种钢筋混凝土内部粘结滑移测试装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519871A (zh) * 2011-11-25 2012-06-27 北京交通大学 预应力作用下钢筋与混凝土粘结强度的测定方法及测定装置
CN102539319A (zh) * 2011-12-27 2012-07-04 河海大学 直接测往复荷载下砼与钢筋动态粘结性能装置及测定方法
CN104122201A (zh) * 2014-07-01 2014-10-29 三峡大学 一种钢筋混凝土粘结应力及滑移测量装置
CN204422393U (zh) * 2015-02-17 2015-06-24 沈阳建筑大学 一种frp筋混凝土粘结滑移单端拉拔试验装置
CN106644930A (zh) * 2016-11-01 2017-05-10 长安大学 一种钢筋混凝土内部粘结滑移测试装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGWEI LIN ET AL.: "The bond behavior between concrete and corroded steel bar under repeated loading", 《ENGINEERING STRUCTURES》 *
莫青城: "锈蚀钢筋混凝土粘结滑移性能研究及其超声检测", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107741361B (zh) * 2017-11-14 2024-02-13 江苏城市职业学院 一种测量钢筋粘结性能的装置及方法
CN107741361A (zh) * 2017-11-14 2018-02-27 江苏城市职业学院 一种测量钢筋粘结性能的装置及方法
CN108007860A (zh) * 2017-11-28 2018-05-08 深圳大学 荷载与腐蚀作用下钢筋混凝土粘结性能的试验装置
CN108168870B (zh) * 2018-01-23 2020-07-14 中钢集团郑州金属制品研究院有限公司 一种适用于锚具连接器进行疲劳性能测试的装置及其方法
CN108168870A (zh) * 2018-01-23 2018-06-15 中钢集团郑州金属制品研究院有限公司 一种适用于锚具连接器进行疲劳性能测试的装置及其方法
CN108426791A (zh) * 2018-04-15 2018-08-21 中南林业科技大学 一种木-混凝土组合结构低周反复荷载试验加载装置
CN109238822A (zh) * 2018-09-11 2019-01-18 浙江大学 一种密封胶加速老化试验加载装置
CN109238822B (zh) * 2018-09-11 2024-03-26 浙江大学 一种密封胶加速老化试验加载装置
CN109211763A (zh) * 2018-09-14 2019-01-15 深圳大学 一种微型锈蚀钢筋力学性能测试方法及系统
CN109444040A (zh) * 2018-11-01 2019-03-08 东南大学 一种测试frp板与钢界面粘结性能的试验装置
CN109709032A (zh) * 2019-01-04 2019-05-03 浙江大学 一种基于霍普金森压杆发射装置的动态粘结性能测试装置
CN109724887A (zh) * 2019-02-14 2019-05-07 重庆交通大学 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法
CN109724886A (zh) * 2019-02-14 2019-05-07 重庆交通大学 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析系统
CN109696400B (zh) * 2019-02-20 2024-03-01 中铁隧道集团二处有限公司 一种隧道初期支护与土质围岩粘结强度的测试装置
CN109696400A (zh) * 2019-02-20 2019-04-30 中铁隧道集团二处有限公司 一种隧道初期支护与土质围岩粘结强度的测试装置
CN113125338A (zh) * 2019-12-31 2021-07-16 悉地(苏州)勘察设计顾问有限公司 一种透水混凝土骨料与浆体间粘聚力的定量测试装置与测试方法
CN112146998A (zh) * 2020-09-29 2020-12-29 福建工程学院 一种模拟钢筋混凝土梁纵筋腐蚀的方法
CN112816288A (zh) * 2021-01-07 2021-05-18 郑州大学 一种增强地聚合物复合材料与钢筋粘结性能的方法
CN113466065A (zh) * 2021-06-22 2021-10-01 钢铁研究总院 一种液态铅铋合金中金属材料疲劳裂纹扩展速率测试方法
CN114062256A (zh) * 2021-11-29 2022-02-18 兰州交通大学 钢筋与混凝土粘结性能的试验加载装置及试验方法
CN114509382A (zh) * 2022-04-19 2022-05-17 交通运输部公路科学研究所 一种钢筋混凝土梁测试装置及测试方法

Similar Documents

Publication Publication Date Title
CN107238568A (zh) 基于锈蚀与疲劳荷载耦合影响的钢筋混凝土粘结滑移性能的测试方法及加载装置
KR100729994B1 (ko) 터널 라이닝에 대한 섹션 시험장치 및 시험방법
CN108844807B (zh) 一种纤维筋抗浮锚杆受力特性室内模拟试验方法
CN107036915A (zh) 一种冲击荷载作用下测量frp与混凝土粘结性能的试验装置及方法
Azenha et al. Continuous monitoring of concrete E-modulus since casting based on modal identification: A case study for in situ application
CN109060555B (zh) 一种基于四点弯曲加载的混凝土徐变测试装置与分析方法
CN108716227B (zh) 一种全长黏结gfrp抗浮锚杆轴力与位移分布的分析方法
CN204530800U (zh) 一种适用于锚索锚固段蠕变特性的试验装置
CN106759547B (zh) 整体式桥台、桩基与土相互作用拟静力试验测量装置及其安装方法
CN111189698B (zh) 测试腐蚀蠕变条件下锚固岩体内外变形特征的装置及方法
CN104763001B (zh) 一种适用于锚索锚固段蠕变特性的试验装置及试验方法
Hore et al. Effect of acceleration on wrap faced reinforced soil retaining wall on soft clay by performing shaking table test
CN102914470B (zh) 一种用于混凝土试件梁刚度试验装置及其试验方法
CN102854125A (zh) 测定钢筋沿长度方向锈蚀率的装置及测定方法
CN206385579U (zh) 整体式桥台、桩基与土相互作用拟静力试验测量装置
RU2530470C2 (ru) Способ испытания конструкций и установка для его осуществления
CN207366350U (zh) 一种钢管混凝土徐变的检测试件
CN113668623A (zh) 装配式杯槽连接节点力学性能试验装置及方法
Ivanova et al. Mechanical pathologies of reinforced and damaged concrete Corbels by gluing composite carbon fabrics under static and dynamic tests
Bergami Implementation and experimental verification of models for nonlinear analysis of masonry infilled rc frames
ADELINE Characterization of reactive powder concrete (RPC) in direct tension at medium to high loading rates
Gowda et al. Experimental investigation on torsional strengthening of box RC structures using NSM FRP
CN217981189U (zh) 一种内嵌frp筋加固混凝土梁持载腐蚀的试验装置
Tissera Realistic Wind Loads on Reinforced Masonry Walls
CN214272156U (zh) 一种用于离心模型试验中桩基加载及位移测量的试验装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171010