CN107043223B - A kind of ordered straight groove microstructure multilayer film glass and preparation method thereof - Google Patents
A kind of ordered straight groove microstructure multilayer film glass and preparation method thereof Download PDFInfo
- Publication number
- CN107043223B CN107043223B CN201710067661.XA CN201710067661A CN107043223B CN 107043223 B CN107043223 B CN 107043223B CN 201710067661 A CN201710067661 A CN 201710067661A CN 107043223 B CN107043223 B CN 107043223B
- Authority
- CN
- China
- Prior art keywords
- zro
- layer
- preparation
- multilayer film
- film glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 99
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 239000010408 film Substances 0.000 claims abstract description 77
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000010409 thin film Substances 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 claims description 55
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 17
- 238000004544 sputter deposition Methods 0.000 claims description 17
- 239000001509 sodium citrate Substances 0.000 claims description 15
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 15
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 11
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 10
- 229910001431 copper ion Inorganic materials 0.000 claims description 10
- 239000013077 target material Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 7
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 6
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 6
- 235000010378 sodium ascorbate Nutrition 0.000 claims description 6
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 claims description 6
- 229960005055 sodium ascorbate Drugs 0.000 claims description 6
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 claims description 6
- CVBUKMMMRLOKQR-UHFFFAOYSA-N 1-phenylbutane-1,3-dione Chemical compound CC(=O)CC(=O)C1=CC=CC=C1 CVBUKMMMRLOKQR-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 18
- 230000001699 photocatalysis Effects 0.000 abstract description 17
- 230000005855 radiation Effects 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000009413 insulation Methods 0.000 abstract description 6
- 238000007146 photocatalysis Methods 0.000 abstract description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001569 carbon dioxide Substances 0.000 abstract description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 238000005034 decoration Methods 0.000 abstract description 2
- 239000005416 organic matter Substances 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004134 energy conservation Methods 0.000 abstract 1
- 230000005484 gravity Effects 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 244000248349 Citrus limon Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- -1 light yellow Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3649—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3615—Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3618—Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
技术领域technical field
本发明属于特种玻璃材料加工生产技术领域,涉及一种有序直线槽微结构多层膜玻璃及其制备方法。The invention belongs to the technical field of processing and production of special glass materials, and relates to an ordered linear groove microstructure multilayer film glass and a preparation method thereof.
背景技术Background technique
随着全球化石油能源的日趋减少和环境污染的加剧,有效利用太阳能控制室内冷热,光催化使有机物污物快速分解成无机物进入生态循环以及实现建筑玻璃的自我清洁等已成为可持续发展的出路之一。但是,目前大部分建筑窗玻璃采用的是普通玻璃、颜色玻璃或中空玻璃(两片玻璃之间夹放框架并密封),其对建筑节能和舒适虽有一定作用,但是满足不了人们的需求。除此之外,还有一种较流行的技术方法-即在普通单片玻璃上贴膜或镀膜,也能较好地达到一定的夏季隔热、冬季保温的目的。近年来在国际上热门的产品还有低辐射镀膜单片玻璃(简称LowE玻璃)和一类新发展的未来玻璃产品-电致变色玻璃。它们在节能效率和性价比等方面都存在不足。中国实用新型专利申请200420083199.0号公开了一种低辐射镀膜玻璃,它复合有五个膜层:金属氧化物膜层、金属或合金阻挡层、金属银、金属或合金阻挡层、金属氧化物膜层。该复合玻璃结构使用太多的贵金属和合金,成本高。With the reduction of global petroleum energy and the aggravation of environmental pollution, the effective use of solar energy to control indoor heat and cold, photocatalysis to rapidly decompose organic pollutants into inorganic substances to enter the ecological cycle, and to achieve self-cleaning of architectural glass has become a sustainable development. one of the ways out. However, at present, most architectural window glass uses ordinary glass, colored glass or insulating glass (a frame is sandwiched between two pieces of glass and sealed), which has a certain effect on building energy saving and comfort, but cannot meet people's needs. In addition, there is a more popular technical method - that is, filming or coating on ordinary single glass, which can also achieve a certain purpose of heat insulation in summer and winter. In recent years, the popular products in the world include low-emissivity coated monolithic glass (LowE glass for short) and a new type of future glass product - electrochromic glass. They are insufficient in terms of energy-saving efficiency and cost-effectiveness. Chinese Utility Model Patent Application No. 200420083199.0 discloses a low-emissivity coated glass, which is compounded with five film layers: metal oxide film layer, metal or alloy barrier layer, metal silver, metal or alloy barrier layer, metal oxide film layer . The composite glass structure uses too many precious metals and alloys, and the cost is high.
上述专利及其它产品都不具备使玻璃的节能和光辐射透过特性处于随着外界环境自动地可微量调整变化的功能,即不具有使玻璃窗实现在白天/夜晚、晴天/阴天交替情形下的透光特性变化的功能;它们也不具有窗玻璃较为重要的功能—玻璃自清洁作用。关于自清洁及其光催化的基本原理,作为宽禁带半导体材料的TiO2,它的光电/光催化特性研究一直是个热点。杂志《J.Phys.D:Appl.Phys.》2010年第43期(P.035301)报道了利用TiO2纳米晶多孔膜做电极应用于光电化学太阳能电池并获得了光电转换效率从1﹪提高到7.9﹪以上的成果。杂志《Applied Surface Science》2011年第257卷第20期(P.8451)报道了TiO2的光催化降解方面的研究,该文中描述了利用光诱导效应研究TiO2的自清洁以及抗菌特性。与典型的光催化材料TiO2有类似特性的金属氧化物还有ZnO,杂志《Thin SolidFilms》2006年第496期(P.89-94)报道了在ZnO和In2O3的掺杂及多相相图理论等方面的一些深入细仔的工作,特别是ZnO的导电/光电/光催化研究更是倍受关注,这主要是ZnO不仅具有上述优良材料的基本性能,而且它的资源丰富、价格便宜、无毒,进一步研发的空间很大。The above-mentioned patents and other products do not have the function of making the energy-saving and light radiation transmission characteristics of the glass to be automatically adjusted in small amounts with the external environment, that is, they do not have the ability to make the glass window realize day/night, sunny/cloudy alternate conditions. They also do not have the more important function of window glass—glass self-cleaning. Regarding the basic principle of self-cleaning and its photocatalysis, the photoelectric/photocatalytic properties of TiO 2 , which is a wide-bandgap semiconductor material, have always been a hot topic. Journal "J.Phys.D:Appl.Phys." 2010 No. 43 (P.035301) reported that the use of TiO 2 nanocrystalline porous film as an electrode was applied to photoelectrochemical solar cells and the photoelectric conversion efficiency was improved from 1% to 7.9% or more. The journal "Applied Surface Science" 2011, Vol. 257, No. 20 (P.8451) reported research on the photocatalytic degradation of TiO2 , which described the use of light-induced effects to study the self-cleaning and antibacterial properties of TiO2 . The metal oxides with similar properties to the typical photocatalytic material TiO 2 are also ZnO. The journal "Thin SolidFilms", 2006 No. 496 (P.89-94) reported the doping and multi-layering of ZnO and In 2 O 3 . Some in-depth and careful work on phase diagram theory and other aspects, especially the research on electrical conductivity/photoelectricity/photocatalysis of ZnO, has attracted much attention. This is mainly because ZnO not only has the basic properties of the above-mentioned excellent materials, but also has abundant resources, It is cheap and non-toxic, and there is a lot of room for further research and development.
在低成本光电、光催化方面,有许多金属氧化物都是很好的候选材料,本发明采用氧化钛(ZnO)和氧化亚铜(Cu2O)主要是它不仅具有光电、光催化等材料的基本性能,而且它们的资源丰富、价格便宜、无毒,进一步研发的空间很大。In terms of low-cost optoelectronics and photocatalysis, many metal oxides are good candidate materials. Titanium oxide (ZnO) and cuprous oxide (Cu 2 O) are used in the present invention because they not only have optoelectronic, photocatalytic and other materials Moreover, they are rich in resources, cheap and non-toxic, and there is a lot of room for further research and development.
目前,在市场和文献中都还没有具备富贵金黄颜色的装饰效果,具有光电、光催化自我清洁等功能,具有低辐射率节能效果,具有不使用额外电控传感系统就能自动随着外界光线强度而微量改变玻璃的光辐射透过特性的“直线槽微结构膜玻璃”,它的结构、制备方法和效能和与以往的传统的产品和生产方法都不一样。At present, there is no decorative effect of rich and precious golden color in the market and literature, with photoelectric, photocatalytic self-cleaning and other functions, with low emissivity and energy saving effect, with no additional electronic control sensing system can automatically follow the outside world. "Linear grooved microstructured film glass", which slightly changes the light radiation transmission characteristics of the glass with light intensity, its structure, preparation method and performance are different from the traditional products and production methods in the past.
发明内容SUMMARY OF THE INVENTION
本发明解决和克服了上述存在的问题,利用物理与化学复合的制备方法提供了一种有序直线槽微结构多层膜玻璃及其制备方法。The present invention solves and overcomes the above-mentioned existing problems, and provides an ordered straight groove microstructure multilayer film glass and a preparation method thereof by using the preparation method of physical and chemical compounding.
本发明是采用如下技术方案实现的,结合附图说明如下:The present invention is realized by adopting the following technical solutions, and is described as follows in conjunction with the accompanying drawings:
一种有序直线槽微结构多层膜玻璃,包括直线槽微结构膜玻璃板1,所述直线槽微结构膜玻璃板1表面交替排布ZrO2台阶2和与之相对应的沟槽底部3,ZrO2台阶2和沟槽底部3上表面依次接续制备有金属层Al、Cu2O层5和ZnO层6三层薄膜。An orderly straight groove microstructure multilayer film glass, comprising a straight groove microstructure
所述直线槽微结构膜玻璃板1是平板,直线槽微结构膜玻璃板1的面积是在1-58000平方厘米之间;所述ZrO2台阶2和沟槽底部3的垂直投影平面的周期在700-3000纳米之间。The straight groove microstructure
所述的一种有序直线槽微结构多层膜玻璃的制备方法,其特征在于,包括以下步骤:The method for preparing an ordered linear groove microstructure multilayer film glass is characterized in that it comprises the following steps:
步骤1、制备ZrO2台阶和沟槽底部;
步骤2、制备金属层Al;
步骤3、制备Cu2O层;
步骤4、制备ZnO层。
技术方案步骤1中所述制备ZrO2台阶2和沟槽底部3的具体步骤如下:The specific steps for preparing the ZrO 2 step 2 and the
1)配备ZrO2的前驱液;所述ZrO2的前驱液配比为四丁醇锆:苯酰丙酮:无水乙醇=1:0.8:28;1) Equipped with a precursor liquid of ZrO 2 ; the ratio of the precursor liquid of ZrO 2 is zirconium tetrabutoxide: benzoylacetone: absolute ethanol=1:0.8:28;
2)利用垂直提拉法在洁净的玻璃板上制备出ZrO2薄膜;2) using the vertical pulling method to prepare the ZrO 2 thin film on a clean glass plate;
3)采用激光双光束干涉作用在玻璃板上面的ZrO2薄膜上,获得ZrO2台阶2和沟槽底部3,获得具有ZrO2台阶2和沟槽底部3的玻璃板。3) The ZrO 2 film on the top of the glass plate is obtained by using laser double beam interference to obtain the ZrO 2 step 2 and the
技术方案步骤2中制备金属层Al的具体步骤如下:The specific steps of preparing the metal layer Al in the
1)在具有ZrO2台阶和沟槽底部的玻璃板上面采用dc物理磁控溅射方法沉积金属层Al;1) A metal layer Al is deposited by dc physical magnetron sputtering method on the glass plate with ZrO2 steps and the bottom of the groove;
2)在dc物理磁控溅射过程中,所沉积金属层Al的靶材料(源材料)选用高纯Al金属,溅射功率密度选定为31W/cm2,Ar气的溅射气压选定为1.2Pa,真空室的背底真空度选定为10-3Pa,基底台加热温度选定为200度;2) In the dc physical magnetron sputtering process, the target material (source material) of the deposited metal layer Al is selected from high-purity Al metal, the sputtering power density is selected as 31W/cm 2 , and the sputtering gas pressure of Ar gas is selected. is 1.2Pa, the vacuum degree of the back of the vacuum chamber is selected as 10 -3 Pa, and the heating temperature of the substrate table is selected as 200 degrees;
金属层Al膜厚度在20—200纳米之间。The thickness of the metal layer Al film is between 20 and 200 nanometers.
技术方案步骤3中所述制备Cu2O层的具体步骤如下:The specific steps for preparing the Cu 2 O layer described in
1)使用含铜离子溶液Ⅰ和柠檬酸钠溶液Ⅱ在反应槽中进行胶体化学反应;1) Use copper ion solution I and sodium citrate solution II to carry out colloidal chemical reaction in the reaction tank;
2)在反应过程中把完成步骤2获得的待沉积的“玻璃/ZrO2/Al”{从玻璃表面开始依次为ZrO2[具有ZrO2台阶2和沟槽底部3],Al层}基片放入反应槽中的化学溶液内;同时提供超声波能量来控制化学反应来制备Cu2O膜,超声波选定为15-75千赫频率和45-250瓦输出功率,反应温度控制在40-75℃范围;2) During the reaction, place the "glass/ZrO 2 /Al" {ZrO 2 [with
Cu2O层的厚度在20—500纳米之间。The thickness of the Cu 2 O layer is between 20 and 500 nanometers.
技术方案中调配所述含铜离子溶液Ⅰ为:硫酸铜0.7–1.3mol/L,抗坏血酸钠0.3–0.8mol/L;硫酸铜优选1mol/L,抗坏血酸钠优选0.5mol/L;In the technical scheme, the copper ion-containing solution I is prepared as follows: copper sulfate 0.7-1.3 mol/L, sodium ascorbate 0.3-0.8 mol/L; copper sulfate is preferably 1 mol/L, and sodium ascorbate is preferably 0.5 mol/L;
调配所述柠檬酸钠溶液Ⅱ为:柠檬酸钠,0.03–0.08mol/L;柠檬酸钠优选0.05mol/L;The sodium citrate solution II is formulated as follows: sodium citrate, 0.03-0.08mol/L; sodium citrate is preferably 0.05mol/L;
技术方案步骤4中所述制备ZnO层6的具体步骤如下:The specific steps of preparing the
1)在通过完成步骤3获得的“玻璃/ZrO2/Al/Cu2O”(从玻璃表面开始依次为ZrO2,Al层,Cu2O层)基片上面采用rf物理磁控溅射方法制备氧化物层ZnO;1) Using the rf physical magnetron sputtering method on the "glass/ZrO 2 /Al/Cu 2 O" (ZrO 2 , Al layer, Cu 2 O layer in order from the glass surface) substrate obtained by completing
2)在rf物理磁控溅射过程中,所沉积氧化物层ZnO的靶材料(源材料)选用高纯ZnO陶瓷,溅射功率密度选定为56W/cm2,Ar和O2气的溅射气体气压选定为2.0Pa,真空室的背底真空度选定为10-3Pa,基底台加热温度选定为300度;ZnO层6的厚度在20—900纳米之间。最后获得“玻璃/ZrO2/Al/Cu2O/ZnO”(从玻璃表面开始依次为ZrO2,Al层,Cu2O层,ZnO层)。2) In the rf physical magnetron sputtering process, the target material (source material) of the deposited oxide layer ZnO is selected from high-purity ZnO ceramics, the sputtering power density is selected as 56W/cm 2 , and the sputtering of Ar and O 2 gases The gas pressure of the ejector is selected as 2.0Pa , the vacuum degree of the back of the vacuum chamber is selected as 10-3Pa, and the heating temperature of the substrate table is selected as 300 degrees; the thickness of the
本发明主要利用了多种物理化学原理——(i)半导体光电效应和光催化效应;(ii)材料的复合原理;(iii)直线槽微结构设计;(iv)低表面辐射率材料。The present invention mainly utilizes a variety of physical and chemical principles—(i) semiconductor photoelectric effect and photocatalytic effect; (ii) material composite principle; (iii) linear groove microstructure design; (iv) low surface emissivity material.
(i)半导体光电效应和光催化效应(i) Semiconductor photoelectric effect and photocatalytic effect
ZnO的吸收带隙Eg为3.30eV半导体材料,能很好匹配太阳光谱可见光区且对可见光有非常好的透射率,具有良好的光电效应使其能获得良好的光电特性和光催化等特性。众所周知,类似的氧化物半导体还有Cu2O,它的禁带宽度Eg为2.20eV,也具有上述几乎所有的良好物理化学以及光电特性和光催化等特性。上述二种材料良好的光电转化特性主要表现为当敏感的太阳光辐照其表面上时,膜材料内的载流子增加;从而ZnO与Cu2O膜玻璃导电特性随入射光的强弱变化而改变,这将产生对红外热辐射的阻止而实现隔热的效果;光催化特性能使膜玻璃用于光催化降解有机污物而实现自清洁作用。The absorption band gap Eg of ZnO is a 3.30eV semiconductor material, which can well match the visible light region of the solar spectrum and has a very good transmittance to visible light. It is well known that a similar oxide semiconductor is Cu 2 O, which has a forbidden band width Eg of 2.20 eV, and also has almost all of the above-mentioned good physical and chemical properties, as well as optoelectronic properties and photocatalytic properties. The good photoelectric conversion properties of the above two materials are mainly manifested in that when sensitive sunlight irradiates the surface, the carriers in the film material increase; thus, the conductive properties of the ZnO and Cu 2 O film glass vary with the intensity of the incident light. And change, which will produce the effect of preventing infrared heat radiation and achieve the effect of heat insulation; the photocatalytic properties can enable the film glass to be used for photocatalytic degradation of organic dirt to achieve self-cleaning effect.
(ii)材料的复合原理(ii) Composite principle of materials
根据能带理论以及晶体学的知识,一般半导体的禁带宽度较窄,满带的电子易于受到激发进入导带,同时在满带留下空穴,在外电场的作用下,导带中的电子和满带中的空穴都可参与导电。这就很好的解释了为什么上述Cu2O/ZnO双层膜材料具有良好的物理化学特性和复合效果。在本发明的两种金属氧化物复合材料情况下,因为Cu2O/ZnO双层界面具有不同的禁带宽度Eg大小和载流子电势,因此在光子hν辐照下,氧化物半导体Cu2O内被激发的光生电子能迁移到另一种氧化物半导体ZnO的导带上;ZnO内被激发产生的空穴能迁移到CdS的价带上。所有这些将能促使各自光生电子和空穴的有效分离,改善二者的半导体光电效应及最终导致良好的光催化效应的自洁净效果。According to the knowledge of energy band theory and crystallography, the forbidden band width of general semiconductors is narrow, and the electrons in the full band are easily excited to enter the conduction band, while leaving holes in the full band. Under the action of the external electric field, the electrons in the conduction band Holes in both and full band can participate in conduction. This explains why the above-mentioned Cu 2 O/ZnO bilayer film material has good physical and chemical properties and composite effect. In the case of the two metal oxide composite materials of the present invention, because the Cu 2 O/ZnO double-layer interface has different band gap Eg sizes and carrier potentials, under photon hν irradiation, the oxide semiconductor Cu 2 The excited photogenerated electrons in O can migrate to the conduction band of another oxide semiconductor, ZnO; the excited holes generated in ZnO can migrate to the valence band of CdS. All of these will enable the effective separation of the respective photogenerated electrons and holes, improve the semiconductor photoelectric effect of both, and ultimately lead to a good photocatalytic self-cleaning effect.
类似的分析和情况,在“Al/Cu2O”的“金属/金属氧化物”层界面,具有最低导带能级Ec和禁带宽度Eg的Cu2O氧化物与Al金属导体层复合的能带结构可以解释其光催化活性的增强。在光照过程中,接续来自于ZnO和Cu2O内部的被激发的光生电子从导带中就迁移到金属之中,最终降低了空穴和电子的复合速率,并提高了光电和光催化剂的特性。Similar analysis and situation, at the "metal/metal oxide" layer interface of "Al/Cu 2 O", the Cu 2 O oxide with the lowest conduction band energy level E c and the forbidden band width E g and the Al metal conductor layer The composite band structure can explain its enhanced photocatalytic activity. During the illumination process, the excited photogenerated electrons from the interior of ZnO and Cu 2 O migrate from the conduction band to the metal, which ultimately reduces the recombination rate of holes and electrons, and improves the properties of optoelectronic and photocatalysts .
通常,禁带宽度较小的Cu2O原则上可以吸收波长为400-800纳米的光,这就能很好地吸收可见光并充分利用它,但是,Cu2O却不能很好地利用紫外光,因为其中被激发的电子和空穴有很大一部分的能量转变为声子振动的能量而没有用于催化.我们知道宽禁带的ZnO对应“紫光-紫外光”区域光谱频段的吸收,所以通过把Cu2O与ZnO复合就能实现拥有更宽的入射光响应光谱范围。Generally, Cu 2 O with a small band gap can in principle absorb light with a wavelength of 400-800 nm, which can absorb visible light well and make full use of it, but Cu 2 O cannot make good use of ultraviolet light , because a large part of the energy of the excited electrons and holes is converted into the energy of phonon vibration and is not used for catalysis. We know that the wide band gap of ZnO corresponds to the absorption of the spectral band in the "violet-ultraviolet" region, so A wider spectral range of incident light response can be achieved by combining Cu 2 O with ZnO.
(iii)直线槽微结构设计(iii) Microstructure design of straight grooves
“直线槽微结构膜玻璃”中的有序密集排布的直线槽微结构增加了玻璃板的表面积,改善了阳光和各种热辐射的反射特性。在微结构的尺寸效应影响下,依据设计它们将对不同光谱波段的光线产生不同的透射、反射、散射;从而使较小尺寸的微结构能一定程度地提高对红外波段辐射光的阻挡,保证可见光透射的特性实现。The orderly and densely arranged linear groove microstructure in "Linear Groove Microstructure Film Glass" increases the surface area of the glass sheet and improves the reflection characteristics of sunlight and various thermal radiations. Under the influence of the size effect of the microstructures, they will transmit, reflect and scatter light in different spectral bands differently according to their design; thus, the microstructures of smaller size can improve the blocking of the radiant light in the infrared band to a certain extent, ensuring that The characteristic of visible light transmission is realized.
众所周知,在我们的环境中一般来讲太阳能及各种热辐射源、光源等对于窗玻璃都是有角度入射的光线;而较小尺寸的微结构使得在玻璃表面入射的热辐射光线都产生一定程度的多次多个角度的反射,并在直线槽微结构内多次反射而衰减;这就避免了由于普通窗玻璃以及镀膜玻璃的镜面反射(即正反射)而产生的反射炫光和光污染。As we all know, in our environment, solar energy and various thermal radiation sources, light sources, etc. are generally incident light rays to window glass; and the small size of the microstructure makes the thermal radiation light incident on the glass surface produce a certain amount of light. It can be reflected at multiple angles and attenuated by multiple reflections in the linear groove microstructure; this avoids the reflection glare and light pollution caused by the specular reflection (i.e., regular reflection) of ordinary window glass and coated glass. .
(iv)低表面辐射率材料。(iv) Low surface emissivity materials.
由于在直线槽及其台阶表面涂制的“ZrO2/Al/Cu2O/ZnO”为光电和低辐射材料的多层薄膜,所以这个红外光热辐射反射层使得该“直线槽微结构膜玻璃”具有很低的表面辐射率,并对红外热辐射的反射率很高;同时可见光依然可以透过该薄膜和玻璃板。总的效果能保持室内光线柔和,实现节约照明能源、体感舒适而有利健康。Since the "ZrO 2 /Al/Cu 2 O/ZnO" coated on the surface of the straight groove and its steps is a multilayer film of photoelectric and low-emissivity materials, this infrared photothermal radiation reflection layer makes the "straight groove microstructure film""glass" has a very low surface emissivity and a high reflectivity for infrared thermal radiation; while visible light can still pass through the film and glass sheet. The overall effect can keep the indoor light soft, save lighting energy, feel comfortable and beneficial to health.
通过上述四种物理学原理的综合设计和利用,该“直线槽微结构膜玻璃”实现了如下的场景应用。在夏季,它可阻止部分室外太阳发出的热辐射进入室内,室内的空调冷气却不能对流到室外,节约空调费用;而它同时对天空中漫射的可见光光线有很好的透过特性,节约照明费用。在冬季,它就会有效地把室内散热片及室内物体散发的远红外线反射回室内,保证室内热量不向室外散失。同时还能允许部分太阳的可见光进入室内,从而可以节约空调取暖和照明费用。Through the comprehensive design and utilization of the above four physical principles, the "straight groove microstructure film glass" realizes the following scenario applications. In summer, it can prevent some of the heat radiation from the outdoor sun from entering the room, but the indoor air-conditioning cannot be convected to the outside, saving the cost of air-conditioning; at the same time, it has good transmission characteristics to the visible light diffused in the sky, saving energy lighting costs. In winter, it will effectively reflect the far-infrared rays emitted by indoor heat sinks and indoor objects back into the room to ensure that the indoor heat does not dissipate to the outdoors. At the same time, it can also allow part of the visible light of the sun to enter the room, thereby saving the cost of air conditioning, heating and lighting.
本发明与现有技术相比有益技术效果:Compared with the prior art, the present invention has beneficial technical effects:
1)实现了一种以多层膜“ZrO2/Al/Cu2O/ZnO”和“Al/Cu2O/ZnO”分别为峰和谷交替的有序密集排布的直线槽微结构膜玻璃及其制造方法,该发明“直线槽微结构膜玻璃”具有遮阳、节能、装饰的效果。1) A linear groove microstructure film with an orderly and dense arrangement of the multi-layer films "ZrO 2 /Al/Cu 2 O/ZnO" and "Al/Cu 2 O/ZnO" with alternating peaks and valleys, respectively, is realized. Glass and its manufacturing method, the invention "straight groove microstructure film glass" has the effects of sunshade, energy saving and decoration.
2)它的节能低碳体现在能隔热和保温,又能允许可见区光谱范围的阳光透过,而实现节省照明用电达到玻璃的效果。2) Its energy saving and low carbon are reflected in the heat insulation and heat preservation, and it can also allow sunlight in the spectral range of the visible region to pass through, so as to achieve the effect of saving electricity for lighting and achieving the effect of glass.
3)它的隔热体现在多层膜和微槽能阻隔红外辐射。3) Its thermal insulation is reflected in the fact that the multilayer film and micro-grooves can block infrared radiation.
4)该“直线槽微结构膜玻璃”不使用额外电控传感系统就能自动随着外界光线强度而改变玻璃的光辐射透过特性。4) The "straight groove microstructure film glass" can automatically change the light radiation transmission characteristics of the glass according to the external light intensity without using an additional electronically controlled sensing system.
5)该“直线槽微结构膜玻璃”的光催化作用还可以把吸附在表面的有机物分解为水和二氧化碳,直线微槽结构有效地把降解的残余及无机物一起随着自然的雨水、重力和风冲刷干净;即该复合薄膜会使物体表面具有自我清洁的功能。5) The photocatalytic effect of the "linear groove microstructure film glass" can also decompose the organic matter adsorbed on the surface into water and carbon dioxide. It is cleaned by the wind; that is, the composite film will make the surface of the object have the function of self-cleaning.
6)该“直线槽微结构膜玻璃”也具有一定的窗帘功效,即可以实现在白日室外看不到室内的人与物,而室内却可以容易看到室外的景象。6) The "straight groove microstructure film glass" also has a certain curtain effect, that is, it can realize that people and objects in the room cannot be seen outside in the daytime, but the scene outside can be easily seen indoors.
7)该“直线槽微结构膜玻璃”可以选择性的设计具有浅黄色、银色和富贵金黄色等多种类的颜色;具有使人眼舒适和一定的透光特征;可以选择性的具有多彩色分光,可以选择性的具有减少光的反射(避免反射炫光和光污染)和实现慢反射,可以选择性的具有半反射或全反射镜面的装饰效果。7) The "straight groove microstructure film glass" can be selectively designed to have various colors such as light yellow, silver and rich golden yellow; it has the characteristics of making the human eye comfortable and certain light transmission; it can be selectively multi-colored Light splitting can selectively reduce the reflection of light (avoid reflection glare and light pollution) and achieve slow reflection, and can selectively have the decorative effect of semi-reflection or full-reflection mirror.
附图说明Description of drawings
下面结合附图对本发明作进一步的说明:Below in conjunction with accompanying drawing, the present invention is further described:
图1是本发明的第一个实施例的整体结构的正视图;Fig. 1 is the front view of the overall structure of the first embodiment of the present invention;
图2是图1中A-A向剖视图;Fig. 2 is A-A sectional view in Fig. 1;
图中:1、直线槽微结构膜玻璃板;2、ZrO2台阶;3、沟槽底部;4、金属层Al;5、Cu2O层;6、ZnO层。In the figure: 1. Microstructure film glass plate with straight groove; 2. ZrO 2 step; 3. Bottom of groove; 4. Metal layer Al; 5. Cu 2 O layer; 6. ZnO layer.
具体实施方式Detailed ways
下面对本发明作详细的描述:The present invention is described in detail below:
实施例一Example 1
本实施例为多层膜“ZrO2/Al/Cu2O/ZnO”和“Al/Cu2O/ZnO”分别为峰和谷交替的有序密集排布的直线槽微结构膜玻璃,直线槽微结构膜玻璃板1是1平方厘米平板形状,其峰和谷交替波浪形状的表面的ZrO2台阶2和沟槽底部3的垂直投影平面的周期是700纳米;金属层Al的厚度是20纳米;Cu2O层的厚度是20纳米;ZnO层的厚度是20纳米。This embodiment is a multi-layer film "ZrO 2 /Al/Cu 2 O/ZnO" and "Al/Cu 2 O/ZnO", which are straight line groove microstructure film glass with alternating peaks and valleys, and the straight line The groove microstructured
有序直线槽微结构多层膜玻璃的制造方法,包括以下步骤:The manufacturing method of ordered linear groove microstructure multilayer film glass comprises the following steps:
步骤1、制备ZrO2台阶2和沟槽底部3:
所用ZrO2的前驱液配比为四丁醇锆:苯酰丙酮:无水乙醇=1:0.8:28,并利用垂直提拉法在洁净的玻璃板上制备出ZrO2;采用激光双光束干涉作用在玻璃板上面的ZrO2上,获得ZrO2台阶2和沟槽底部3,该ZrO2台阶2和沟槽底部3的垂直投影平面的周期是700纳米。The ratio of the used ZrO 2 precursor solution is zirconium tetrabutoxide: benzoylacetone: anhydrous ethanol=1:0.8:28, and ZrO 2 was prepared on a clean glass plate by vertical pulling method; laser double beam interference was used Acting on the ZrO 2 above the glass plate, a ZrO 2 step 2 and a
步骤2、制备金属层Al:
采用物理磁控溅射方法在ZrO2台阶2和沟槽底部3的表面上制备金属层Al;金属层Al的厚度控制在20纳米,靶材料为高纯Al金属,直流溅射功率密度为31W/cm2,Ar气的溅射气压为1.2Pa,真空室的背底真空度为10-3Pa,基底台加热温度为200度。The metal layer Al was prepared on the surface of the ZrO 2 step 2 and the
步骤3、制备Cu2O层:
使用含铜离子溶液Ⅰ和柠檬酸钠溶液Ⅱ在反应槽中进行胶体化学反应,在反应过程中把待沉积的“玻璃/ZrO2/Al”基片放入反应槽中的化学溶液内,同时提供超声波能量来控制化学反应来制备Cu2O膜;氧化物Cu2O层膜厚度控制在20纳米;含铜离子溶液Ⅰ为:硫酸铜0.7mol/L,抗坏血酸钠0.3mol/L;所述柠檬酸钠溶液Ⅱ为:柠檬酸钠,0.03mol/L。所述化学方法制备Cu2O薄膜时溶液Ⅰ和溶液II的温度控制在40℃,并把超声波选定为15千赫频率以及45瓦输出功率的能量场施加到反应溶液内。Use copper ion solution I and sodium citrate solution II to carry out colloidal chemical reaction in the reaction tank. During the reaction process, the "glass/ZrO 2 /Al" substrate to be deposited is put into the chemical solution in the reaction tank. Provide ultrasonic energy to control chemical reaction to prepare Cu 2 O film; oxide Cu 2 O layer film thickness is controlled at 20 nanometers; copper ion-containing solution I is: copper sulfate 0.7mol/L, sodium ascorbate 0.3mol/L; The sodium citrate solution II is: sodium citrate, 0.03mol/L. The temperature of solution I and solution II were controlled at 40°C when the Cu 2 O film was prepared by the chemical method, and the ultrasonic wave was selected as a frequency of 15 kHz and an energy field with an output power of 45 watts was applied to the reaction solution.
步骤4、制备ZnO层:
采用物理磁控溅射方法在“玻璃/ZrO2/Al/Cu2O”基片上表面制备ZnO层。ZnO层的厚度控制在20纳米,靶材料为高纯ZnO陶瓷,射频功率密度为56W/cm2,Ar和O2气的溅射气体气压为2.0Pa,真空室的背底真空度为10-3Pa,基底台加热温度为300度。A ZnO layer was prepared on the upper surface of the "glass/ZrO 2 /Al/Cu 2 O" substrate by means of physical magnetron sputtering. The thickness of the ZnO layer is controlled at 20 nanometers, the target material is high-purity ZnO ceramics, the radio frequency power density is 56W/cm 2 , the sputtering gas pressure of Ar and O 2 gas is 2.0Pa, and the vacuum degree of the back of the vacuum chamber is 10 - 3 Pa, and the substrate table heating temperature is 300 degrees.
实施例二
本实施例为多层膜“ZrO2/Al/Cu2O/ZnO”和“Al/Cu2O/ZnO”分别为峰和谷交替的有序密集排布的直线槽微结构膜玻璃,直线槽微结构膜玻璃板是1平方厘米平板形状,其峰和谷交替波浪形状的表面的ZrO2台阶2和沟槽底部3的垂直投影平面的周期是1800纳米;金属层Al的厚度是100纳米;Cu2O层的厚度是100纳米;ZnO层的厚度是500纳米。This embodiment is a multi-layer film "ZrO 2 /Al/Cu 2 O/ZnO" and "Al/Cu 2 O/ZnO", which are straight line groove microstructure film glass with alternating peaks and valleys, and the straight line The grooved microstructured film glass plate is a 1 cm square plate shape with alternating peaks and valleys of the wavy shape of the surface of the ZrO2 step 2 and the period of the vertical projection plane of the
有序直线槽微结构多层膜玻璃的制造方法,包括以下步骤:The manufacturing method of ordered linear groove microstructure multilayer film glass comprises the following steps:
步骤1、制备ZrO2台阶2和沟槽底部3:
所用ZrO2的前驱液配比为四丁醇锆:苯酰丙酮:无水乙醇=1:0.8:28,并利用垂直提拉法在洁净的玻璃板上制备出ZrO2;采用激光双光束干涉作用在玻璃板上面的ZrO2上,获得ZrO2台阶2和沟槽底部3,该ZrO2台阶2和沟槽底部3的垂直投影平面的周期是1800纳米。The ratio of the used ZrO 2 precursor solution is zirconium tetrabutoxide: benzoylacetone: anhydrous ethanol=1:0.8:28, and ZrO 2 was prepared on a clean glass plate by vertical pulling method; laser double beam interference was used Acting on the ZrO 2 above the glass plate, a ZrO 2 step 2 and a
步骤2、制备金属层Al:
采用物理磁控溅射方法在ZrO2台阶2和沟槽底部3的表面上制备金属层Al4;金属层Al的厚度控制在100纳米,靶材料为高纯Al金属,直流溅射功率密度为31W/cm2,Ar气的溅射气压为1.2Pa,真空室的背底真空度为10-3Pa,基底台加热温度为200度。A metal layer Al4 was prepared on the surface of the ZrO 2 step 2 and the
步骤3、制备Cu2O层:
使用含铜离子溶液Ⅰ和柠檬酸钠溶液Ⅱ在反应槽中进行胶体化学反应,在反应过程中把待沉积的“玻璃/ZrO2/Al”基片放入反应槽中的化学溶液内,同时提供超声波能量来控制化学反应来制备Cu2O膜;氧化物层Cu2O膜厚度控制在100纳米;含铜离子溶液Ⅰ为:硫酸铜1mol/L,抗坏血酸钠0.5mol/L;所述柠檬酸钠溶液Ⅱ为:柠檬酸钠,0.05mol/L。所述化学方法制备Cu2O薄膜时溶液Ⅰ和溶液II的温度控制在55℃,并把超声波选定为45千赫频率以及150瓦输出功率的能量场施加到反应溶液内。Use copper ion solution I and sodium citrate solution II to carry out colloidal chemical reaction in the reaction tank. During the reaction process, the "glass/ZrO 2 /Al" substrate to be deposited is put into the chemical solution in the reaction tank. Provide ultrasonic energy to control chemical reaction to prepare Cu 2 O film; oxide layer Cu 2 O film thickness is controlled at 100 nanometers; copper ion-containing solution I is: copper sulfate 1mol/L, sodium ascorbate 0.5mol/L; the lemon Sodium solution II is: sodium citrate, 0.05mol/L. The temperature of solution I and solution II were controlled at 55°C when the Cu 2 O film was prepared by the chemical method, and an ultrasonic wave with a frequency of 45 kHz and an energy field with an output power of 150 watts was applied to the reaction solution.
步骤4、制备ZnO层:
采用物理磁控溅射方法在“玻璃/ZrO2/Al/Cu2O”基片上表面制备ZnO层6。ZnO层6的厚度控制在500纳米,靶材料为高纯ZnO陶瓷,射频功率密度为56W/cm2,Ar和O2气的溅射气体气压为2.0Pa,真空室的背底真空度为10-3Pa,基底台加热温度为300度。A
实施例三
本实施例为多层膜“ZrO2/Al/Cu2O/ZnO”和“Al/Cu2O/ZnO”分别为峰和谷交替的有序密集排布的直线槽微结构膜玻璃,直线槽微结构膜玻璃板1是1平方厘米平板形状,其峰和谷交替波浪形状的表面的ZrO2台阶2和沟槽底部3的垂直投影平面的周期是3000纳米;金属层Al的厚度是200纳米;Cu2O层的厚度是500纳米;ZnO层的厚度是900纳米。This embodiment is a multi-layer film "ZrO 2 /Al/Cu 2 O/ZnO" and "Al/Cu 2 O/ZnO", which are straight line groove microstructure film glass with alternating peaks and valleys, and the straight line The grooved microstructured
有序直线槽微结构多层膜玻璃的制造方法,包括以下步骤:The manufacturing method of ordered linear groove microstructure multilayer film glass comprises the following steps:
步骤1、制备ZrO2台阶2和沟槽底部3:
所用ZrO2的前驱液配比为四丁醇锆:苯酰丙酮:无水乙醇=1:0.8:28,并利用垂直提拉法在洁净的玻璃板上制备出ZrO2;采用激光双光束干涉作用在玻璃板上面的ZrO2上,获得ZrO2台阶2和沟槽底部3,该ZrO2台阶2和沟槽底部3的垂直投影平面的周期是3000纳米。The ratio of the used ZrO 2 precursor solution is zirconium tetrabutoxide: benzoylacetone: anhydrous ethanol=1:0.8:28, and ZrO 2 was prepared on a clean glass plate by vertical pulling method; laser double beam interference was used Acting on the ZrO 2 above the glass plate, a ZrO 2 step 2 and a
步骤2、制备金属层Al:
采用物理磁控溅射方法在ZrO2台阶2和沟槽底部3的表面上制备金属层Al4;金属层Al的厚度控制在200纳米,靶材料为高纯Al金属,直流溅射功率密度为31W/cm2,Ar气的溅射气压为1.2Pa,真空室的背底真空度为10-3Pa,基底台加热温度为200度。A metal layer Al4 was prepared on the surface of the ZrO 2 step 2 and the
步骤3、制备Cu2O层:
使用含铜离子溶液Ⅰ和柠檬酸钠溶液Ⅱ在反应槽中进行胶体化学反应,在反应过程中把待沉积的“玻璃/ZrO2/Al”基片放入反应槽中的化学溶液内,同时提供超声波能量来控制化学反应来制备Cu2O膜;氧化物层Cu2O膜厚度控制在500纳米;含铜离子溶液Ⅰ为:硫酸铜1.3mol/L,抗坏血酸钠0.8mol/L;所述柠檬酸钠溶液Ⅱ为:柠檬酸钠,0.08mol/L。所述化学方法制备Cu2O薄膜时溶液Ⅰ和溶液II的温度控制在75℃,并把超声波选定为75千赫频率以及250瓦输出功率的能量场施加到反应溶液内。Use copper ion solution I and sodium citrate solution II to carry out colloidal chemical reaction in the reaction tank. During the reaction process, the "glass/ZrO 2 /Al" substrate to be deposited is put into the chemical solution in the reaction tank. Provide ultrasonic energy to control chemical reaction to prepare Cu 2 O film; oxide layer Cu 2 O film thickness is controlled at 500 nanometers; copper ion-containing solution I is: copper sulfate 1.3mol/L, sodium ascorbate 0.8mol/L; Sodium citrate solution II is: sodium citrate, 0.08mol/L. The temperature of solution I and solution II were controlled at 75°C when the Cu 2 O film was prepared by the chemical method, and an ultrasonic wave with a frequency of 75 kHz and an energy field with an output power of 250 watts was applied to the reaction solution.
步骤4、制备ZnO层:
采用物理磁控溅射方法在“玻璃/ZrO2/Al/Cu2O”基片上表面制备ZnO层6。ZnO层6的厚度控制在900纳米,靶材料为高纯ZnO陶瓷,射频功率密度为56W/cm2,Ar和O2气的溅射气体气压为2.0Pa,真空室的背底真空度为10-3Pa,基底台加热温度为300度。A
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710067661.XA CN107043223B (en) | 2017-02-07 | 2017-02-07 | A kind of ordered straight groove microstructure multilayer film glass and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710067661.XA CN107043223B (en) | 2017-02-07 | 2017-02-07 | A kind of ordered straight groove microstructure multilayer film glass and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107043223A CN107043223A (en) | 2017-08-15 |
CN107043223B true CN107043223B (en) | 2022-09-09 |
Family
ID=59544796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710067661.XA Active CN107043223B (en) | 2017-02-07 | 2017-02-07 | A kind of ordered straight groove microstructure multilayer film glass and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107043223B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109972112B (en) * | 2019-05-16 | 2021-03-26 | 郑州大学 | A kind of multi-layer composite film door and window glass with dual functions and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309753B1 (en) * | 1998-08-31 | 2001-10-30 | Corning Incorporated | Coated ultraviolet absorbing glass |
CN1537085A (en) * | 2001-08-02 | 2004-10-13 | 3M | Al2O3-rare earth oxide-ZrO2/HfO2 materials and methods of making and using the same |
CN101084111A (en) * | 2004-12-21 | 2007-12-05 | 康宁股份有限公司 | Light polarizing products and method of making same |
CN101372395A (en) * | 2007-08-22 | 2009-02-25 | 现代自动车株式会社 | Fluorine-doped tin oxide transparent conductive film glass and manufacturing method thereof |
CN102597863A (en) * | 2009-08-31 | 2012-07-18 | 高丽大学校产学协力团 | Transparent structures |
JP2016081318A (en) * | 2014-10-17 | 2016-05-16 | コニカミノルタ株式会社 | Transparent conductor and touch panel |
-
2017
- 2017-02-07 CN CN201710067661.XA patent/CN107043223B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309753B1 (en) * | 1998-08-31 | 2001-10-30 | Corning Incorporated | Coated ultraviolet absorbing glass |
CN1537085A (en) * | 2001-08-02 | 2004-10-13 | 3M | Al2O3-rare earth oxide-ZrO2/HfO2 materials and methods of making and using the same |
CN101084111A (en) * | 2004-12-21 | 2007-12-05 | 康宁股份有限公司 | Light polarizing products and method of making same |
CN101372395A (en) * | 2007-08-22 | 2009-02-25 | 现代自动车株式会社 | Fluorine-doped tin oxide transparent conductive film glass and manufacturing method thereof |
CN102597863A (en) * | 2009-08-31 | 2012-07-18 | 高丽大学校产学协力团 | Transparent structures |
JP2016081318A (en) * | 2014-10-17 | 2016-05-16 | コニカミノルタ株式会社 | Transparent conductor and touch panel |
Also Published As
Publication number | Publication date |
---|---|
CN107043223A (en) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Granqvist | Solar energy materials | |
TW200929577A (en) | Transparent solar cell module | |
CN110931592A (en) | A copper indium gallium selenide solar cell for BIPV | |
CN103017383B (en) | Solar selective absorption film system with adjustable color and preparation method thereof | |
CN106711240B (en) | A kind of preparation method of translucent solar cell | |
CN101519947A (en) | Louvre blade and hollow glass louvre | |
KR20200104410A (en) | Power generation building materials and manufacturing method thereof | |
TW201251075A (en) | Solar energy glasses and manufacturing methods for the same | |
CN107043223B (en) | A kind of ordered straight groove microstructure multilayer film glass and preparation method thereof | |
CN109403808A (en) | A kind of intelligent glass system of high-efficient single direction photo-thermal transmitting | |
CN106863922B (en) | A kind of orderly densely arranged micro-cavity structure film vacuum glass | |
WO2023010933A1 (en) | Perovskite cell and photovoltaic module | |
CN206654861U (en) | A kind of straight-line groove micro-structural multilayer film glass in order | |
TW200929578A (en) | Transparent sola cell module | |
CN107337354A (en) | One kind has thermochromism and low-launch-rate composite membrane and its application concurrently | |
CN106159096B (en) | A kind of double-side photic large area perovskite solar cell and preparation method thereof | |
Karasu et al. | Solar glass panels: A review | |
CN103963387B (en) | A kind of high heat absorption blue film coated glass of low reflection and manufacture method thereof | |
CN101499491A (en) | Transparent solar cell module | |
CN106630670B (en) | A kind of ordered double-layer membrane microsphere shell structural glass and its manufacturing method | |
CN206654859U (en) | A kind of duplicature microballoon shell structure glass in order | |
CN208596687U (en) | Solar components and solar energy terminal | |
CN206510510U (en) | A kind of orderly densely arranged micro-cavity structure film vacuum glass | |
CN116394610A (en) | A Flexible Transparent Radiation Cooling Window Material | |
CN111146301A (en) | Photovoltaic building material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |