CN107167141A - Robot autonomous navigation system based on double line laser radars - Google Patents

Robot autonomous navigation system based on double line laser radars Download PDF

Info

Publication number
CN107167141A
CN107167141A CN201710450742.8A CN201710450742A CN107167141A CN 107167141 A CN107167141 A CN 107167141A CN 201710450742 A CN201710450742 A CN 201710450742A CN 107167141 A CN107167141 A CN 107167141A
Authority
CN
China
Prior art keywords
mtd
robot
msub
mtr
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710450742.8A
Other languages
Chinese (zh)
Other versions
CN107167141B (en
Inventor
叶晨
王建亮
刘炀
王仁为
任秋宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201710450742.8A priority Critical patent/CN107167141B/en
Publication of CN107167141A publication Critical patent/CN107167141A/en
Application granted granted Critical
Publication of CN107167141B publication Critical patent/CN107167141B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention realizes a kind of brand-new robot autonomous navigation system based on double line laser radars.Compared to existing main flow Indoor Robot navigation system, the present invention only used two line laser radars of low cost one as information source, but reach navigation and the avoidance effect of the scheme for being substantially better than existing equal cost.Based on the robot autonomous navigation system of double line laser radars, including double line radar systems, upper strata navigation system, bottom control algorithm, Motor execution system;Upper strata navigation system includes SLAM algorithms, coordinate transformation algorithm;The two-dimensional map of the original laser radar data dynamic construction current spatial gathered using SLAM algorithms according to the radar being horizontally mounted, while calculating the displacement information of robot platform.

Description

基于双一线激光雷达的机器人自主导航系统Robot autonomous navigation system based on dual-line laser radar

技术领域technical field

本发明是一种应用于室内机器人的自主导航方案,所属机器人领域。The invention is an autonomous navigation solution applied to indoor robots, which belongs to the field of robots.

技术背景technical background

随着计算机技术和信息处理技术的不断发展,以这些技术为核心的机器人技术也在各个行业中得到了广泛应用,其中包括以替代人力完成诸如家庭服务、巡逻和货物搬运等复杂度不高但需要在室内空间中的进行不断移动的工作为目的的室内移动机器人。With the continuous development of computer technology and information processing technology, robot technology based on these technologies has also been widely used in various industries, including replacing manpower to complete tasks such as household services, patrols, and goods handling that are not complex but An indoor mobile robot that needs to work continuously in an indoor space.

导航技术是移动机器人的核心技术之一,在复杂多变的室内环境中,一种稳定有效的导航方案是决定机器人能够完成其工作的关键。对于工作于开阔室外空间而对精度要求不高的移动机器人平台,通常可以借助GPS进行定位和导航,但对于工作在室内的移动机器人来说,不稳定且精度较低的民用GPS导航系统无法提供足够准确的信息供机器人在狭小封闭的空间中进行移动。Navigation technology is one of the core technologies of mobile robots. In a complex and changeable indoor environment, a stable and effective navigation scheme is the key to determine whether the robot can complete its work. For mobile robot platforms that work in open outdoor spaces and do not require high precision, GPS can usually be used for positioning and navigation, but for mobile robots that work indoors, the unstable and low-precision civilian GPS navigation system cannot provide Accurate enough information for the robot to move in a small enclosed space.

目前常见的低端室内机器人多采用雷达或红外线进行障碍检测,并在遇到障碍物时通过被动的避障来实现自主移动,其移动轨迹具有很大程度的随机性,且无法进行事先指定好目的地的定向移动。部分高端机器人方案则多采用一线激光雷达或立体视觉系统进行避障和导航,这两种方案虽然能够通过获取更多环境信息而实现定向移动和主动避障,但其在实际应用中均存在一定的局限性。通过一线激光雷达进行导航的方案虽然能够通过获取环境的二维轮廓来实现路径规划和避障,然而该方案仅能够对一线雷达所在的平面进行扫描和建模,而对于低于或高于其扫描平面的障碍物则无能为力。利用立体视觉虽然能够获取立体的环境信息,但由于摄像头的视角的限制,其扫描范围无法覆盖足够的空间区域,且该方案还存在需要处理的数据量大、噪声干扰大和有效距离短等缺点。At present, common low-end indoor robots mostly use radar or infrared rays for obstacle detection, and realize autonomous movement through passive obstacle avoidance when encountering obstacles. Their movement trajectories are highly random and cannot be specified in advance Destination directed movement. Some high-end robot solutions mostly use first-line laser radar or stereo vision system for obstacle avoidance and navigation. Although these two solutions can achieve directional movement and active obstacle avoidance by obtaining more environmental information, they have certain limitations in practical applications. limitations. Although the solution of navigating through the first-line lidar can achieve path planning and obstacle avoidance by obtaining the two-dimensional outline of the environment, this solution can only scan and model the plane where the first-line radar is located. Obstacles on the scanning plane are useless. Although stereoscopic vision can be used to obtain three-dimensional environmental information, due to the limitation of the viewing angle of the camera, its scanning range cannot cover a sufficient spatial area, and this solution also has disadvantages such as a large amount of data to be processed, large noise interference, and short effective distance.

发明内容Contents of the invention

为了克服上述现有方案的不足,本发明实现了一种全新的基于双一线激光雷达的机器人自主导航系统。相比于现有主流室内机器人导航系统,本发明仅使用了两部低成本一线激光雷达作为信息来源,但达到了明显优于现有同等成本的方案的导航和避障效果。In order to overcome the shortcomings of the above-mentioned existing solutions, the present invention implements a brand-new robot autonomous navigation system based on dual-line laser radar. Compared with the existing mainstream indoor robot navigation system, the present invention only uses two low-cost first-line laser radars as information sources, but achieves navigation and obstacle avoidance effects that are significantly better than existing solutions with the same cost.

本发明采用的技术方案是:The technical scheme adopted in the present invention is:

基于双一线激光雷达的机器人自主导航系统,其特征在于,包括双一线雷达系统、上层导航系统、底层控制算法、运动执行系统;所述上层导航系统包括SLAM算法、坐标变换 算法;利用SLAM算法根据水平安装的雷达采集的原始激光雷达数据动态构建当前空间的 维地图,同时解算出机器人平台的位移信息;所述坐标变换算法根据SLAM算法所获得的机器人位移信息对动态扫描的雷达各时刻所获取的原始激光雷达数据进行坐标变换和叠加,从而将采集的环境信息确定出机器人周围空间内障碍物的三维信息;根据构建的二维地图进行全局路径规划,规划出一条当前位置与目的地之间的可行路径;与此同时采集机器人的实时速度;如此根据采集到的速度信息全局路径三维数据进行局部路径规划,并生产控制指令,从而实现机器人上层导航;所述底层控制算法对上层导航系统生成的控制指令进行解析和坐标变换,并利用PID控制对运动执行系统进行控制,从而驱动机器人移动。The robot autonomous navigation system based on double-line laser radar is characterized in that it includes a double-line radar system, an upper-level navigation system, a bottom control algorithm, and a motion execution system; the upper-level navigation system includes a SLAM algorithm and a coordinate transformation algorithm; the SLAM algorithm is used according to The original laser radar data collected by the horizontally installed radar dynamically constructs a two-dimensional map of the current space, and at the same time solves the displacement information of the robot platform; Coordinate transformation and superposition of the acquired original lidar data, so as to determine the three-dimensional information of obstacles in the space around the robot from the collected environmental information; carry out global path planning according to the constructed two-dimensional map , and plan a current position and destination At the same time, the real-time speed of the robot is collected; in this way, local path planning is performed according to the collected speed information , global path , and three-dimensional data , and control instructions are produced, so as to realize the upper-level navigation of the robot; The control instructions generated by the upper navigation system are analyzed and coordinate transformed, and the motion execution system is controlled by PID control to drive the robot to move.

与现有系统技术相比,本系统的有益效果是:Compared with the existing system technology, the beneficial effects of this system are:

1)本系统可以灵活地应用于多种室内场景,且便于部署。1) This system can be flexibly applied to various indoor scenarios and is easy to deploy.

2)双一线激光雷达配合获取三维信息,在较小数据量的情况下获取了足够的环境信息,提高了数据的利用率,并降低了数据处理成本。2) The combination of dual-line lidar to obtain three-dimensional information can obtain sufficient environmental information with a small amount of data, improve the utilization rate of data, and reduce the cost of data processing.

3)基于空间三维信息实现导航和避障系统,有效提升了机器人的自主移动能力和避障效果,增加了系统的实用性和可靠性。3) The navigation and obstacle avoidance system is realized based on spatial three-dimensional information, which effectively improves the robot's autonomous movement ability and obstacle avoidance effect, and increases the practicability and reliability of the system.

附图说明Description of drawings

图1为双一线激光雷达结构示意图。Figure 1 is a schematic diagram of the structure of a dual-line laser radar.

图2为雷达扫描范围示意图。Figure 2 is a schematic diagram of the radar scanning range.

图3为机器人系统结构示意图。Figure 3 is a schematic diagram of the structure of the robot system.

图4为机器人导航系统原理图。Figure 4 is a schematic diagram of the robot navigation system.

图5为底层控制单元系统结构示意图。Fig. 5 is a schematic structural diagram of the bottom control unit system.

图6机器人底盘运动速度与三个轮子运动速度。Figure 6 The movement speed of the robot chassis and the movement speed of the three wheels.

具体实施方式detailed description

以下结合附图和实施例对本发明技术方案做进一步介绍。The technical solutions of the present invention will be further introduced below in conjunction with the accompanying drawings and embodiments.

第一部分 技术方案原理介绍:The first part introduces the principle of the technical solution:

1、利用两部一线激光雷达和外围控制电路构成双一线雷达系统,采集环境数据。如图1所示,两部激光雷达采用不同的安装方式,其中一部水平固定安装,用于获取机器人所在空间的平面轮廓。另一部雷达在由舵机1提供动力的雷达控制器的控制下进行上下扫描,并由雷达控制器将当前雷达扫描平面与水平面的夹角信息发送至数据处理系统。1. Use two first-line laser radars and peripheral control circuits to form a dual-line radar system to collect environmental data. As shown in Figure 1, the two lidars are installed in different ways, one of which is fixed horizontally to obtain the plane profile of the space where the robot is located. The other radar scans up and down under the control of the radar controller powered by the steering gear 1, and the radar controller sends the angle information between the current radar scanning plane and the horizontal plane to the data processing system.

2、使用NVIDIA Jetson TX1嵌入式平台作为核心控制器搭建机器人硬件平台。整个平台按照功能可分为四个主要部分,分别为数据采集单元、数据处理单元、运动执行系统和辅助部件。其中数据采集单元是整个系统的数据来源,利用针对本项目特殊设计的双一线激光雷达系统采集环境信息。采集到的数据会被发送至数据处理单元,该部分是整个系统的核心,采用一块NVIDIA Jetson TX1嵌入式平台作为机器人操作系统和各种上层算法运行的载体。运动执行系统包括机器人的机械平台、底层控制器以及驱动电路。此外,系统还包括一些辅助部件如路由器、电源等。2. Use the NVIDIA Jetson TX1 embedded platform as the core controller to build a robot hardware platform. The whole platform can be divided into four main parts according to the functions, which are data acquisition unit, data processing unit, motion execution system and auxiliary components. Among them, the data acquisition unit is the data source of the whole system, and the dual-line laser radar system specially designed for this project is used to collect environmental information. The collected data will be sent to the data processing unit, which is the core of the whole system. An NVIDIA Jetson TX1 embedded platform is used as the carrier of the robot operating system and various upper-level algorithms. The motion execution system includes the mechanical platform of the robot, the underlying controller and the drive circuit. In addition, the system also includes some auxiliary components such as routers, power supplies, etc.

3、构建机器人上层导航系统。该导航系统利用SLAM算法(现有技术)根据水平安装的雷达采集的原始激光雷达数据动态构建当前空间的二维地图,同时根据建图过程中的 征匹配解算(由SLAM算法的组成部分,已属于现有技术)出机器人平台的位移信息。3. Construct the upper-level navigation system of the robot. The navigation system uses the SLAM algorithm (the prior art) to dynamically construct a two-dimensional map of the current space based on the original lidar data collected by the horizontally installed radar, and at the same time, according to the feature matching solution in the process of building the map (by the components of the SLAM algorithm , belongs to the prior art) to obtain the displacement information of the robot platform.

导航系统中的坐标变换算法根据SLAM算法所获得的机器人位移信息对动态扫描的雷达各时刻所获取的原始激光雷达数据进行坐标变换和叠加,从而由采集的环境信息最终获得机器人周围空间内障碍物的三维信息The coordinate transformation algorithm in the navigation system performs coordinate transformation and superposition on the original lidar data acquired by the dynamic scanning radar at each time according to the robot displacement information obtained by the SLAM algorithm, so that the obstacles in the space around the robot are finally obtained from the collected environmental information three-dimensional information .

根据构建的二维地图,利用ROS导航功能包(为现有技术,搭建于ROS机器人Ubuntu操作系统上)进行全局路径规划,规划出一条当前位置与目的地之间的可行路径;与此同时利用里程信息处理单元采集机器人的实时速度,之后再利用ROS导航功能包根据采集到的速度信息以及全局路径坐标变换所生成的三维数据进行局部路径规划,并生产控制指 ,从而实现机器人上层导航系统。According to the two-dimensional map of construction, utilize ROS navigation function pack (for prior art, build on the ROS robot Ubuntu operating system) to carry out global path planning , plan out a feasible path between current position and destination; At the same time, utilize The mileage information processing unit collects the real-time speed of the robot, and then uses the ROS navigation function package to perform local path planning based on the collected speed information and the three-dimensional data generated by the global path and coordinate transformation , and produces control instructions , so as to realize the upper-level navigation of the robot system.

4、底层控制算法对上层导航系统生成的控制指令进行解析和坐标变换,并利用PID控制对电机转速进行控制,从而驱动机器人移动。底层控制单元系统结构如图5所示。4. The underlying control algorithm analyzes and coordinates the control commands generated by the upper navigation system, and uses PID control to control the motor speed to drive the robot to move. The underlying control unit system structure is shown in Figure 5.

第二部分 进一步用实施例说明The second part is further illustrated with examples

1、双一线激光雷达系统1. Dual-line laser radar system

本发明使用两个一线激光雷达进行数据采集。两个雷达均可在水平面内进行360度扫描,从而在一个周期内获得平面内360度范围的障碍物距离信息。The present invention uses two one-line laser radars for data collection. Both radars can perform 360-degree scanning in the horizontal plane, so as to obtain obstacle distance information within a 360-degree range in the plane within one cycle.

其中一部雷达(雷达2)安装机器人底部距离地面10cm处,雷达2扫描平面水平放置,在运行过程中可获取所在室内环境的基本轮廓信息,用户后续全局地图构建。受机器人结构限制,为保护雷达不在机器人运行过程中因受到碰撞而损坏,雷达2整体嵌入机器人内部,并在前端留出约150度的空间用于扫描外部环境,其余角度范围内数据均被丢弃。经测试,该安装方式完全可以满足实际数据采集需求。One of the radars (radar 2) is installed at the bottom of the robot 10cm from the ground. The scanning plane of the radar 2 is placed horizontally. During the operation, the basic outline information of the indoor environment can be obtained, and the user can subsequently build a global map. Limited by the structure of the robot, in order to protect the radar from being damaged by collisions during the operation of the robot, the radar 2 is embedded inside the robot as a whole, and a space of about 150 degrees is left at the front end for scanning the external environment, and the data in the rest of the angle range are discarded . After testing, this installation method can fully meet the actual data collection needs.

另一部激光雷达(雷达1)则安装在机器人顶部的扫描雷达控制器上。整个扫描雷达控制器由机械装置和控制电路组成。机械装置包括用于固定整个装置的支架、用于安装雷达1的底座、用于传动的连杆和用于提供动力的舵机1,整个装置呈四边形结构。该采集系统运行时,舵机1在控制电路(即雷达控制器)的控制下进行上下运动,从而带动雷达1绕底座转轴对空间进行扫描。Another lidar (radar 1) is mounted on the scanning radar controller on top of the robot. The entire scanning radar controller is composed of a mechanical device and a control circuit. The mechanical device includes a bracket for fixing the whole device, a base for installing the radar 1, a connecting rod for transmission and a steering gear 1 for providing power, and the whole device has a quadrilateral structure. When the acquisition system is in operation, the steering gear 1 moves up and down under the control of the control circuit (that is, the radar controller), thereby driving the radar 1 to scan the space around the rotation axis of the base.

机器人顶端雷达1的扫描范围如图2所示。The scanning range of the radar 1 at the top of the robot is shown in FIG. 2 .

由于雷达1位于机器人顶端,因此其扫描范围主要分布在机器人顶端所在的平面以下。如图2所示,为使机器人能够顺利绕过障碍物,周围预留一定安全距离,由几何关系可知,雷达1在水平面以下的扫描范围θ1可由公式(1)计算得到Since the radar 1 is located on the top of the robot, its scanning range is mainly distributed below the plane where the top of the robot is located. As shown in Figure 2, in order to enable the robot to bypass obstacles smoothly, a certain safety distance is reserved around. From the geometric relationship, the scanning range θ 1 of the radar 1 below the horizontal plane can be calculated by formula (1)

其中δ为安全距离,H为机器人高度。当安全距离为20cm,机器人高度为120厘米时,由公式(1)计算可得水平面以下扫描角度约为80.54°。此外,机器人上方也预留一定的安全空间,设置水平面上方扫描范围为10°,因此雷达1将在水平面上下共大约90°的空间内进行扫描。Where δ is the safety distance, and H is the height of the robot. When the safety distance is 20cm and the robot height is 120cm, the scanning angle below the horizontal plane can be calculated by formula (1) to be about 80.54°. In addition, a certain safe space is also reserved above the robot, and the scanning range above the horizontal plane is set to 10°, so the radar 1 will scan in a space of about 90° above and below the horizontal plane.

双一线雷达系统包括雷达控制器和电源模块组成,雷达控制器通过PWM对舵机1角度进行控制,雷达1在雷达控制器的控制下以一定步长在90°范围内进行扫描,与此同时雷达控制器会将当前雷达平面与水平面间的夹角发送至数据处理系统用于坐标变换。电源模块可输出5V和6V两种电压,5V为雷达控制器提供正常工作电压,6V输出则用于舵机1供电。The dual-line radar system consists of a radar controller and a power module. The radar controller controls the angle of the steering gear 1 through PWM. The radar 1 scans within a 90° range with a certain step size under the control of the radar controller. At the same time The radar controller will send the angle between the current radar plane and the horizontal plane to the data processing system for coordinate transformation. The power module can output two voltages of 5V and 6V, 5V provides the normal working voltage for the radar controller, and the 6V output is used for the power supply of the steering gear 1.

2机器人硬件平台2 robot hardware platform

本发明所采用的机器人硬件平台如图3所示。The robot hardware platform adopted by the present invention is shown in FIG. 3 .

其按照功能平台可分为数据采集、数据处理、运动执行以及辅助部件。其中数据采集部分通过上述双一线激光雷达系统实现,数据处理部分采用英伟达公司的JetsonTX1嵌入式平台,该平台上搭载了Ubuntu操作系统和ROS机器人操作系统,用于实现对激光雷达数据的处理工作和机器人自主导航算法。运动执行部分主要由Arduino控制器配合驱动电路、电机和舵机以及机器人底盘组成。机器人底盘采用三轮驱动的开源机器人平台HCR,其动力来自于三个12V直流减速电机,每个电机独立驱动一个轮子,通过三个轮子的不同速度组合来实现机器人的定向移动。从上层控制指令到电机实际速度的解算过程由运行于Arduino上的控制算法完成。外围辅助电路则包括用于电池、稳压模块和路由器等部件,电源配合稳压模块用于为系统提供相应的电源,路由器则为上位机和机器人的通信提供支持。According to the functional platform, it can be divided into data acquisition, data processing, motion execution and auxiliary components. Among them, the data acquisition part is realized through the above-mentioned dual-line laser radar system, and the data processing part adopts the JetsonTX1 embedded platform of Nvidia Company, which is equipped with the Ubuntu operating system and the ROS robot operating system to realize the processing and processing of the laser radar data. Robot Autonomous Navigation Algorithms. The motion execution part is mainly composed of Arduino controller with drive circuit, motor and steering gear, and robot chassis. The robot chassis adopts the open source robot platform HCR driven by three wheels. Its power comes from three 12V DC geared motors. Each motor drives a wheel independently. The directional movement of the robot is realized through the combination of different speeds of the three wheels. The calculation process from the upper control command to the actual speed of the motor is completed by the control algorithm running on the Arduino. The peripheral auxiliary circuit includes components such as batteries, voltage stabilizing modules and routers. The power supply cooperates with the voltage stabilizing module to provide corresponding power for the system, and the router provides support for the communication between the upper computer and the robot.

3、机器人导航系统3. Robot navigation system

3.1坐标转换算法3.1 Coordinate transformation algorithm

对空间进行扫描的雷达采集的数据是基于固定于雷达上的坐标系的距离信息,而雷达与机器人系统平台间存在相对运动,因此要根据雷达数据获取机器人坐标系下的障碍物三维信息则需要对数据进行坐标变换。The data collected by the radar that scans the space is based on the distance information of the coordinate system fixed on the radar, and there is relative motion between the radar and the robot system platform, so it is necessary to obtain the three-dimensional information of obstacles in the robot coordinate system based on the radar data. Transform the coordinates of the data.

雷达采集到的原始数据在圆柱坐标系表示为(ρ,φ,z),根据公式(2)转换为直角坐标The raw data collected by the radar is represented as (ρ, φ, z) in the cylindrical coordinate system, and converted to rectangular coordinates according to formula (2)

若以机器人系统平台前进方向为X轴正方向,竖直向上为Z轴正方向,机器人底盘中心为原点建立坐标系,则雷达数据在机器人坐标系下可由下式计算If the forward direction of the robot system platform is the positive direction of the X-axis, the vertical upward direction is the positive direction of the Z-axis, and the center of the robot chassis is used as the origin to establish a coordinate system, then the radar data can be calculated by the following formula in the robot coordinate system

其中[x y z]'是变换到直角坐标系下的雷达数据,[x' y' z']'是变换到机器人坐标系下的雷达数据,是由雷达控制器发回的当前雷达扫描平面与水平面间的夹角,[x0y0 z0]'则是雷达在机器人坐标系下的坐标。Among them, [xyz]' is the radar data transformed to the Cartesian coordinate system, [x'y'z']' is the radar data transformed to the robot coordinate system, is the angle between the current radar scanning plane and the horizontal plane sent back by the radar controller, and [x 0 y 0 z 0 ]' is the coordinate of the radar in the robot coordinate system.

考虑到机器人在进行扫描时在不断运动,因此机器人坐标系和空间坐标系间存在相对运动,为得到更准确的空间信息需要将机器人坐标系下的雷达数据进一步转换到空间坐标系下,为此需要获得机器人在空间坐标系下的位置。系统将固定安装的激光雷达1作为获取该位置信息的数据来源。不同于用于扫描的雷达,该雷达所采集的是同一水平面内的环境信息。Considering that the robot is constantly moving while scanning, there is relative motion between the robot coordinate system and the space coordinate system. In order to obtain more accurate spatial information, it is necessary to further convert the radar data in the robot coordinate system to the space coordinate system. It is necessary to obtain the position of the robot in the space coordinate system. The system uses the fixedly installed laser radar 1 as a data source for obtaining the position information. Unlike radars used for scanning, this radar collects environmental information within the same horizontal plane.

数据处理算法,首先对该数据进行基本的坐标平移变换,将其转换到空间坐标系下,之后采用SLAM算法对机器人在不同时刻采集的数据进行特征匹配,进而解算出机器人在空间中的位移信息。通过对位移信息进行累加,同时根据编码器测得的机器人移动速度对累加结果进行修正,再根据机器人的初始位置即可获得空间坐标系下的位置。The data processing algorithm first performs basic coordinate translation transformation on the data and converts it to the space coordinate system, and then uses the SLAM algorithm to perform feature matching on the data collected by the robot at different times, and then calculates the displacement information of the robot in space . By accumulating displacement information and correcting the accumulative result according to the moving speed of the robot measured by the encoder, the position in the space coordinate system can be obtained according to the initial position of the robot.

在获得机器人在空间坐标系下的位置后,将机器人坐标系下的雷达数据进行平移即可得到空间坐标系下的空间信息。当机器人完成一次90°范围内的扫描后,将所有扫描到的点经过上述变换后进行叠加,最终得到当前机器人附近空间的三维信息。After obtaining the position of the robot in the space coordinate system, the radar data in the robot coordinate system can be translated to obtain the spatial information in the space coordinate system. After the robot completes a scan within a 90° range, all scanned points are superimposed after the above transformation, and finally the three-dimensional information of the space near the current robot is obtained.

3.2 SLAM算法3.2 SLAM algorithm

根据实际应用场合和性能需求,本发明采用了Hector SLAM算法(现有技术)作为构建地图的算法。该算法采用了占据栅格地图(Occupancy Gird Map)作为地图信息的模型,利用基于双线性插值和高斯牛顿法的特征匹配方法计算各数据点间的位置关系,从而构建出二维环境地图并得到机器人位移信息。According to actual application occasions and performance requirements, the present invention adopts the Hector SLAM algorithm (prior art) as the algorithm for constructing maps. The algorithm uses the occupancy grid map (Occupancy Grid Map) as the model of map information, and uses the feature matching method based on bilinear interpolation and Gauss-Newton method to calculate the positional relationship between each data point, so as to construct a two-dimensional environmental map and Get robot displacement information.

3.3上层导航系统3.3 Upper Navigation System

机器人的导航可分为三个过程:环境建模、路径规划以及机器人控制。环境建模过程包括前文所述的坐标变换和地图构建,该过程最终生成了所需的二维环境地图和包含障碍物信息的三维点云。路径规划是整个系统的决策部分,该过程根据环境地图和障碍物信息以及机器人的运动状态进行多层次的路径规划和运动仿真,从而生成当前状态下最合理的期望运动状态,并将其封装成控制指令发送至底层控制器。机器人控制则以底层控制算法为核心,根据控制指令实际驱动机器人平台进行移动。完整的机器人导航系统如图4所示。Robot navigation can be divided into three processes: environment modeling, path planning, and robot control. The environment modeling process includes the coordinate transformation and map construction described above, which finally generates the required 2D environment map and 3D point cloud containing obstacle information. Path planning is the decision-making part of the whole system. This process performs multi-level path planning and motion simulation according to the environment map and obstacle information as well as the motion state of the robot, so as to generate the most reasonable expected motion state under the current state and encapsulate it into Control commands are sent to the underlying controller. Robot control takes the underlying control algorithm as the core, and actually drives the robot platform to move according to the control instructions. The complete robot navigation system is shown in Figure 4.

3.4底层控制算法3.4 Bottom Control Algorithm

底层控制算法基于Arduino平台进行开发,其主要包括指令解析、坐标变换、PID控制以及数据转换等几部分。底层控制算法结构图5所示。The underlying control algorithm is developed based on the Arduino platform, which mainly includes command analysis, coordinate transformation, PID control, and data conversion. The underlying control algorithm structure is shown in Figure 5.

底层控制算法通过串口接收到上层导航系统产生的控制指令后首先对其进行解析。该控制指令中包含机器人的期望移动速度和旋转角速度。本设计所采用的是三轮驱动的机械平台,而控制指令所提供的是整个机器人平台的速度,因此需要将机器人的期望速度转换为三个轮子的期望速度。After the bottom control algorithm receives the control command generated by the upper navigation system through the serial port, it first analyzes it. The control command contains the expected moving speed and rotational angular velocity of the robot. This design uses a three-wheel drive mechanical platform, and the control command provides the speed of the entire robot platform, so it is necessary to convert the expected speed of the robot into the expected speed of the three wheels.

以机器人底盘中心为原点,机器人前进方向为x轴正方向,竖直向上为z轴正方向建立坐标系,设机器人在x轴和y轴方向上的期望速度及绕z轴的转速构成的向量为[vx vyω]T,而三个轮子的速度所构成的向量为[v1 v2 v3]T。设二者之间存在变换关系Take the center of the robot chassis as the origin, the forward direction of the robot is the positive direction of the x-axis, and the vertical upward direction is the positive direction of the z-axis to establish a coordinate system. Set the expected speed of the robot in the directions of the x-axis and y-axis and the vector formed by the rotational speed around the z-axis is [v x v y ω] T , and the vector formed by the speeds of the three wheels is [v 1 v 2 v 3 ] T . Suppose there is a transformation relationship between the two

上式可改写为The above formula can be rewritten as

式中[vx vy ω]T的值由控制指令给定,因此只需确定参数矩阵即可解得三个轮子的速度向量。In the formula, the value of [v x v y ω] T is given by the control command, so the velocity vectors of the three wheels can be obtained only by determining the parameter matrix.

机器人底盘运动速度与三个轮子运动速度如图6所示.The movement speed of the robot chassis and the movement speed of the three wheels are shown in Figure 6.

根据上图,利用动力学原理可分别求得参数矩阵中各值。本设计中最终求得的参数矩阵(根据实际情况修正后)的参数矩阵为将其带入式中即可得三个轮子速度与机器人移动速度间的关系。在得到三个轮子的的期望速度后,底层控制单元将利用PID算法对三个轮子分别进行控制,最终实现对机器人的运动控制。According to the figure above, each value in the parameter matrix can be obtained separately by using the principle of dynamics. The parameter matrix of the final parameter matrix obtained in this design (corrected according to the actual situation) is Bring it into the formula to get the relationship between the speed of the three wheels and the moving speed of the robot. After obtaining the expected speed of the three wheels, the bottom control unit will use the PID algorithm to control the three wheels respectively, and finally realize the motion control of the robot.

底层控制单元除了实现对底盘电机的控制之外还实现了编码器数据的采集和转换。本发明中所采用的电机的编码器为AB相输出,两相之间相位相差90度,通过对任何一相的上升沿进行计数即可得到电机当前速度,而通过检测两相之间的相位差即可判断电机的转动方向。本发明中通过底层控制器的GPIO中断来对编码器A相脉冲进行计数,而A相和B相之间的相位差则通过判断A相上升沿到来时B相的电平高低来确定。若A相上升沿到来时B相为低电平则电机正转,否则电机则为反转。In addition to controlling the chassis motor, the underlying control unit also realizes the acquisition and conversion of encoder data. The encoder of the motor adopted in the present invention is an AB phase output, and the phase difference between the two phases is 90 degrees. The current speed of the motor can be obtained by counting the rising edges of any phase, and by detecting the phase between the two phases The difference can judge the rotation direction of the motor. In the present invention, the A-phase pulse of the encoder is counted through the GPIO interrupt of the bottom controller, and the phase difference between the A-phase and the B-phase is determined by judging the level of the B-phase when the rising edge of the A-phase arrives. If the rising edge of phase A arrives and phase B is at low level, the motor will rotate forward, otherwise, the motor will reverse.

在通过编码器获得电机转速和方向之后,需要将三个电机的转速转换为机器人的速度,该转换过程与从机器人期望速度到电机期望转速的转换过程相反。在完成转换后底层控制单元将利用ROS的通信机制将其发布在/velocity话题上,而上层的算法则通过订阅该话题来获取机器人实时的速度信息。After obtaining the motor speed and direction through the encoder, the speed of the three motors needs to be converted to the speed of the robot, which is the opposite of the conversion process from the desired speed of the robot to the desired speed of the motor. After the conversion is completed, the underlying control unit will use the ROS communication mechanism to publish it on the /velocity topic, and the upper-level algorithm will obtain the real-time speed information of the robot by subscribing to this topic.

本发明的创新点Innovation of the present invention

1)发明了一种新的基于激光雷达定位技术的机器人自主导航系统,通过两部一线激光雷达的相互配合实现了相比于传统方案更加稳定可靠的室内机器人自主导航功能。1) Invented a new robot autonomous navigation system based on laser radar positioning technology. Through the mutual cooperation of two first-line laser radars, the indoor robot autonomous navigation function is more stable and reliable than the traditional solution.

2)利用机械装置和嵌入式控制器实现了双雷达协同工作。2) Using the mechanical device and embedded controller to realize the cooperative work of dual radars.

3)本发明具有较高的可移植性,并能够灵活应用于多种不同的室内场景。3) The present invention has high portability and can be flexibly applied to many different indoor scenes.

Claims (8)

1.基于双一线激光雷达的机器人自主导航系统,其特征在于,包括双一线雷达系统、上层导航系统、底层控制算法、运动执行系统;1. A robot autonomous navigation system based on a dual-line laser radar, characterized in that it includes a dual-line radar system, an upper-level navigation system, a bottom-level control algorithm, and a motion execution system; 所述上层导航系统包括SLAM算法、坐标变换算法; The upper-level navigation system includes a SLAM algorithm and a coordinate transformation algorithm; 利用SLAM算法根据水平安装的雷达采集的原始激光雷达数据动态构建当前空间的 维地图,同时解算出机器人平台的位移信息;Use the SLAM algorithm to dynamically construct a two-dimensional map of the current space based on the original lidar data collected by the horizontally installed radar, and at the same time solve the displacement information of the robot platform; 所述坐标变换算法根据SLAM算法所获得的机器人位移信息对动态扫描的雷达各时刻所获取的原始激光雷达数据进行坐标变换和叠加,从而将采集的环境信息确定出机器人周围空间内障碍物的三维信息According to the robot displacement information obtained by the SLAM algorithm, the coordinate transformation algorithm performs coordinate transformation and superposition on the original lidar data acquired by the dynamic scanning radar at each moment, so as to determine the three-dimensional shape of the obstacles in the space around the robot from the collected environmental information. information ; 根据构建的二维地图进行全局路径规划,规划出一条当前位置与目的地之间的可行路径;与此同时采集机器人的实时速度;如此根据采集到的速度信息全局路径三维数据进行局部路径规划,并生产控制指令,从而实现机器人上层导航;Carry out global path planning based on the two-dimensional map constructed, and plan a feasible path between the current position and the destination; at the same time, collect the real-time speed of the robot; in this way, carry out local path according to the collected speed information , global path , and three-dimensional data Plan and produce control instructions to realize the upper-level navigation of the robot; 所述底层控制算法对上层导航系统生成的控制指令进行解析和坐标变换,并利用PID控制对运动执行系统进行控制,从而驱动机器人移动。The bottom-level control algorithm analyzes and transforms the coordinates of the control instructions generated by the upper-level navigation system, and uses PID control to control the motion execution system, thereby driving the robot to move. 2.如权利要求1所述的系统,其特征在于,所述双一线激光雷达系统:其中一部雷达(雷达2)安装机器人底部距离地面10cm处,雷达2扫描平面水平放置,在运行过程中可获取所在室内环境的基本轮廓信息,用户后续全局地图构建;另一部激光雷达(雷达1)则安装在机器人顶部的扫描雷达控制器上。2. The system according to claim 1, wherein the dual-line laser radar system: one of the radars (radar 2) is installed at the bottom of the robot 10cm away from the ground, and the scanning plane of the radar 2 is placed horizontally. The basic outline information of the indoor environment can be obtained, and the user can subsequently build a global map; the other laser radar (radar 1) is installed on the scanning radar controller on the top of the robot. 3.如权利要求2所述的系统,其特征在于,受机器人结构限制,为保护雷达不在机器人运行过程中因受到碰撞而损坏,雷达2整体嵌入机器人内部,并在前端留出约150度的空间用于扫描外部环境,其余角度范围内数据均被丢弃。3. The system according to claim 2, characterized in that, limited by the structure of the robot, in order to protect the radar from being damaged by collisions during the operation of the robot, the radar 2 is embedded in the robot as a whole, and a gap of about 150 degrees is reserved at the front end. The space is used to scan the external environment, and the data in the rest of the angle range are discarded. 4.如权利要求2所述的系统,其特征在于,整个扫描雷达控制器由机械装置和控制电路组成;机械装置包括用于固定整个装置的支架、用于安装雷达1的底座、用于传动的连杆和用于提供动力的舵机1,整个装置呈四边形结构。该采集系统运行时,舵机1在控制电路(即雷达控制器)的控制下进行上下运动,从而带动雷达1绕底座转轴对空间进行扫描。4. The system according to claim 2, wherein the whole scanning radar controller is made up of a mechanical device and a control circuit; the mechanical device includes a bracket for fixing the whole device, a base for installing the radar 1, a The connecting rod and the steering gear 1 for providing power, the whole device is a quadrilateral structure. When the acquisition system is in operation, the steering gear 1 moves up and down under the control of the control circuit (that is, the radar controller), thereby driving the radar 1 to scan the space around the rotation axis of the base. 5.如权利要求2所述的系统,其特征在于,由于雷达1位于机器人顶端,因此其扫描范围主要分布在机器人顶端所在的平面以下。如图2所示,为使机器人能够顺利绕过障碍物,周围预留一定安全距离,由几何关系可知,雷达1在水平面以下的扫描范围θ1可由公式(1)计算得到5. The system according to claim 2, wherein since the radar 1 is located on the top of the robot, its scanning range is mainly distributed below the plane where the top of the robot is located. As shown in Figure 2, in order to enable the robot to bypass obstacles smoothly, a certain safety distance is reserved around. From the geometric relationship, the scanning range θ 1 of the radar 1 below the horizontal plane can be calculated by formula (1) 其中δ为安全距离,H为机器人高度。Where δ is the safety distance, and H is the height of the robot. 6.如权利要求2所述的系统,其特征在于,所述坐标转换算法:6. The system according to claim 2, wherein the coordinate conversion algorithm: 对空间进行扫描的雷达采集的数据是基于固定于雷达上的坐标系的距离信息,而雷达与机器人系统平台间存在相对运动,因此要根据雷达数据获取机器人坐标系下的障碍物三维信息则需要对数据进行坐标变换;The data collected by the radar that scans the space is based on the distance information of the coordinate system fixed on the radar, and there is relative motion between the radar and the robot system platform, so it is necessary to obtain the three-dimensional information of obstacles in the robot coordinate system based on the radar data. Coordinate transformation of the data; 雷达采集到的原始数据在圆柱坐标系表示为(ρ,φ,z),根据公式(2)转换为直角坐标The raw data collected by the radar is represented as (ρ, φ, z) in the cylindrical coordinate system, and converted to rectangular coordinates according to formula (2) <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mi>&amp;rho;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mi>&amp;rho;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mi>&amp;rho;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mi>&amp;rho;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;phi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> 若以机器人系统平台前进方向为X轴正方向,竖直向上为Z轴正方向,机器人底盘中心为原点建立坐标系,则雷达数据在机器人坐标系下可由下式计算If the forward direction of the robot system platform is the positive direction of the X-axis, the vertical upward direction is the positive direction of the Z-axis, and the center of the robot chassis is used as the origin to establish a coordinate system, then the radar data can be calculated by the following formula in the robot coordinate system 其中[x y z]'是变换到直角坐标系下的雷达数据,[x' y' z']'是变换到机器人坐标系下的雷达数据,是由雷达控制器发回的当前雷达扫描平面与水平面间的夹角,[x0 y0z0]'则是雷达在机器人坐标系下的坐标;Among them, [xyz]' is the radar data transformed to the Cartesian coordinate system, [x'y'z']' is the radar data transformed to the robot coordinate system, is the angle between the current radar scanning plane and the horizontal plane sent back by the radar controller, [x 0 y 0 z 0 ]' is the coordinate of the radar in the robot coordinate system; 考虑到机器人在进行扫描时在不断运动,因此机器人坐标系和空间坐标系间存在相对运动,为得到更准确的空间信息需要将机器人坐标系下的雷达数据进一步转换到空间坐标系下,为此需要获得机器人在空间坐标系下的位置。系统将固定安装的激光雷达1作为获取该位置信息的数据来源,该雷达所采集的是同一水平面内的环境信息;Considering that the robot is constantly moving while scanning, there is relative motion between the robot coordinate system and the space coordinate system. In order to obtain more accurate spatial information, it is necessary to further convert the radar data in the robot coordinate system to the space coordinate system. It is necessary to obtain the position of the robot in the space coordinate system. The system uses the fixedly installed laser radar 1 as the data source for obtaining the location information, and what the radar collects is the environmental information in the same horizontal plane; 首先对该数据进行基本的坐标平移变换,将其转换到空间坐标系下,之后采用SLAM算法对机器人在不同时刻采集的数据进行特征匹配,进而解算出机器人在空间中的位移信息。通过对位移信息进行累加,同时根据编码器测得的机器人移动速度对累加结果进行修正,再根据机器人的初始位置即可获得空间坐标系下的位置;Firstly, the basic coordinate translation transformation is performed on the data to convert it into the space coordinate system, and then the SLAM algorithm is used to perform feature matching on the data collected by the robot at different times, and then the displacement information of the robot in space is calculated. By accumulating the displacement information and correcting the accumulated result according to the moving speed of the robot measured by the encoder, the position in the space coordinate system can be obtained according to the initial position of the robot; 在获得机器人在空间坐标系下的位置后,将机器人坐标系下的雷达数据进行平移即可得到空间坐标系下的空间信息。当机器人完成一次90°范围内的扫描后,将所有扫描到的点经过上述变换后进行叠加,最终得到当前机器人附近空间的三维信息。After obtaining the position of the robot in the space coordinate system, the radar data in the robot coordinate system can be translated to obtain the spatial information in the space coordinate system. After the robot completes a scan within a 90° range, all scanned points are superimposed after the above transformation, and finally the three-dimensional information of the space near the current robot is obtained. 7.如权利要求2所述的系统,其特征在于,所述路径规划是整个系统的决策部分,该过程根据环境地图和障碍物信息以及机器人的运动状态进行路径规划,并将其封装成控制指令发送至底层控制器。7. The system according to claim 2, wherein the path planning is the decision-making part of the whole system, the process performs path planning according to the environment map and obstacle information and the motion state of the robot, and encapsulates it into a control Commands are sent to the underlying controller. 8.如权利要求2所述的系统,其特征在于所述底层控制算法:8. The system according to claim 2, characterized in that said underlying control algorithm: 通过串口接收到上层导航系统产生的控制指令后首先对其进行解析。该控制指令中包含机器人的期望移动速度和旋转角速度。本设计所采用的是三轮驱动的机械平台,而控制指令所提供的是整个机器人平台的速度,因此需要将机器人的期望速度转换为三个轮子的期望速度。After receiving the control command generated by the upper navigation system through the serial port, it first analyzes it. The control command contains the expected moving speed and rotational angular velocity of the robot. This design uses a three-wheel drive mechanical platform, and the control command provides the speed of the entire robot platform, so it is necessary to convert the expected speed of the robot into the expected speed of the three wheels. 以机器人底盘中心为原点,机器人前进方向为x轴正方向,竖直向上为z轴正方向建立坐标系,设机器人在x轴和y轴方向上的期望速度及绕z轴的转速构成的向量为[vx vy ω]T,而三个轮子的速度所构成的向量为[v1 v2 v3]T。设二者之间存在变换关系Take the center of the robot chassis as the origin, the forward direction of the robot is the positive direction of the x-axis, and the vertical upward direction is the positive direction of the z-axis to establish a coordinate system. Set the expected speed of the robot in the directions of the x-axis and y-axis and the vector formed by the rotational speed around the z-axis is [v x v y ω] T , and the vector formed by the speeds of the three wheels is [v 1 v 2 v 3 ] T . Suppose there is a transformation relationship between the two <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> 上式可改写为The above formula can be rewritten as <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> 式中[vx vy ω]T的值由控制指令给定,因此只需确定参数矩阵即可解得三个轮子的速度向量。In the formula, the value of [v x v y ω] T is given by the control command, so the velocity vectors of the three wheels can be obtained only by determining the parameter matrix. 最终求得的参数矩阵(根据实际情况修正后)的参数矩阵为将其带入式中即可得三个轮子速度与机器人移动速度间的关系。在得到三个轮子的期望速度后,底层控制单元将利用PID算法对三个轮子分别进行控制,最终实现对机器人的运动控制。The parameter matrix of the finally obtained parameter matrix (corrected according to the actual situation) is Bring it into the formula to get the relationship between the speed of the three wheels and the moving speed of the robot. After obtaining the expected speed of the three wheels, the bottom control unit will use the PID algorithm to control the three wheels respectively, and finally realize the motion control of the robot.
CN201710450742.8A 2017-06-15 2017-06-15 Robot autonomous navigation system based on double laser radars Expired - Fee Related CN107167141B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710450742.8A CN107167141B (en) 2017-06-15 2017-06-15 Robot autonomous navigation system based on double laser radars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710450742.8A CN107167141B (en) 2017-06-15 2017-06-15 Robot autonomous navigation system based on double laser radars

Publications (2)

Publication Number Publication Date
CN107167141A true CN107167141A (en) 2017-09-15
CN107167141B CN107167141B (en) 2020-08-14

Family

ID=59818567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710450742.8A Expired - Fee Related CN107167141B (en) 2017-06-15 2017-06-15 Robot autonomous navigation system based on double laser radars

Country Status (1)

Country Link
CN (1) CN107167141B (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576950A (en) * 2017-09-28 2018-01-12 西安电子科技大学 A kind of optimized treatment method of pulse compression radar echo-signal
CN108008409A (en) * 2017-11-28 2018-05-08 深圳市杉川机器人有限公司 Region contour method for drafting and device
CN108170145A (en) * 2017-12-28 2018-06-15 浙江捷尚人工智能研究发展有限公司 Robot obstacle-avoiding system and its application process based on laser radar
CN108170144A (en) * 2017-12-27 2018-06-15 北斗七星(重庆)物联网技术有限公司 A kind of control system and security robot applied to security robot
CN108375373A (en) * 2018-01-30 2018-08-07 深圳市同川科技有限公司 Robot and its air navigation aid, navigation device
CN108401461A (en) * 2017-12-29 2018-08-14 深圳前海达闼云端智能科技有限公司 Three-dimensional mapping method, device and system, cloud platform, electronic equipment and computer program product
CN108958267A (en) * 2018-08-10 2018-12-07 洛阳中科龙网创新科技有限公司 A kind of unmanned vehicle barrier-avoiding method based on laser radar
CN109001752A (en) * 2018-05-18 2018-12-14 威海晶合数字矿山技术有限公司 A kind of three-dimensional measurement modeling and its method
CN109358342A (en) * 2018-10-12 2019-02-19 东北大学 3D laser SLAM system and control method based on 2D lidar
CN109389053A (en) * 2018-09-20 2019-02-26 同济大学 High performance vehicle detection system based on vehicle perpendicular type feature
CN109507686A (en) * 2018-11-08 2019-03-22 歌尔科技有限公司 A kind of control method wears display equipment, electronic equipment and storage medium
CN110095786A (en) * 2019-04-30 2019-08-06 北京云迹科技有限公司 Three-dimensional point cloud based on a line laser radar ground drawing generating method and system
CN110398751A (en) * 2019-09-11 2019-11-01 北京云迹科技有限公司 The system and method for map is generated based on laser radar
CN110411435A (en) * 2018-04-26 2019-11-05 北京京东尚科信息技术有限公司 Robot localization method, apparatus and robot
CN110456785A (en) * 2019-06-28 2019-11-15 广东工业大学 An Indoor Autonomous Exploration Method Based on Tracked Robot
CN111007528A (en) * 2019-12-17 2020-04-14 深圳市优必选科技股份有限公司 Inspection robot
CN111067180A (en) * 2020-01-08 2020-04-28 中国人民武装警察部队工程大学 A tactical command-based mapping and positioning system and helmet
CN111552296A (en) * 2020-05-14 2020-08-18 宁波智能装备研究院有限公司 Local smooth track planning method based on curved cylindrical coordinate system
CN111830977A (en) * 2020-07-02 2020-10-27 中国兵器科学研究院 Autonomous navigation software framework and navigation method for mobile robot
CN111947657A (en) * 2020-06-12 2020-11-17 南京邮电大学 A Mobile Robot Navigation Method Applicable to Dense Shelving Environment
CN111984017A (en) * 2020-08-31 2020-11-24 苏州三六零机器人科技有限公司 Cleaning equipment control method, device and system and computer readable storage medium
CN112113565A (en) * 2020-09-22 2020-12-22 温州科技职业学院 Robot positioning system for agricultural greenhouse environment
CN112198491A (en) * 2020-09-30 2021-01-08 广州赛特智能科技有限公司 Robot three-dimensional sensing system and method based on low-cost two-dimensional laser radar
CN112394359A (en) * 2019-08-15 2021-02-23 北醒(北京)光子科技有限公司 Laser radar and one-dimensional scanning method thereof
CN112629520A (en) * 2020-11-25 2021-04-09 北京集光通达科技股份有限公司 Robot navigation and positioning method, system, equipment and storage medium
CN112797990A (en) * 2020-12-24 2021-05-14 深圳市优必选科技股份有限公司 A storage medium, a robot, and a method and device for generating a navigation bitmap
CN112882481A (en) * 2021-04-28 2021-06-01 北京邮电大学 Mobile multi-mode interactive navigation robot system based on SLAM
CN112987019A (en) * 2021-03-12 2021-06-18 同济大学 Multi-robot laser SLAM method, system and omnidirectional mobile SLAM device thereof
CN113168184A (en) * 2018-10-12 2021-07-23 波士顿动力公司 Terrain Aware Pace Planning System
CN113253731A (en) * 2021-05-26 2021-08-13 常州市工业互联网研究院有限公司 Mobile embedded automatic platform of self-organizing path based on SLAM algorithm
CN114194685A (en) * 2021-12-23 2022-03-18 山东新华医疗器械股份有限公司 Palletizing AGV control system, method and device
CN114415661A (en) * 2021-12-15 2022-04-29 中国农业大学 Planar Laser SLAM and Navigation Method Based on Compressed 3D Space Point Cloud
WO2022252335A1 (en) * 2021-06-01 2022-12-08 南京驭逡通信科技有限公司 Industrial robot and industrial robot obstacle avoidance system thereof
KR102768539B1 (en) * 2023-09-13 2025-02-17 주식회사 지에이씨 Robot device with safety check function

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975951A (en) * 2010-06-09 2011-02-16 北京理工大学 Field environment barrier detection method fusing distance and image information
US9002511B1 (en) * 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
CN105074600A (en) * 2013-02-27 2015-11-18 夏普株式会社 Surrounding environment recognition device, autonomous mobile system using the same, and surrounding environment recognition method
CN106094836A (en) * 2016-08-08 2016-11-09 成都希德电子信息技术有限公司 A kind of microrobot control system based on two-dimensional laser radar and method
CN106227218A (en) * 2016-09-27 2016-12-14 深圳乐行天下科技有限公司 The navigation barrier-avoiding method of a kind of Intelligent mobile equipment and device
CN106325275A (en) * 2016-09-14 2017-01-11 广州今甲智能科技有限公司 Robot navigation system, robot navigation method and robot navigation device
CN106406338A (en) * 2016-04-14 2017-02-15 中山大学 Omnidirectional mobile robot autonomous navigation apparatus and method based on laser range finder
CN206105865U (en) * 2016-08-31 2017-04-19 路琨 Barrier system that keeps away in robot
CN106708058A (en) * 2017-02-16 2017-05-24 上海大学 Robot object conveying method and control system based on ROS (Robot Operating System)

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9002511B1 (en) * 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
CN101975951A (en) * 2010-06-09 2011-02-16 北京理工大学 Field environment barrier detection method fusing distance and image information
CN105074600A (en) * 2013-02-27 2015-11-18 夏普株式会社 Surrounding environment recognition device, autonomous mobile system using the same, and surrounding environment recognition method
CN106406338A (en) * 2016-04-14 2017-02-15 中山大学 Omnidirectional mobile robot autonomous navigation apparatus and method based on laser range finder
CN106094836A (en) * 2016-08-08 2016-11-09 成都希德电子信息技术有限公司 A kind of microrobot control system based on two-dimensional laser radar and method
CN206105865U (en) * 2016-08-31 2017-04-19 路琨 Barrier system that keeps away in robot
CN106325275A (en) * 2016-09-14 2017-01-11 广州今甲智能科技有限公司 Robot navigation system, robot navigation method and robot navigation device
CN106227218A (en) * 2016-09-27 2016-12-14 深圳乐行天下科技有限公司 The navigation barrier-avoiding method of a kind of Intelligent mobile equipment and device
CN106708058A (en) * 2017-02-16 2017-05-24 上海大学 Robot object conveying method and control system based on ROS (Robot Operating System)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576950B (en) * 2017-09-28 2020-10-16 西安电子科技大学 An Optimal Processing Method of Pulse Compression Radar Echo Signal
CN107576950A (en) * 2017-09-28 2018-01-12 西安电子科技大学 A kind of optimized treatment method of pulse compression radar echo-signal
WO2019104866A1 (en) * 2017-11-28 2019-06-06 深圳市杉川机器人有限公司 Method and device for drawing region outline and computer readable storage medium
CN108008409A (en) * 2017-11-28 2018-05-08 深圳市杉川机器人有限公司 Region contour method for drafting and device
CN108008409B (en) * 2017-11-28 2019-12-10 深圳市杉川机器人有限公司 Region contour drawing method and device
US11275178B2 (en) 2017-11-28 2022-03-15 Shenzhen 3Irobotix Co., Ltd. Method and device for drawing region outline and computer readable storage medium
CN108170144A (en) * 2017-12-27 2018-06-15 北斗七星(重庆)物联网技术有限公司 A kind of control system and security robot applied to security robot
CN108170145A (en) * 2017-12-28 2018-06-15 浙江捷尚人工智能研究发展有限公司 Robot obstacle-avoiding system and its application process based on laser radar
CN108401461A (en) * 2017-12-29 2018-08-14 深圳前海达闼云端智能科技有限公司 Three-dimensional mapping method, device and system, cloud platform, electronic equipment and computer program product
WO2019127445A1 (en) * 2017-12-29 2019-07-04 深圳前海达闼云端智能科技有限公司 Three-dimensional mapping method, apparatus and system, cloud platform, electronic device, and computer program product
CN108375373A (en) * 2018-01-30 2018-08-07 深圳市同川科技有限公司 Robot and its air navigation aid, navigation device
CN110411435B (en) * 2018-04-26 2021-06-29 北京京东尚科信息技术有限公司 Robot positioning method and device and robot
CN110411435A (en) * 2018-04-26 2019-11-05 北京京东尚科信息技术有限公司 Robot localization method, apparatus and robot
CN109001752A (en) * 2018-05-18 2018-12-14 威海晶合数字矿山技术有限公司 A kind of three-dimensional measurement modeling and its method
CN108958267A (en) * 2018-08-10 2018-12-07 洛阳中科龙网创新科技有限公司 A kind of unmanned vehicle barrier-avoiding method based on laser radar
CN109389053B (en) * 2018-09-20 2021-08-06 同济大学 Method and system for detecting the position information of a vehicle to be tested around a target vehicle
CN109389053A (en) * 2018-09-20 2019-02-26 同济大学 High performance vehicle detection system based on vehicle perpendicular type feature
CN109358342A (en) * 2018-10-12 2019-02-19 东北大学 3D laser SLAM system and control method based on 2D lidar
CN109358342B (en) * 2018-10-12 2022-12-09 东北大学 Three-dimensional laser SLAM system based on 2D laser radar and control method
CN113168184A (en) * 2018-10-12 2021-07-23 波士顿动力公司 Terrain Aware Pace Planning System
CN109507686A (en) * 2018-11-08 2019-03-22 歌尔科技有限公司 A kind of control method wears display equipment, electronic equipment and storage medium
CN110095786A (en) * 2019-04-30 2019-08-06 北京云迹科技有限公司 Three-dimensional point cloud based on a line laser radar ground drawing generating method and system
CN110456785A (en) * 2019-06-28 2019-11-15 广东工业大学 An Indoor Autonomous Exploration Method Based on Tracked Robot
CN112394359A (en) * 2019-08-15 2021-02-23 北醒(北京)光子科技有限公司 Laser radar and one-dimensional scanning method thereof
CN110398751A (en) * 2019-09-11 2019-11-01 北京云迹科技有限公司 The system and method for map is generated based on laser radar
CN111007528A (en) * 2019-12-17 2020-04-14 深圳市优必选科技股份有限公司 Inspection robot
CN111067180A (en) * 2020-01-08 2020-04-28 中国人民武装警察部队工程大学 A tactical command-based mapping and positioning system and helmet
CN111552296B (en) * 2020-05-14 2021-03-26 宁波智能装备研究院有限公司 Local smooth track planning method based on curved cylindrical coordinate system
CN111552296A (en) * 2020-05-14 2020-08-18 宁波智能装备研究院有限公司 Local smooth track planning method based on curved cylindrical coordinate system
CN111947657B (en) * 2020-06-12 2024-04-19 南京邮电大学 Mobile robot navigation method suitable for compact shelving environment
CN111947657A (en) * 2020-06-12 2020-11-17 南京邮电大学 A Mobile Robot Navigation Method Applicable to Dense Shelving Environment
CN111830977B (en) * 2020-07-02 2024-06-18 中国兵器科学研究院 Autonomous navigation software framework of mobile robot and navigation method
CN111830977A (en) * 2020-07-02 2020-10-27 中国兵器科学研究院 Autonomous navigation software framework and navigation method for mobile robot
CN111984017A (en) * 2020-08-31 2020-11-24 苏州三六零机器人科技有限公司 Cleaning equipment control method, device and system and computer readable storage medium
CN112113565A (en) * 2020-09-22 2020-12-22 温州科技职业学院 Robot positioning system for agricultural greenhouse environment
CN112198491A (en) * 2020-09-30 2021-01-08 广州赛特智能科技有限公司 Robot three-dimensional sensing system and method based on low-cost two-dimensional laser radar
CN112198491B (en) * 2020-09-30 2023-06-09 广州赛特智能科技有限公司 Robot three-dimensional sensing system and method based on low-cost two-dimensional laser radar
CN112629520A (en) * 2020-11-25 2021-04-09 北京集光通达科技股份有限公司 Robot navigation and positioning method, system, equipment and storage medium
CN112797990A (en) * 2020-12-24 2021-05-14 深圳市优必选科技股份有限公司 A storage medium, a robot, and a method and device for generating a navigation bitmap
WO2022134937A1 (en) * 2020-12-24 2022-06-30 深圳市优必选科技股份有限公司 Storage medium, robot, and navigation bitmap generation method and device therefor
CN112987019A (en) * 2021-03-12 2021-06-18 同济大学 Multi-robot laser SLAM method, system and omnidirectional mobile SLAM device thereof
CN112882481A (en) * 2021-04-28 2021-06-01 北京邮电大学 Mobile multi-mode interactive navigation robot system based on SLAM
CN113253731B (en) * 2021-05-26 2022-11-11 常州市工业互联网研究院有限公司 Mobile embedded automatic platform of self-organizing path based on SLAM algorithm
CN113253731A (en) * 2021-05-26 2021-08-13 常州市工业互联网研究院有限公司 Mobile embedded automatic platform of self-organizing path based on SLAM algorithm
WO2022252335A1 (en) * 2021-06-01 2022-12-08 南京驭逡通信科技有限公司 Industrial robot and industrial robot obstacle avoidance system thereof
CN114415661A (en) * 2021-12-15 2022-04-29 中国农业大学 Planar Laser SLAM and Navigation Method Based on Compressed 3D Space Point Cloud
CN114415661B (en) * 2021-12-15 2023-09-22 中国农业大学 Planar laser SLAM and navigation method based on compressed three-dimensional space point cloud
CN114194685A (en) * 2021-12-23 2022-03-18 山东新华医疗器械股份有限公司 Palletizing AGV control system, method and device
KR102768539B1 (en) * 2023-09-13 2025-02-17 주식회사 지에이씨 Robot device with safety check function

Also Published As

Publication number Publication date
CN107167141B (en) 2020-08-14

Similar Documents

Publication Publication Date Title
CN107167141B (en) Robot autonomous navigation system based on double laser radars
US10823576B2 (en) Systems and methods for robotic mapping
CN105892489B (en) A kind of automatic obstacle avoiding UAV system and control method based on Multi-sensor Fusion
Heng et al. Autonomous obstacle avoidance and maneuvering on a vision-guided mav using on-board processing
Li et al. Localization and navigation for indoor mobile robot based on ROS
CN102508257B (en) Working method of a vehicle-mounted mobile mapping device
JP2019501384A (en) Autonomous positioning navigation equipment, positioning navigation method and autonomous positioning navigation system
CN111427370A (en) A Gmapping Mapping Method for Mobile Robots Based on Sparse Pose Adjustment
CN103592944A (en) Supermarket shopping robot and advancing path planning method thereof
CN108844543A (en) Indoor AGV navigation control method based on UWB positioning and dead reckoning
CN110673614A (en) Mapping system and mapping method of small robot group based on cloud server
CN108759822B (en) Mobile robot 3D positioning system
CN115218891B (en) A mobile robot autonomous positioning and navigation method
CN107102653B (en) Device and method for controlling ground angle of mounting equipment of unmanned aerial vehicle
Son et al. The practice of mapping-based navigation system for indoor robot with RPLIDAR and Raspberry Pi
Liu et al. Autonomous vehicle based on ros2 for indoor package delivery
CN108646759A (en) Intelligent dismountable moving robot system based on stereoscopic vision and control method
Hu et al. A small and lightweight autonomous laser mapping system without GPS
Jiang et al. Development and verification of an autonomous and controllable mobile robot platform
CN106873602A (en) A kind of mobile robot of autonomous positioning in real time
CN118915514A (en) Multi-vehicle cooperative transportation method, device and system
Tan et al. Research on omnidirectional indoor mobile robot system based on multi-sensor fusion
CN112318507A (en) Robot intelligent control system based on SLAM technology
CN207440612U (en) A kind of autonomous mobile robot positioned in real time
Du et al. Research on navigation system of AMR based on ROS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200814

CF01 Termination of patent right due to non-payment of annual fee