CN107070270A - A kind of output impedance bearing calibration for improving LCL type combining inverter stability - Google Patents

A kind of output impedance bearing calibration for improving LCL type combining inverter stability Download PDF

Info

Publication number
CN107070270A
CN107070270A CN201710086350.8A CN201710086350A CN107070270A CN 107070270 A CN107070270 A CN 107070270A CN 201710086350 A CN201710086350 A CN 201710086350A CN 107070270 A CN107070270 A CN 107070270A
Authority
CN
China
Prior art keywords
msub
mrow
omega
msubsup
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710086350.8A
Other languages
Chinese (zh)
Other versions
CN107070270B (en
Inventor
杜燕
崔林波
杨向真
苏建徽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201710086350.8A priority Critical patent/CN107070270B/en
Publication of CN107070270A publication Critical patent/CN107070270A/en
Application granted granted Critical
Publication of CN107070270B publication Critical patent/CN107070270B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators

Abstract

The invention discloses a kind of output impedance bearing calibration for improving LCL type combining inverter stability, it is characterized in that:In the LCL type combining inverter containing active damping, add the phase compensator based on grid-connected current, build the virtual impedance of series connection, impedance angle for correcting inverter output impedance, by the Phase margin for improving light current combining inverter off the net, improve grid-connected inverters electric current waveform quality, improve light current grid-connected inverter system stability off the net.

Description

A kind of output impedance bearing calibration for improving LCL type combining inverter stability
Technical field
The invention belongs to combining inverter control technology field, combining inverter is improved more particularly to one kind steady Qualitatively output impedance bearing calibration, for improving grid-connected inverters electric current waveform quality, improves light current combining inverter off the net The stability of a system.
Background technology
Based on regenerative resource, the distributed generation technology of such as wind energy, solar energy is mankind's reply energy crisis and ring One of important channel of border pollution.Combining inverter as the key interface equipment between distributed generation system and power network, its Performance quality directly decides grid-connected current quality.
With the grid-connected power of distributed power source increase and access mains position it is widely distributed, it is contemplated that longer transmission & distribution Electric line, more isolating transformer, substantial amounts of Distributed-generation equipment are mounted on the factors such as grid entry point PCC points, and power network is more next The characteristic of light current net is more shown, electric network impedance can not ignore.Under weak grid conditions, electric network impedance and inverter output resistance It is anti-to produce reciprocation, cause the combining inverter of forceful electric power stable operation off the net to produce vibration, unstability.Therefore, parallel network reverse The design of device is, it is necessary to weaken the influence for eliminating electric network impedance to inverter performance, it is ensured that combining inverter is in all kinds of electric network impedances Under the conditions of stable operation.Under weak grid conditions, the stability of combining inverter is determined by two parts:One is that forceful electric power is off the net, and The stability (hereafter referred to collectively as inverter body stability) of net inverter;Two be that light current is off the net, and electric network impedance and inverter are defeated Go out stability caused by the reciprocation of impedance (hereafter referred to collectively as light current combining inverter stability off the net).When inverter body When stable, light current combining inverter stability off the net can be improved by changing the output impedance of inverter.However, grid-connected inverse at present Become in device impedance correction method, one is to need accurate measurement electric network impedance, and measurement error causes compensation inaccurate;Two be to need to draw Enter higher differentiation link, Project Realization is difficult.
The content of the invention
The present invention is that there is provided one kind raising LCL type combining inverter is steady to avoid the deficiency present in above-mentioned prior art Qualitatively output impedance bearing calibration.By introducing the phase compensator based on grid-connected current, correction inverter output impedance Impedance angle, improves the Phase margin of light current combining inverter off the net, improves grid-connected inverters electric current waveform quality, improves light current net Lower combining inverter stability.
The present invention adopts the following technical scheme that to solve technical problem:
The present invention improve LCL type combining inverter stability output impedance bearing calibration the characteristics of be:Containing active resistance In the LCL type combining inverter of Buddhist nun, the phase compensator based on grid-connected current is added, the virtual impedance of series connection is built, for school The impedance angle of positive inverter output impedance, by improving the Phase margin of light current combining inverter off the net, improves grid-connected inverters Current waveform quality, improves light current grid-connected inverter system stability off the net.
The characteristics of present invention improves the output impedance bearing calibration of LCL type combining inverter stability lies also in:The side Method is to carry out as follows:
Step 1:By grid entry point voltage sampling signal upcc_s, grid-connected current sampled signal ig_sWith capacitance current sampled signal ic_sBy current controller, output signal u is obtainedi1=(iref-ig_s)(Kp+Ki/s)-ic_s
The capacitance current sampled signal ic_sRefer to the current sampling signal for constituting the filter capacitor C in LCL filter; irefIt is the command signal of grid-connected current, wherein irefAmplitude be setting value, irefPhase by grid entry point voltage sampling signal upcc_sObtained by phaselocked loop;KpFor grid-connected current adjuster Gi(s) proportionality coefficient, KiFor grid-connected current adjuster Gi(s) Integral coefficient, s is multifrequency domain variable.
Step 2:By grid-connected current sampled signal ig_sPass through phase compensator Gfc(s) output signal, is obtained for ui2
Step 3:Modulated signal VmFor:Vm=ui1-ui2, by the modulated signal VmSPWM makers are input to, PWM is produced Signal controls the switching tube of inverter.
The characteristics of impedance angle bearing calibration of LCL combining inverters output impedance of the present invention, lies also in:
The phase compensator Gfc(s) it is expressed as:
In formula (1), K is phase compensator Gfc(s) gain, p is pole angular, and z is zero point angular frequency;The gain K, pole angular p and zero point angular frequency z parameter value are by following conditional decisions:
(1), gain K value is determined by high frequency Immunity Performance, as expressed by formula (2):
|Gfc(s)|max=K≤Kmax (2)
In formula (2), | Gfc(s)|maxFor phase compensator Gfc(s) maximum modulus value, KmaxFor K maximum occurrences, in order to carry High Gfc(s) high frequency Immunity Performance, takes KmaxFor 1;
(2), pole angular p is not less than its minimum value pmin, pminAs expressed by formula (3):
pmin=max { pcmin,pomin} (3)
In formula (3), pcminIt is the minimum p value determined by current tracking cut-off frequency, pominIt is by inverter body stability The minimum p value determined;
pcminObtained by formula (4):
In formula (4):
Each parameter set by LCL grid-connected inverter systems is respectively:Inverter side inductance L in LCL filter1And net side Inductance L2, the inverter bridge gain G for the inverter bridge being made up of switching tubeinv, grid-connected current downsampling factor Ki2, grid-connected current adjuster Gi(s) Proportional coefficient Kp, and grid-connected current adjuster Gi(s) integral coefficient Ki
ωcThe cut-off angular frequency tracked for desired inverter current;
pominObtained by formula (5):
In formula (5):
Electric capacity C in LCL filter, and filter capacitor current sample COEFFICIENT Ki1For the system of LCL combining inverters Setup parameter;
PMosFor desired Zos/ZoPhase margin;
ωosFor virtual series impedance ZosWith inverter output impedance ZoIntersection point angular frequency, ωosObtained by formula (6):
In formula (6), j is imaginary unit;
In Gfc(s) j ω are used inosReplace s operators and obtain Gfc(jωos);
In Gi(s) j ω are used inosReplace s operators and obtain Gi(jωos);
(3), zero point angular frequency z is not more than its maximum zmax, zmaxObtained by formula (7):
In formula (7), ω0For current first harmonics angular frequency;GM is expectation current first harmonics gain;
(4), zero point angular frequency z is not less than its minimum value zmin, zminObtained by formula (8):
In formula (8):
ZgSet according to Grid-connection standards;
PM is desired impedance ratio Zg/ZoPhase margin;
ωgFor inverter output impedance ZoWith electric network impedance ZgIntersection point angular frequency, ωgObtained by formula (9):
In formula (9), j is imaginary unit, Gi(jωg) it is in Gi(s) j ω are used ingS operators are replaced to obtain;
(5), pole angular p is not more than its maximum pmax, pmaxObtained by formula (10):
Compared with the prior art, the present invention has the beneficial effect that:
The present invention adds the phase compensator based on grid-connected current, by remolding the impedance angle of inverter output impedance, has Effect improves the Phase margin of light current combining inverter off the net;The inventive method need not change original controller parameter, also not Need to measure electric network impedance value in real time, in the case of electric network impedance large-scope change, can guarantee that the stabilization of combining inverter Work, and the THD numerical value of grid-connected current declines to a great extent.
Brief description of the drawings
Fig. 1 is LCL grid-connected inverter system structured flowcharts in the present invention.
Fig. 2 is LCL combining inverter control block diagrams in the present invention.
Fig. 3 is the Bode diagram of inverter output impedance before and after addition phase compensator.
Fig. 4 is not added with grid-connected current simulation waveform during phase compensator for light current is off the net.
Grid-connected current simulation waveform when Fig. 5 adds phase compensator for light current is off the net.
Label in figure:1 DC source, 2 inverter bridges, 3 be LCL filter, 4 public electric wire nets, by ideal voltage source UgAnd power network Impedance ZgComposition;5 current controllers;6 phase compensators;7 be SPWM makers.
Embodiment
Referring to Fig. 1, light current single-phase LCL grid-connected inverter systems off the net include in the present embodiment:DC source 1, by four bands The inverter bridge 2 of the switching tube composition of fly-wheel diode, the LCL filter being made up of filter inductance L1, L2 and filter capacitor C, by Ideal voltage source UgWith electric network impedance ZgThe public electric wire net 4 of composition, current controller 5, phase compensator 6 and SPWM makers 7.
As depicted in figs. 1 and 2, the output impedance bearing calibration of LCL type combining inverter stability is improved in the present embodiment It is:In the LCL type combining inverter containing active damping, the phase compensator based on grid-connected current is added, the void of series connection is built Intend impedance, the impedance angle for correcting inverter output impedance, by improving the Phase margin of light current combining inverter off the net, changes Kind grid-connected inverters electric current waveform quality, improves light current combining inverter stability off the net.
The output impedance bearing calibration that LCL type combining inverter stability is improved in the present embodiment is carried out as follows:
Step 1:By grid entry point voltage sampling signal upcc_s, grid-connected current sampled signal ig_sWith capacitance current sampled signal ic_sBy current controller, output signal u is obtainedi1=(iref-ig_s)(Kp+Ki/s)-ic_s
The capacitance current sampled signal ic_sRefer to the current sampling signal for constituting the filter capacitor C in LCL filter; irefIt is the command signal of grid-connected current, by grid entry point voltage sampling signal upcc_sObtained by phaselocked loop;KpAdjusted for grid-connected current Save device Gi(s) proportionality coefficient, KiFor grid-connected current adjuster Gi(s) integral coefficient, s is multifrequency domain variable.
Step 2:By grid-connected current sampled signal ig_sPass through phase compensator Gfc(s) output signal, is obtained for ui2
Step 3:Modulated signal VmFor:Vm=ui1-ui2, by the modulated signal VmSPWM makers are input to, PWM is produced Signal controls the switching tube of inverter.
Phase compensator G proposed in the present embodimentfc(s), its expression formula is formula (1):
In formula (1), K is phase compensator Gfc(s) gain, p is pole angular, and z is zero point angular frequency;Gain K, pole Point angular frequency p and zero point angular frequency z parameter value is by following conditional decisions:
(1), gain K value is determined by high frequency Immunity Performance, as expressed by formula (2):
|Gfc(s)|max=K≤Kmax (2)
In formula (2), | Gfc(s)|maxFor phase compensator Gfc(s) maximum modulus value, KmaxFor K maximum occurrences, in order to carry High Gfc(s) high frequency Immunity Performance, takes KmaxFor 1.
(2), pole angular p is not less than its minimum value pmin, pminAs expressed by formula (3):
pmin=max { pcmin,pomin} (3)
In formula (3), pcminIt is the minimum p value determined by current tracking cut-off frequency, pominIt is by inverter body stability The minimum p value determined.
pcminDetermined by current tracking cut-off frequency, p is bigger, and cut-off frequency is bigger.Because z has little influence on cut-off frequency, Make z=0, it is assumed that ωcThe cut-off angular frequency tracked for desired inverter current, pcminObtained by formula (4):
In formula (4):
Each parameter set by LCL grid-connected inverter systems is respectively:Inverter side inductance L in LCL filter1And net side Inductance L2, the inverter bridge gain G for the inverter bridge being made up of switching tubeinv, grid-connected current downsampling factor Ki2, grid-connected current adjuster Gi(s) Proportional coefficient Kp, and grid-connected current adjuster Gi(s) integral coefficient Ki
pominDetermined by inverter body stability.The inverter body stability added after phase compensator can be by Zos/ ZoJudge, and its bigger stability of p is better.Because z has little influence on inverter body stability, z=0 is made, it is assumed that PMosBy a definite date The Z of prestigeos/ZoPhase margin, pominObtained by formula (5):
In formula (5):
Electric capacity C in LCL filter, and filter capacitor current sample COEFFICIENT Ki1For the system of LCL combining inverters Setup parameter;ωosFor virtual series impedance ZosWith inverter output impedance ZoIntersection point angular frequency, ωosObtained by formula (6):
In formula (6), j is imaginary unit;
In Gfc(s) in, j ω are usedosReplace s operators and obtain Gfc(jωos);
In Gi(s) in, j ω are usedosReplace s operators and obtain Gi(jωos);
(3), phase-compensatory contro can influence system fundamental wave gain, to ensure preferable fundamental wave tracking performance, fundamental wave gain Design requirement should be met;Assuming that GM is desired current first harmonics gain, zero point angular frequency z is not more than its maximum zmax, zmaxBy Formula (7) is obtained:
In formula (7), ω0For current first harmonics angular frequency;
(4), light current combining inverter stability off the net is by Zg/ZoJudge, it is assumed that PM is desired impedance ratio Zg/ZoPhase Angle nargin, zero point angular frequency z is not less than its minimum value zmin, zminObtained by formula (8):
In formula (8):
ZgSet according to Grid-connection standards;
ωgFor inverter output impedance ZoWith electric network impedance ZgIntersection point angular frequency, ωgObtained by formula (9):
In formula (9), j is imaginary unit, Gi(jωg) it is in Gi(s) j ω are used ingS operators are replaced to obtain;
(5), pole angular p is not more than its maximum pmax, pmaxObtained by formula (10):
Parameter K, p, z span are obtained according to above formula (1)~(10).
To verify the validity of impedance angle bearing calibration proposed by the present invention, built in Matlab/simulink specified Capacity is 6kw single-phase grid-connected inverter models.Fig. 3 is the Bode diagram of inverter output impedance before and after addition phase compensator, its Middle ZoTo be added without the inverter output impedance of phase compensator, Z'osTo add the inverter output impedance of phase compensator, Zg For electric network impedance.From figure 3, it can be seen that when electric network impedance is 2.6mH, inverter output impedance and electric network impedance intersection point A The Phase margin at place brings up to 31.3 ° by original -0.6 °, and the stability of system is greatly improved.Fig. 4 is added without for light current is off the net Grid-connected current waveform during phase compensator, now electric network impedance is 2.6mH, it can be seen that grid-connected current is vibrated.Fig. 5 is The grid-connected current waveform that light current is off the net when adding phase compensator, because the impedance angle of the now output impedance of inverter is obtained very Good compensation, the stability of system is improved, and grid-connected current waveform quality also reaches very big improvement.Base proposed by the invention The combining inverter improved stability method corrected in impedance angle, can improve the stability of light current system off the net well.

Claims (3)

1. a kind of output impedance bearing calibration for improving LCL type combining inverter stability, it is characterized in that:Containing active damping In LCL type combining inverter, the phase compensator based on grid-connected current is added, the virtual impedance of series connection is built, it is inverse for correcting Become the impedance angle of device output impedance, by improving the Phase margin of light current combining inverter off the net, improve grid-connected inverters electric current Waveform quality, improves light current grid-connected inverter system stability off the net.
2. the output impedance bearing calibration according to claim 1 for improving LCL type combining inverter stability, it is characterized in that Methods described is to carry out as follows:
Step 1:By grid entry point voltage sampling signal upcc_s, grid-connected current sampled signal ig_sWith capacitance current sampled signal ic_sIt is logical Overcurrent controller, obtains output signal ui1=(iref-ig_s)(Kp+Ki/s)-ic_s
The capacitance current sampled signal ic_sRefer to the current sampling signal for constituting the filter capacitor C in LCL filter;irefIt is The command signal of grid-connected current, wherein irefAmplitude be setting value, irefPhase by grid entry point voltage sampling signal upcc_sIt is logical Cross phaselocked loop acquisition;KpFor grid-connected current adjuster Gi(s) proportionality coefficient, KiFor grid-connected current adjuster Gi(s) integration system Number, s is multifrequency domain variable.
Step 2:By grid-connected current sampled signal ig_sPass through phase compensator Gfc(s) output signal, is obtained for ui2
Step 3:Modulated signal VmFor:Vm=ui1-ui2, by the modulated signal VmSPWM makers are input to, pwm signal is produced Control the switching tube of inverter.
3. the output impedance bearing calibration according to claim 1 for improving LCL type combining inverter stability, its feature It is:The phase compensator Gfc(s) it is expressed as:
<mrow> <msub> <mi>G</mi> <mrow> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mfrac> <mrow> <mi>s</mi> <mo>+</mo> <mi>z</mi> </mrow> <mrow> <mi>s</mi> <mo>+</mo> <mi>p</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula (1), K is phase compensator Gfc(s) gain, p is pole angular, and z is zero point angular frequency;The gain K, pole Point angular frequency p and zero point angular frequency z parameter value is by following conditional decisions:
(1), gain K value is determined by high frequency Immunity Performance, as expressed by formula (2):
|Gfc(s)|max=K≤Kmax (2)
In formula (2), | Gfc(s)|maxFor phase compensator Gfc(s) maximum modulus value, KmaxFor K maximum occurrences, in order to improve Gfc (s) high frequency Immunity Performance, takes KmaxFor 1;
(2), pole angular p is not less than its minimum value pmin, pminAs expressed by formula (3):
pmin=max { pcmin,pomin} (3)
In formula (3), pcminIt is the minimum p value determined by current tracking cut-off frequency, pominIt is to be determined by inverter body stability Minimum p value;
pcminObtained by formula (4):
<mrow> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mi>min</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <msub> <mi>KG</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>c</mi> </msub> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>K</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>c</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula (4):
Each parameter set by LCL grid-connected inverter systems is respectively:Inverter side inductance L in LCL filter1With net side inductance L2, the inverter bridge gain G for the inverter bridge being made up of switching tubeinv, grid-connected current downsampling factor Ki2, grid-connected current adjuster Gi(s) Proportional coefficient Kp, and grid-connected current adjuster Gi(s) integral coefficient Ki
ωcThe cut-off angular frequency tracked for desired inverter current;
pominObtained by formula (5):
In formula (5):
Electric capacity C in LCL filter, and filter capacitor current sample COEFFICIENT Ki1For the default of LCL combining inverters Parameter;
PMosFor desired Zos/ZoPhase margin;
ωosFor virtual series impedance ZosWith inverter output impedance ZoIntersection point angular frequency, ωosObtained by formula (6):
<mrow> <mo>|</mo> <msub> <mi>G</mi> <mrow> <mi>f</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>j&amp;omega;</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>|</mo> <mo>=</mo> <mo>|</mo> <msub> <mi>j&amp;omega;</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>1</mn> </msub> <msub> <mi>L</mi> <mn>2</mn> </msub> <mi>C</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>2</mn> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msub> <mi>G</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>j&amp;omega;</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
In formula (6), j is imaginary unit;
In Gfc(s) j ω are used inosReplace s operators and obtain Gfc(jωos);
In Gi(s) j ω are used inosReplace s operators and obtain Gi(jωos);
(3), zero point angular frequency z is not more than its maximum zmax, zmaxObtained by formula (7):
<mrow> <msub> <mi>z</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>p</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mi>K</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>G</mi> <mi>M</mi> </mrow> <mn>20</mn> </mfrac> </mrow> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
In formula (7), ω0For current first harmonics angular frequency;GM is expectation current first harmonics gain;
(4), zero point angular frequency z is not less than its minimum value zmin, zminObtained by formula (8):
<mrow> <msub> <mi>z</mi> <mi>min</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>KG</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>+</mo> <mi>tan</mi> <mi> </mi> <mi>P</mi> <mi>M</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mi>tan</mi> <mi> </mi> <mi>P</mi> <mi>M</mi> <mo>)</mo> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msub> <mi>K</mi> <mi>i</mi> </msub> <msub> <mi>p</mi> <mi>min</mi> </msub> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>1</mn> </msub> <msub> <mi>p</mi> <mi>min</mi> </msub> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>KG</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msub> <mi>K</mi> <mi>p</mi> </msub> <msub> <mi>p</mi> <mi>min</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
In formula (8):
ZgSet according to Grid-connection standards;
PM is desired impedance ratio Zg/ZoPhase margin;
ωgFor inverter output impedance ZoWith electric network impedance ZgIntersection point angular frequency, ωgObtained by formula (9):
<mrow> <mo>|</mo> <msub> <mi>Z</mi> <mi>g</mi> </msub> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <msub> <mi>j&amp;omega;</mi> <mi>g</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>1</mn> </msub> <msub> <mi>L</mi> <mn>2</mn> </msub> <mi>C</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>2</mn> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msub> <mi>G</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>j&amp;omega;</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>j&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>1</mn> </msub> <mi>C</mi> </mrow> </mfrac> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
In formula (9), j is imaginary unit, Gi(jωg) it is in Gi(s) j ω are used ingS operators are replaced to obtain;
(5), pole angular p is not more than its maximum pmax, pmaxObtained by formula (10):
<mrow> <msub> <mi>p</mi> <mi>max</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>KG</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mi>tan</mi> <mi> </mi> <mi>P</mi> <mi>M</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mi>max</mi> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <mi>tan</mi> <mi> </mi> <mi>P</mi> <mi>M</mi> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>(</mo> <mi>tan</mi> <mi> </mi> <mi>P</mi> <mi>M</mi> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> <mo>(</mo> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>&amp;omega;</mi> <mi>g</mi> <mn>2</mn> </msubsup> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>)</mo> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>g</mi> </msub> <msub> <mi>CK</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mi>tan</mi> <mi> </mi> <mi>P</mi> <mi>M</mi> <mo>)</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> 2
CN201710086350.8A 2017-02-17 2017-02-17 A kind of output impedance bearing calibration improving LCL type gird-connected inverter stability Active CN107070270B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710086350.8A CN107070270B (en) 2017-02-17 2017-02-17 A kind of output impedance bearing calibration improving LCL type gird-connected inverter stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710086350.8A CN107070270B (en) 2017-02-17 2017-02-17 A kind of output impedance bearing calibration improving LCL type gird-connected inverter stability

Publications (2)

Publication Number Publication Date
CN107070270A true CN107070270A (en) 2017-08-18
CN107070270B CN107070270B (en) 2019-04-23

Family

ID=59621774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710086350.8A Active CN107070270B (en) 2017-02-17 2017-02-17 A kind of output impedance bearing calibration improving LCL type gird-connected inverter stability

Country Status (1)

Country Link
CN (1) CN107070270B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887910A (en) * 2017-12-13 2018-04-06 华北电力大学(保定) A kind of lead-lag compensation method for improving the grid-connected performance of distributed photovoltaic
CN108512227A (en) * 2018-04-03 2018-09-07 贵州大学 A kind of adjusting method of single-phase LCL gird-connected inverters improved electric throttle regulator
CN108631629A (en) * 2018-02-28 2018-10-09 南京航空航天大学 Improve a kind of phase lead compensation method of LCL type gird-connected inverter robustness
CN108879781A (en) * 2018-08-01 2018-11-23 重庆大学 A kind of grid-connected current control method based on virtual impedance correction method
CN109361218A (en) * 2018-12-08 2019-02-19 南京理工大学 A kind of LCL type current transformer active damping optimal delay compensation method
CN111257688A (en) * 2020-02-11 2020-06-09 西南交通大学 Method for evaluating electrical performance of electrified railway contact net
CN113517720A (en) * 2021-09-10 2021-10-19 四川大学 Fractional phase compensation control method and device for LCL grid-connected inverter under weak grid
CN115603377A (en) * 2022-11-15 2023-01-13 特变电工西安电气科技有限公司(Cn) Method and system for improving weak grid stability of grid-connected inverter
CN115603335A (en) * 2022-10-28 2023-01-13 国网江苏省电力有限公司电力科学研究院(Cn) Grid-connected inverter integrating active damping function and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103354359A (en) * 2013-08-02 2013-10-16 南京航空航天大学 Phase angle margin compensation-based system impedance active control method of grid -connected inverter
CN103545838A (en) * 2013-09-17 2014-01-29 南京航空航天大学 Method for adaptively controlling hybrid damping of grid-connection inverter applicable to weak grid access conditions
CN103812135A (en) * 2014-03-10 2014-05-21 南京航空航天大学 Control method for improving adaptability of LCL type grid-connected inverter for weak grid
CN102709938B (en) * 2012-05-22 2015-01-14 南京航空航天大学 Current control method for sampling single network access current of lower control limit (LCL) filter grid-connected inverter
WO2015155183A1 (en) * 2014-04-09 2015-10-15 Abb Technology Ag Active damping control of an electrical converter with a resonant output filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709938B (en) * 2012-05-22 2015-01-14 南京航空航天大学 Current control method for sampling single network access current of lower control limit (LCL) filter grid-connected inverter
CN103354359A (en) * 2013-08-02 2013-10-16 南京航空航天大学 Phase angle margin compensation-based system impedance active control method of grid -connected inverter
CN103545838A (en) * 2013-09-17 2014-01-29 南京航空航天大学 Method for adaptively controlling hybrid damping of grid-connection inverter applicable to weak grid access conditions
CN103812135A (en) * 2014-03-10 2014-05-21 南京航空航天大学 Control method for improving adaptability of LCL type grid-connected inverter for weak grid
WO2015155183A1 (en) * 2014-04-09 2015-10-15 Abb Technology Ag Active damping control of an electrical converter with a resonant output filter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIONGFEI WANG等: "Grid-Current-Feedback Active Damping forLCLResonance in Grid-Connected Voltage-Source Converters", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
杨东升等: "提高LCL型并网逆变器对弱电网适应能力的虚拟阻抗方法", 《中国电机工程学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887910A (en) * 2017-12-13 2018-04-06 华北电力大学(保定) A kind of lead-lag compensation method for improving the grid-connected performance of distributed photovoltaic
CN107887910B (en) * 2017-12-13 2021-04-02 华北电力大学(保定) Lead-lag compensation method for improving distributed photovoltaic grid connection performance
CN108631629A (en) * 2018-02-28 2018-10-09 南京航空航天大学 Improve a kind of phase lead compensation method of LCL type gird-connected inverter robustness
CN108512227A (en) * 2018-04-03 2018-09-07 贵州大学 A kind of adjusting method of single-phase LCL gird-connected inverters improved electric throttle regulator
CN108879781A (en) * 2018-08-01 2018-11-23 重庆大学 A kind of grid-connected current control method based on virtual impedance correction method
CN108879781B (en) * 2018-08-01 2021-09-07 重庆大学 Grid-connected current control method based on virtual impedance correction method
CN109361218A (en) * 2018-12-08 2019-02-19 南京理工大学 A kind of LCL type current transformer active damping optimal delay compensation method
CN109361218B (en) * 2018-12-08 2022-05-10 南京理工大学 LCL type converter active damping optimal delay compensation method
CN111257688A (en) * 2020-02-11 2020-06-09 西南交通大学 Method for evaluating electrical performance of electrified railway contact net
CN113517720A (en) * 2021-09-10 2021-10-19 四川大学 Fractional phase compensation control method and device for LCL grid-connected inverter under weak grid
CN115603335A (en) * 2022-10-28 2023-01-13 国网江苏省电力有限公司电力科学研究院(Cn) Grid-connected inverter integrating active damping function and control method
CN115603377A (en) * 2022-11-15 2023-01-13 特变电工西安电气科技有限公司(Cn) Method and system for improving weak grid stability of grid-connected inverter

Also Published As

Publication number Publication date
CN107070270B (en) 2019-04-23

Similar Documents

Publication Publication Date Title
CN107070270B (en) A kind of output impedance bearing calibration improving LCL type gird-connected inverter stability
CN108616141B (en) Control method for LCL grid-connected inverter power nonlinearity in microgrid
CN103414196B (en) Grid-connected inverter grid-connection point voltage dynamic compensation control method
CN103812135B (en) Improve LCL type combining inverter to the control method of light current net adaptive capacity
CN110021963B (en) Method for smooth switching control of micro-grid combined in off-grid dual mode
CN111769591B (en) Double-mode combined control method for multi-inverter system based on double split transformers
CN103560690A (en) Harmonic wave damping control method for one-phase LCL type grid-connected inverter
CN104682390A (en) Alternating current (AC) hybrid active power filter system for high-voltage direct current (DC) transmission, and control method thereof
CN106532749B (en) A kind of micro-capacitance sensor imbalance power and harmonic voltage compensation system and its application
CN105763094A (en) Inverter control method based on voltage feedforward and recombination current control
CN106410839A (en) Active and reactive current coordination control-based photovoltaic grid-connected inverter control method
CN105140921A (en) Electric spring topological structure implemented based on current source type inverter and control method of electric spring topological structure
CN204886199U (en) Adapt to power electronic transformer uneven and non - linear load
CN105914774B (en) A kind of multiple combining inverters for considering dead band large-sized photovoltaic grid-connected system modeling method in parallel
CN110011364A (en) A kind of active power load fluctuation that reduces is to the control method of system stabilizing influence
CN107887910B (en) Lead-lag compensation method for improving distributed photovoltaic grid connection performance
CN107196321B (en) Method for improving steady-state operation range of power spring
CN106877401B (en) Method for adaptively improving stability of LCL type grid-connected inverter system under weak grid condition
CN103259284B (en) Voltage vector stabilizer based on phase-locked loop and control method of voltage vector stabilizer
CN110518596A (en) Distribution voltage Dynamic control method containing electric arc furnaces
Gao et al. Reconstruction of impedance-based stability criterion in weak grid
CN102611339A (en) Current control method for three-phase rectifying device
CN106684907A (en) Control method capable of improving system dynamic response of grid-connected inverter under weak power grid transient state operation
CN107039974A (en) A kind of grid-connected inverters power quality analysis method during consideration device dead time effect
Yu et al. Impact analysis of fast dynamics on stability of grid-tied inverter based on oscillator model and damping torque analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant