CN107036761A - 一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法 - Google Patents

一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法 Download PDF

Info

Publication number
CN107036761A
CN107036761A CN201611041102.3A CN201611041102A CN107036761A CN 107036761 A CN107036761 A CN 107036761A CN 201611041102 A CN201611041102 A CN 201611041102A CN 107036761 A CN107036761 A CN 107036761A
Authority
CN
China
Prior art keywords
flexible appendage
rotary inertia
satellite
spacecraft
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611041102.3A
Other languages
English (en)
Other versions
CN107036761B (zh
Inventor
谭述君
何骁
吴志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201611041102.3A priority Critical patent/CN107036761B/zh
Publication of CN107036761A publication Critical patent/CN107036761A/zh
Application granted granted Critical
Publication of CN107036761B publication Critical patent/CN107036761B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/10Determining the moment of inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Abstract

本发明公开了一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,包括以下步骤:S1:根据航天器的姿态动力学方程与挠性附件的运动方程,建立非线性的系统动力学模型;S2:利用陀螺仪采集的姿态角速度数据和航天器做机动的控制力矩数据,采用广义卡尔曼滤波算法估计出挠性附件的振动模态及其导数;S3:将带挠性附件卫星的姿态动力学方程写成最小二乘的描述形式,利用S2估计出的振动模态二阶导数采用最小二乘算法可辨识出卫星的转动惯量值S4:将S2中广义卡尔曼滤波算法估计出振动模态与S3中最小二乘辨识出的转动惯量互相调用,循环S2和S3步骤,采用多步广义卡尔曼滤波与一步最小二乘法结合并发地递推,获得转动惯量的辨识值。

Description

一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法
技术领域
本发明涉及一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法。
背景技术
传统方法做带挠性附件航天器转动惯量辨识的问题,将待辨识参数作为状态量,增广到状态方程中的方法。而扩展卡尔曼滤波用于参数估计中,往往因为没有计入参数的变化对增益的影响,容易导致有偏估计或发散。本发明的方法是利用广义的卡尔曼滤波估计振动模态这一状态量,再用最小二乘法做参数估计,不停地循环,直至结果收敛。
传统的方法直接用扩展卡尔曼滤波做参数估计,没有计入参数的变化对增益的影响,未能体现卡尔曼滤波的滤波修正的效果,收敛速度非常的慢。本发明仅用广义卡尔曼滤波做状态估计,状态估计的效果较好。而且为了进一步提高计算效率,本发明采用多步广义卡尔曼滤波与一步最小二乘法并发递推的方法。
传统方法在计算主惯量的精度较好,但是计算惯性积的精度较差。
发明内容
根据现有技术存在的问题,本发明公开了一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法包括以下步骤:
S1:根据航天器的姿态动力学方程与挠性附件的运动方程,建立系统的动力学模型,再把非线性的动力学模型描述成状态空间的形式,将状态空间方程进行离散化、线性化处理,使系统状态空间方程可适用于广义卡尔曼滤波,估计振动模态;
S2:利用陀螺仪采集的姿态角速度数据和航天器做机动的控制力矩数据,采用广义卡尔曼滤波算法估计出挠性附件的振动模态及其导数,再代入挠性附件运动方程估计出振动模态的二阶导数;
S3:将带挠性附件卫星的姿态动力学方程写成最小二乘的描述形式,利用S2估计出的振动模态二阶导数采用最小二乘算法可辨识出卫星的转动惯量值
S4:将S2中广义卡尔曼滤波算法估计出振动模态与S3中最小二乘辨识出的转动惯量互相调用,循环S2和S3步骤,并发递推,获得转动惯量的辨识值。为了提高了算法的效率,采用多步广义卡尔曼滤波与一步最小二乘法结合并发地递推。
进一步的,S1中:根据航天器的姿态动力学方程(1)与挠性附件的运动方程(2)建立系统的动力学模型,再把系统的动力学模型描述成状态空间的形式(3)采用如下方式:
当卫星姿态角变化时,带挠性附件卫星姿态动力学和挠性附件运动方程为
其中:是卫星的姿态角;η是挠性附件在模态坐标下的振动模态;Jsat是卫星转动惯量,为待辨识参数;Prot是挠性附件相对于本体坐标系的转动刚柔耦合系数;τsat是卫星受到的合外力矩;Cη和Kη为附件的模态阻尼矩阵和刚度矩阵,Cη=diag(2ζ1Ω1,2ζ2Ω2,…),其中Ωi和ζi分别为挠性附件振动的第i阶模态频率和阻尼比;
这样带挠性附件卫星系统的状态空间方程
其中,f(Jsat,xa)=D-1Axa,Ba(Jsat)=D-1B;
I是单位阵;u是输入、为控制力矩;
离散化的非线性状态空间方程为:
其中,F=Ts*f(Jsat,xk)+xk;G=Ts*Ba(Jsat);Ts为采样的周期;xk表示第k次状态。
线性化后的状态空间方程为:
其中,
进一步的,S3中具体采用如下方式:
将待辨识的转动惯量参数表示成标称值和残差值相加的形式,
Jsat=JnomJ (6)
其中,Jnom是转动惯量的标称值,也可理解为整个递推算法的初值;ΔJ是转动惯量随递推迭代变化的那部分值。
将式(6)代入式(1)中,得到
由式(7)可得到带挠性附件卫星的姿态动力学方程的最小二乘的描述形式
AJxJ=bJ (8)
其中
由于采用了上述技术方案,本发明提供的一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,具有的有益效果:
(1)本发明针对大角度机动下带挠性附件航天器转动惯量辨识的问题,采用了非线性的刚柔耦合模型作为辨识估计的系统状态方程。本发明将广义卡尔曼滤波与最小二乘法结合起来,并发递推,巧妙地把状态估计与参数估计相结合,最终辨识出航天器的转动惯量参数。递推辨识的算法占用的计算空间较小,运算速度较快,且辨识结果的精度较高。
(2)在广义卡尔曼滤波算法估计出的振动模态与最小二乘辨识出的转动惯量互相调用过程中,本发明采用多步广义卡尔曼滤波与一步最小二乘法结合来并发地递推,进一步提高了算法的效率。
(3)本发明辨识可航天器转动惯量矩阵,同时估计出了卫星挠性附件的振动模态,可进一步了解航天器在轨运行时的结构特性。
(4)本发明的方法可以在航天器做姿态调整时(或由动力装置主动施加力矩),利用星体自带的测量设备,测量出或间接测量出姿态角度、角速度与角加速度,即可辨识出航天器的转动惯量,工程可行性强。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的方法的流程图;
图2为本发明中实施例中输入的控制力矩的示意图;
图3为本发明中实施例中转动惯量辨识的结果示意图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
如图1所示的一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,具体步骤如下:
S1:根据航天器的姿态动力学方程与挠性附件的运动方程,建立系统的动力学模型,再把非线性的动力学模型描述成状态空间的形式,将状态空间方程进行离散化、线性化处理,使系统状态空间方程可适用于广义卡尔曼滤波,估计振动模态。
当卫星姿态角变化时,带挠性附件卫星姿态动力学和挠性附件运动方程为
式中:是卫星的姿态角;η是挠性附件在模态坐标下的振动模态;Jsat是卫星转动惯量,本发明中的待辨识参数;Prot是挠性附件相对于本体坐标系的转动刚柔耦合系数;τsat是卫星受到的合外力矩;Cη和Kη为附件的模态阻尼矩阵和刚度矩阵,Cη=diag(2ζ1Ω1,2ζ2Ω2,…),其中Ωi和ζi分别为挠性附件振动的第i阶模态频率和阻尼比。
式(1)中和式(2)中的表现了带挠性附件卫星的姿态运动和挠性附件振动之间的耦合,该耦合使挠性附件的振动对姿态角/角速度响应产生影响,进而影响转动惯量参数辨识的正确性,这是刚体卫星的质量特性参数辨识研究中未考虑到的问题。而式(1)中的为姿态动力学方程中的非线性项。在卫星小角度机动时,非线性项可做近似忽略。但当卫星做大角度机动时,就必须考虑该非线性,否则会影响辨识的结果,使辨识值发散,或得到错误的结果。
在带挠性附件卫星转动惯量的最小二乘描述形式中,当挠性附件振动模态已知时才可利用最小二乘法对卫星转动惯量参数进行辨识。对于挠性附件振动模态,不能直接测量得到,本节将通过广义卡尔曼滤波算法进行估计。
将带挠性附件卫星动力学方程式(1)和(2)转化为一阶微分方程的形式
其中
设f(Jsat,xa)=D-1Axa,Ba(Jsat)=D-1B,式(3)可以表示为
引入测量方程
ya=Caxa (5)
其中
测量值为姿态角和姿态角速度。
这样带挠性附件卫星的动力学方程转化为了状态空间方程的形式
采用差分将上述系统离散化,
整理,得
xk+1=(Ts*f(Jsat,xk)+xk)+Ts*Ba(Jsat)u (8)
令F=Ts*f(Jsat,xk)+xk G=Ts*Ba(Jsat)
得到离散化的非线性状态空间方程,
非线性方程线性化,
其中p=1,2,3。
线性化后的方程
S2:利用陀螺仪采集的姿态角速度数据和航天器做机动的控制力矩数据,采用广义卡尔曼滤波算法估计出挠性附件的振动模态及其导数,再结合挠性附件运动方程估计出振动模态的二阶导数。
S1中的挠性附件卫星动力学方程转化为离散系统状态空间方程的形式,可以通过状态估计的方法可以同时得到姿态角和振动模态的估计值。本发明将利用广义卡尔曼滤波算法估计出振动模态η及其一阶导数再带入挠性附件运动方程(2)可求出振动模态二阶导数。
S3:将卫星的姿态动力学方程写成最小二乘的描述形式,利用S2估计出的振动模态二阶导数采用最小二乘算法可辨识出卫星的转动惯量值
将待辨识的转动惯量参数表示成标称值和残差值相加的形式,
Jsat=JnomJ (1)
将式(6)代入式(1)中,得到
式(7)等号左边的处理为
式(7)可以表示为
AJxJ=bJ (5)
其中
式(8)即为带挠性附件卫星转动惯量的最小二乘描述形式,与刚体卫星转动惯量的最小二乘描述形式相比,其中项是刚体卫星最小二乘描述形式中所没有的,体现了卫星挠性附件振动对转动惯量辨识的影响。若忽略这一项,则可能影响转动惯量参数辨识的精度和正确性。利用S2估计出的振动模态,以及姿态角速度、角加速度可采用最小二乘法辨识转动惯量。
S4:将S2中广义卡尔曼滤波算法估计出振动模态与S3中最小二乘辨识出的转动惯量互相调用,循环S2和S3步骤,并发递推,获得转动惯量的辨识值。很快就收敛于真实值。为了提高了算法的效率,采用多步广义卡尔曼滤波与一步最小二乘法结合并发地递推。
在上面推导的质量特性参数Jsat的最小二乘描述形式和挠性附件振动模态η估计的广义卡尔曼滤波算法中,均是假设其它参数和状态都是已知的情况下对未知参数或状态进行估计。而卫星在轨运行过程中,转动惯量Jsat和挠性附件振动模态η的真实值都是未知的。为此,采用多变量并发递推的思想,将转动惯量的最小二乘描述形式和挠性附件振动模态η的状态估计相结合,提出一种带挠性附件卫星转动惯量在轨辨识的并发递推算法。
本发明基于多变量并发递推算法的思想,将转动惯量Jsat和挠性附件振动模态η参数辨识结果互相调用,结合最小二乘法和广义卡尔曼滤波算法,形成完整的并发递推算法。因为采用差分离散,广义卡尔曼滤波存在一定的近似,因此为了提高精度,滤波估计的采样周期应该较短。为了提高算法的效率,这里采用q步广义卡尔曼滤波,1步最小二乘作为一个循环,一共循环n次。其算法的具体流程,如图1:先用广义卡尔曼滤波进行振动模态状态估计q次,体现为图1中内环;再用最小二乘进行转动惯量参数的辨识,体现为图1中外环。反复迭代递推,即可得到转动惯量的辨识值。
实施例:
仿真算例选取某型号通信卫星模型。卫星主要的挠性附件为对称的两个太阳能帆板,每个太阳能帆板长8.1米,质量36.6kg,卫星展开总跨度18.4米,总质量2850.8kg。该卫星是典型的带有大型挠性附件的卫星。
该卫星模型的动力学分析表明,附件振动对整星动力学特性的影响主要由左右两侧帆板的第一阶振动模态决定,因此本发明算例中只考虑第一阶模态的影响,忽略高阶模态。左右两侧帆板的一阶模态频率均为1.2754,模态阻尼比为0.005,转动惯量真实值Jreal和帆板转动刚柔耦合系数矩阵Prot
为了验证本发明并发递推算法的有效性,用matlab软件进行了仿真。由于卫星通常装配喷气系统,来实现姿态调整,所以仿真的输入力矩为占空比为60的方波力矩信号,如图2所示。姿态角速度的初始值为ω0=(0,0,0)T。采样间隔Ts为0.001s,仿真时长为100s。转动惯量的标称值Jnom作为递推算法的初始值,如下
表1转动惯量辨识结果(绝对误差、相对误差)
图3中传统方法kfls(不考虑非线性影响的最小二乘与卡尔曼滤波并发递推方法)辨识出的结果振荡严重,完全辨识不出结果。而用本发明提出ekfls递推算法得到的辨识结果都很接近真实值,从表1中可以看出转动惯量辨识值的相对误差都在3%以内。由于采用了多步广义卡尔曼滤波与一步最小二乘循环递推的算法,辨识结果很快的收敛,计算效率较高。如果在轨测量设备(角速度陀螺)的采样时间能更短,辨识的效果则会更好。仿真结果证明当卫星做大角度机动时,应该考虑非线性项的影响,而本发明提出的最小二乘法和多步广义卡尔曼滤波相结合的并发递推算法则是处理带挠性附件卫星做大角度机动的转动惯量参数辨识的有效方法。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,其特征在于:包括以下步骤:
S1:根据航天器的姿态动力学方程与挠性附件的运动方程,建立系统的动力学模型,再把非线性的动力学模型描述成状态空间的形式,将状态空间方程进行离散化、线性化处理,使系统状态空间方程可适用于广义卡尔曼滤波,估计振动模态;
S2:利用陀螺仪采集的姿态角速度数据和航天器做机动的控制力矩数据,采用广义卡尔曼滤波算法估计出挠性附件的振动模态及其导数,再代入挠性附件运动方程估计出振动模态的二阶导数;
S3:将带挠性附件卫星的姿态动力学方程写成最小二乘的描述形式,利用S2估计出的振动模态二阶导数采用最小二乘算法可辨识出卫星的转动惯量值
S4:将S2中广义卡尔曼滤波算法估计出振动模态与S3中最小二乘辨识出的转动惯量互相调用,循环S2和S3步骤,采用多步广义卡尔曼滤波与一步最小二乘法结合并发递推获得转动惯量的辨识值。
2.根据权利要求1所述的一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,其特征还在于:S1中:根据航天器的姿态动力学方程(1)与挠性附件的运动方程(2)建立系统的动力学模型,再把系统的动力学模型描述成状态空间的形式(3)采用如下方式:
当卫星姿态角变化时,带挠性附件卫星姿态动力学和挠性附件运动方程为
其中:是卫星的姿态角;η是挠性附件在模态坐标下的振动模态;Jsat是卫星转动惯量,为待辨识参数;Prot是挠性附件相对于本体坐标系的转动刚柔耦合系数;τsat是卫星受到的合外力矩;Cη和Kη为附件的模态阻尼矩阵和刚度矩阵,Cη=diag(2ζ1Ω1,2ζ2Ω2,…),其中Ωi和ζi分别为挠性附件振动的第i阶模态频率和阻尼比;
这样带挠性附件卫星系统的状态空间方程
其中,f(Jsat,xa)=D-1Axa,Ba(Jsat)=D-1B;
I是单位阵;u是输入、为控制力矩;
离散化的非线性状态空间方程为:
其中,F=Ts*f(Jsat,xk)+xk;G=Ts*Ba(Jsat);Ts为采样的周期;xk表示第k次状态。
线性化后的状态空间方程为:
其中,
3.根据权利要求1所述的一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,其特征还在于:S3中具体采用如下方式:
将待辨识的转动惯量参数表示成标称值和残差值相加的形式,
Jsat=JnomJ (6)
其中,Jnom是转动惯量的标称值,也可理解为整个递推算法的初值;ΔJ是转动惯量随递推迭代变化的那部分值。
将式(6)代入式(1)中,得到
由式(7)可得到带挠性附件卫星的姿态动力学方程的最小二乘的描述形式
AJxJ=bJ (8)
其中
4.根据权利要求1所述的一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法,其特征还在于:S4中具体采用如下方式:
采用q步广义卡尔曼滤波、1步最小二乘作为一个循环,一共循环n次:先用广义卡尔曼滤波进行振动模态状态估计q次,再用最小二乘进行转动惯量参数的辨识,如此反复迭代递推得到转动惯量的辨识值。
CN201611041102.3A 2016-11-11 2016-11-11 一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法 Expired - Fee Related CN107036761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611041102.3A CN107036761B (zh) 2016-11-11 2016-11-11 一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611041102.3A CN107036761B (zh) 2016-11-11 2016-11-11 一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法

Publications (2)

Publication Number Publication Date
CN107036761A true CN107036761A (zh) 2017-08-11
CN107036761B CN107036761B (zh) 2019-04-16

Family

ID=59531266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611041102.3A Expired - Fee Related CN107036761B (zh) 2016-11-11 2016-11-11 一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法

Country Status (1)

Country Link
CN (1) CN107036761B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589668A (zh) * 2017-08-31 2018-01-16 中国航空工业集团公司沈阳飞机设计研究所 一种垂直起降飞行器质量特性参数测量方法
CN109655218A (zh) * 2019-01-08 2019-04-19 上海卫星工程研究所 用卫星陀螺数据辨识整星挠性振动模态频率的方法及系统
CN109682536A (zh) * 2018-12-24 2019-04-26 上海航天控制技术研究所 星体转动惯量在轨辨识方法及设备
CN109870271A (zh) * 2019-01-31 2019-06-11 西北工业大学 大尺度挠性航天器转动惯量卡尔曼滤波辨识方法
CN109974933A (zh) * 2019-01-31 2019-07-05 西北工业大学 考虑卫星挠性耦合的转动惯量递推最小二乘辨识方法
CN111413886A (zh) * 2020-03-06 2020-07-14 浙江海洋大学 一种基于系统辨识的实船操纵性指数辨识方法及装置
CN111625010A (zh) * 2020-04-28 2020-09-04 北京控制工程研究所 一种基于组合滤波的航天器三超近零误差跟踪控制方法
CN112131764A (zh) * 2020-08-24 2020-12-25 航天科工空间工程发展有限公司 一种计算卫星柔性耦合系数的装置、方法和计算设备
CN112326120A (zh) * 2020-10-30 2021-02-05 浙江大学 一种基于参数辨识的航天器质量特性预测方法
CN114296353A (zh) * 2021-12-30 2022-04-08 长光卫星技术有限公司 一种带双轴sada卫星的模态频率计算方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172788A (ja) * 2003-11-21 2005-06-30 Yaskawa Electric Corp モータの負荷慣性モーメント推定方法
CN102620886A (zh) * 2012-03-27 2012-08-01 南京航空航天大学 两步在轨辨识组合航天器转动惯量估计方法
CN102779238A (zh) * 2012-08-09 2012-11-14 北京航空航天大学 一种基于自适应卡尔曼滤波的无刷直流电机系统辨识方法
JP2014052188A (ja) * 2012-09-04 2014-03-20 Toyota Motor Corp 慣性特性推定方法
CN104734595A (zh) * 2015-03-04 2015-06-24 东华大学 基于模型参考自适应的永磁同步电机转动惯量辨识方法
CN105259786A (zh) * 2015-10-29 2016-01-20 中国科学院力学研究所 待辨识目标的惯性参数辨识方法和装置
CN105375848A (zh) * 2015-11-26 2016-03-02 上海无线电设备研究所 一种永磁同步电机自适应辨识控制方法及其控制系统
CN105406786A (zh) * 2015-11-12 2016-03-16 东华大学 一种永磁同步电机转动惯量辨识方法
CN106026822A (zh) * 2016-06-13 2016-10-12 上海电气集团股份有限公司 伺服电机驱动系统的惯量在线辨识方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172788A (ja) * 2003-11-21 2005-06-30 Yaskawa Electric Corp モータの負荷慣性モーメント推定方法
CN102620886A (zh) * 2012-03-27 2012-08-01 南京航空航天大学 两步在轨辨识组合航天器转动惯量估计方法
CN102779238A (zh) * 2012-08-09 2012-11-14 北京航空航天大学 一种基于自适应卡尔曼滤波的无刷直流电机系统辨识方法
JP2014052188A (ja) * 2012-09-04 2014-03-20 Toyota Motor Corp 慣性特性推定方法
CN104734595A (zh) * 2015-03-04 2015-06-24 东华大学 基于模型参考自适应的永磁同步电机转动惯量辨识方法
CN105259786A (zh) * 2015-10-29 2016-01-20 中国科学院力学研究所 待辨识目标的惯性参数辨识方法和装置
CN105406786A (zh) * 2015-11-12 2016-03-16 东华大学 一种永磁同步电机转动惯量辨识方法
CN105375848A (zh) * 2015-11-26 2016-03-02 上海无线电设备研究所 一种永磁同步电机自适应辨识控制方法及其控制系统
CN106026822A (zh) * 2016-06-13 2016-10-12 上海电气集团股份有限公司 伺服电机驱动系统的惯量在线辨识方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘伟霞 等: "组合航天器转动惯量在轨两步辨识标定", 《中国空间科学技术》 *
朱东方 等: "复杂挠性航天器转动惯量在线辨识算法研究", 《上海航天》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589668A (zh) * 2017-08-31 2018-01-16 中国航空工业集团公司沈阳飞机设计研究所 一种垂直起降飞行器质量特性参数测量方法
CN109682536A (zh) * 2018-12-24 2019-04-26 上海航天控制技术研究所 星体转动惯量在轨辨识方法及设备
CN109655218A (zh) * 2019-01-08 2019-04-19 上海卫星工程研究所 用卫星陀螺数据辨识整星挠性振动模态频率的方法及系统
CN109870271A (zh) * 2019-01-31 2019-06-11 西北工业大学 大尺度挠性航天器转动惯量卡尔曼滤波辨识方法
CN109974933A (zh) * 2019-01-31 2019-07-05 西北工业大学 考虑卫星挠性耦合的转动惯量递推最小二乘辨识方法
CN111413886A (zh) * 2020-03-06 2020-07-14 浙江海洋大学 一种基于系统辨识的实船操纵性指数辨识方法及装置
CN111413886B (zh) * 2020-03-06 2023-07-04 浙江海洋大学 一种基于系统辨识的实船操纵性指数辨识方法及装置
CN111625010A (zh) * 2020-04-28 2020-09-04 北京控制工程研究所 一种基于组合滤波的航天器三超近零误差跟踪控制方法
CN111625010B (zh) * 2020-04-28 2023-04-14 北京控制工程研究所 一种基于组合滤波的航天器三超近零误差跟踪控制方法
CN112131764A (zh) * 2020-08-24 2020-12-25 航天科工空间工程发展有限公司 一种计算卫星柔性耦合系数的装置、方法和计算设备
CN112326120A (zh) * 2020-10-30 2021-02-05 浙江大学 一种基于参数辨识的航天器质量特性预测方法
CN114296353A (zh) * 2021-12-30 2022-04-08 长光卫星技术有限公司 一种带双轴sada卫星的模态频率计算方法

Also Published As

Publication number Publication date
CN107036761B (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN107036761A (zh) 一种大角度机动下带挠性附件航天器转动惯量在轨辨识方法
CN106597017B (zh) 一种基于扩展卡尔曼滤波的无人机角加速度估计方法及装置
CN106873611B (zh) 一种多通道线性自抗扰控制器的设计方法
CN103412491B (zh) 一种挠性航天器特征轴姿态机动指数时变滑模控制方法
CN103256928B (zh) 一种分布式惯性导航系统及其姿态传递对准方法
CN104252574B (zh) 一种基于空间系绳抓捕系统的非合作目标质量辨识方法
CN107688295A (zh) 一种基于快速终端滑模的四旋翼飞行器有限时间自适应控制方法
CN108037662A (zh) 一种基于积分滑模障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN109521786A (zh) 基于比例积分观测器的四旋翼无人机滑模姿态控制方法
CN107608367A (zh) 多变量干扰补偿四旋翼无人机轨迹与姿态协同控制方法
CN106289641B (zh) 挠性航天器质心位置和转动惯量参数联合辨识方法
Yang et al. Self-tuning PID control design for quadrotor UAV based on adaptive pole placement control
CN107063262A (zh) 一种用于无人机姿态解算的互补滤波方法
CN107402516B (zh) 基于联合执行机构的递阶饱和模糊pd姿态控制方法
CN104567930A (zh) 一种能够估计和补偿机翼挠曲变形的传递对准方法
González et al. Real-time attitude stabilization of a mini-uav quad-rotor using motor speed feedback
CN108132604A (zh) 基于四元数的四旋翼飞行器鲁棒姿态控制方法、装置及系统
CN104281150A (zh) 一种姿态机动的轨迹规划方法
CN104483973A (zh) 基于滑模观测器的低轨挠性卫星姿态跟踪控制方法
CN105180728A (zh) 基于前数据的旋转制导炮弹快速空中对准方法
CN107101649A (zh) 一种空间飞行器制导工具在轨误差分离方法
CN109084756B (zh) 一种重力视运动参数辨识与加速度计零偏分离方法
CN110411477A (zh) 基于序列机动的星敏安装误差在轨标定方法
CN107942672B (zh) 一种基于对称时不变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN105628056A (zh) 一种针对陀螺仪随机游走噪声的精细滤波方法与测试平台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190416

Termination date: 20211111

CF01 Termination of patent right due to non-payment of annual fee