CN106990326B - 电力系统短路电流直流分量计算方法 - Google Patents

电力系统短路电流直流分量计算方法 Download PDF

Info

Publication number
CN106990326B
CN106990326B CN201710325912.XA CN201710325912A CN106990326B CN 106990326 B CN106990326 B CN 106990326B CN 201710325912 A CN201710325912 A CN 201710325912A CN 106990326 B CN106990326 B CN 106990326B
Authority
CN
China
Prior art keywords
branch
impedance
component
power
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710325912.XA
Other languages
English (en)
Other versions
CN106990326A (zh
Inventor
曹炜
周明
陈春阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201710325912.XA priority Critical patent/CN106990326B/zh
Publication of CN106990326A publication Critical patent/CN106990326A/zh
Application granted granted Critical
Publication of CN106990326B publication Critical patent/CN106990326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors

Abstract

本发明涉及一种电力系统短路电流直流分量计算方法,研究了短路电流直流分量计算的关键问题,提出了直流分量计算的频域等值理论,并在此理论的基础上,提出了采用转移阻抗计算短路电流直流及其衰减特性的方法,该方法考虑到了频率对短路电流与直流分量计算的影响,结合复杂电力系统网络的数学模型的特点,计算结果更精确,且更简便易行,可用于工程例行计算。

Description

电力系统短路电流直流分量计算方法
技术领域
本发明涉及一种电力故障量计算方法,特别涉及一种电力系统短路电流直流分量计算方法。
背景技术
随着经济的快速发展,全社会的用电负荷持续攀升,电力系统的装机容量逐年扩大;且随着特高压工程的逐步发展、新型能源的不断接入和电网联系的进一步加强,负荷中心地区的短路电流水平将会进一步增长。而为降低输电损耗,电力变压器和输电线构成的输电网中电抗电阻比也越来越大,导致系统短路电流中的直流分量衰减越来越慢,为限制短路电流使用的串联电抗使得问题更加严重。虽然我国在断路器断流能力例行校核时只考虑周期分量,并未计及直流分量对断路器开断能力的影响,但短路电流直流分量对断路器的正常开断会产生一定的影响,尤其在是断路器遮断容量裕度越来越小,而短路电流直流分量衰减越来越慢的情况下,准确有效地分析短路电流直流分量衰减特性,对保证电网的断路器能够正常开断系统短路电流,不至因电弧能量和电动力过大损坏断路器以致开断失败影响供电可靠性具有重要意义。
然而,目前对短路电流直流分量衰减的计算一直缺乏工程上简单实用的方法和工具。短路电流计算标准对周期分量计算的描述较多,但对复杂网络衰减时间常数的计算并无明确规定。现有的复杂网络短路电流直流分量计算方法有极限频率法、二支路等效网络法和等效频率法。极限频率法仅在各支路时间常数相差不大时有效;两支路法一次只能处理两条支路且事先必须固定其中一条支路的时间常数,在多电源的网状网络中使用很不方便;且二者的实质也都是对工频阻抗描述的电力网络进行等值变换,这样用工频下的等值阻抗来参与计算并没有频率特性的直流分量衰减是否恰当难以确定。等效频率法,需根据关注的不同时刻查表选取相应的等效频率fc,计算出等值阻抗Zc,但此方法需对短路后不同时刻计算等效频率,并求出相应等效频率下的等值阻抗,大大增加了计算工作量。
发明内容
本发明是针对现在复杂电力网络短路电流直流分量计算方法存在的问题,提出了一种电力系统短路电流直流分量计算方法,研究了短路电流直流分量计算的关键问题,克服现在存在的问题,计算结果更精确,更简便易行。
本发明的技术方案为:一种电力系统短路电流直流分量计算方法,具体包括如下步骤:
1)电力系统等值电路中的并联支路其阻抗都远大于串联支路的阻抗,忽略电力系统等值电路中的并联支路,仅考虑串联支路构成电力系统等值电路,进行网络化简;
2)当各个支路工频ωN下满足下面公式时,
Xi=ωNLi>>Ri
用工频下各支路等值阻抗参与网络化简;
3)当各个支路工频下不满足步骤2)中公式时,令
ω=AωN
通过选取足够大的A,使相应的电抗电阻值满足步骤2)中公式,再用该频率ω下对应的支路等值阻抗参与网络化简;
4)把多源多支路的复杂电力系统网络化简为以短路点为中心的辐射型网络,求出每个支路的等值阻抗,即电源点到故障点转移阻抗,电源k与短路点f之间的转移阻抗zzyfk用下面公式求取,
其中zk为电源内阻,Zff为节点阻抗矩阵中的自阻抗,Zfk为节点阻抗矩阵中的互阻抗;
5)将转移阻抗表示为zzyfk=Rfk+jXfk,用下式计算每个电源支路的短路电流直流分量衰减时间常数;
6)用下式计算每个电源支路的短路电流直流分量初值,
其中,为故障点故障前电压,RfkN+jXfkN为工频ωN下转移阻抗;
7)对各支路短路电流求和,得到总的短路电流直流分量:
其中G为电源集合,k为电源;
8)若需求解直流分量衰减的时间常数,采用下式计算:
其中id.c.k(0)为电源k所提供直流分量初始值,id.c.Σ(0)为总的直流分量初始值。
本发明的有益效果在于:本发明电力系统短路电流直流分量计算方法,研究了短路电流直流分量计算的关键问题,提出了直流分量计算的频域等值理论,并在此理论的基础上,提出了采用交流转移阻抗计算短路电流直流及其衰减特性的方法,该方法考虑到了频率对短路电流与直流分量计算的影响,结合复杂电力系统网络的数学模型的特点,计算结果更精确,且更简便易行,可用于工程例行计算。
附图说明
图1为短路示意图;
图2为本发明星形网络图;
图3为本发明多源线性网络图;
图4为本发明辐射型网络图;
图5为本发明IEEE39系统图;
图6为本发明节点2短路电流直流分量对比分析图;
图7为本发明节点14短路电流直流分量对比分析图;
图8为本发明节点16短路电流直流分量对比分析图。
具体实施方式
1、关键问题-电感电阻暂态等值
对于无限大功率单电源供电的网络,在0时刻发生三相短路后,将被分为两个独立的回路,如图1所示。
短路后左边部分仍与电源相连形成回路,其短路电流为
式中Im为故障前正常工作电流周期分量幅值,为功率角,a为短路时刻电源初始相角,为短路电流周期分量幅值,为短路回路阻抗角,ω为频率,L为ω下短路点等效电感,RΣ为ω下短路点等效电阻,Ta为直流分量衰减时间常数,t为短路发生后时间。
短路电流直流分量初始值为:
即短路前瞬时电流与短路后瞬间交流分量瞬时值之差(短路前瞬间稳态周期电流和短路后瞬间短路电流周期分量的相量差在时间轴上的投影),当相量差与时间轴平行时,取最大值。
直流分量衰减时间常数为:
目前一般情况下复杂电力网络用工频ωN各支路交流阻抗zi=Ri+jXi来描述,其中:
Xi=ωNLi (4)
如果短路点到电源间仅有单个支路,则式(3)等效于
但实际电力系统为网状连接的多机系统,短路点与电源间存在很多具有电感、电阻甚至于电容特性的一次设备,如果用微积分暂态模型表示,无法基于代数运算进行诸如串、并联,星网变化等的网络化简等值,从而得到式(3)所需的短路点等效电感L和等效电阻R
2、直流分量计算的频域等值理论
针对上述等值问题,提出了短路电流直流分量计算的频域等值方法,可概括为:
(1)忽略电力系统等值电路中的并联支路(负荷支路、变压器励磁支路、线路充电电容支路),仅考虑串联支路构成电力系统等值电路;
(2)当各个支路工频ωN下满足式(6)时,
Xi=ωNLi>>Ri (6)
用工频下各支路等值阻抗参与网络化简;
(3)当各个支路工频下不满足(6)时(如对配电网中的馈线),令
ω=AωN (7)
通过选取足够大的A,使相应的电抗电阻值满足式(6),再用该频率ω下对应的支路等值阻抗参与网络化简;
(4)把多源多支路的复杂电力系统网络化简为以短路点为中心的辐射型网络,求出每个支路的等值阻抗,即电源点到故障点转移阻抗。转移阻抗可由网络化简求取,也可通过各电源内阻zk、节点阻抗矩阵中的自阻抗Zff和互阻抗Zfk,由式(8)求取
(5)将转移阻抗表示为zzyfk=Rfk+jXfk,用式(9)计算每个电源支路的短路电流直流分量衰减时间常数;
(6)用式(10)计算每个电源支路的短路电流直流分量初值,
其中,为故障点故障前电压,RfkN+jXfkN为工频(ωN)下转移阻抗;
(7)对各支路短路电流求和,得到总的短路电流直流分量:
其中G为电源集合,k为电源;
(8)若需求解直流分量衰减的时间常数,采用式(12)
其中id.c.k(0)为电源k所提供直流分量初始值,id.c.∑(0)为总的直流分量初始值。
上述方法的依据是:
(1)考虑到电力系统等值电路中的并联支路(负荷支路、变压器励磁支路、线路充电电容支路),其阻抗一般都远大于串联支路的阻抗,所以可忽略并联支路构成等值电路,进行网络化简。
(2)可以证明,当某种频率ω下交流模型各支路中的电抗电阻满足式(6)时,经网络等值变换所得等值阻抗可近似表示为z=R+jωL的形式,即近似与ω无关。
证明过程如下:
(1)串联等值
设两支路i、j阻抗表示为:
则若支路i、支路j串联时,其等值阻抗可表示为:
z=zi+zj=(Ri+Rj)+jω(Li+Lj) (14)
即等值阻抗可近似为R+jωL形式。
(2)并联等值
若支路i、支路j并联时,其等值阻抗可表示为:
此时,若两支路都满足式(6),则等值阻抗可近似为:
即等值阻抗也可近似为R+jωL形式。
(3)星网变换等值
设网络的某一部分表示为由节点1和另外n-1个节点组成的星形电路,如图2所示。
通过星网变换消去节点1,把星形电路变换为以节点2--n为顶点的完全网形电路。则变换后的等值网络中节点i和节点j之间的支路阻抗为:
其中zi1=Ri1+jωLi1为节点i和节点1之间支路阻抗,zj1=Rj1+jωLj1为节点j和节点1之间支路阻抗,
其中Rw1+jωLw1为节点w和节点1之间支路阻抗,所以
此时若各支路都满足式(6),则变换后的等值网络中节点i和节点j之间的支路阻抗可近似为:
即其等值阻抗也可近似为z=R+jωL形式。
由于网络化简方法不外乎串并联和星网变换,所以当某种频率ω下交流模型各支路中的电抗电阻满足式(6)时,经网络等值变换最终所得等值阻抗一定可近似表示为z=R+jωL的形式。
3、复杂网络短路电流直流分量计算
对于一个多电源多支路的复杂线性系统网络如图3所示。其中,为第k个电源支路的电势,zk为电势源k内阻抗。
当发生三相短路故障时,总可把网络近似简化为以短路点为中心的辐射型网络,如图4所示。其中zzyfk为等值阻抗,即电源k与短路点f之间的转移阻抗。
令工频(ωN)下转移阻抗为zzyfkN=RfkN+jXfkN,电源k的电压为故障点故障前电压为则短路前瞬间电源k提供稳态周期电流为短路后瞬间电源k提供短路电流周期分量为则当两向量差与时间轴平行时,直流分量初始值取最大值为
令满足式(6)的频率ω下转移阻抗为zzyfk=Rfk+jXfk,则电源k支路的短路电流直流分量衰减时间常数,
所以,电源k提供的短路电流直流分量为
对各电源支路短路电流求和,得到总的短路电流直流分量:
其中G为电源集合,k为电源;
若需求解直流分量衰减的时间常数,采用下式计算:
其中id.c.k(0)为电源k所提供直流分量初始值,id.c.∑(0)为总的直流分量初始值。
4、应用实例
以IEEE39系统为例,如图5所示。
4.1 EMTP计算对比分析
此系统各支路参数满足式(6),用EMTP仿真计算节点2、节点14、节点26分别发生三相短路时其短路电流全电流,分离出直流分量,同时拟合出40ms时衰减时间常数,并与理论计算所得对比分析,详情如表1所示短路电流直流分量计算结果。
表1
由表1可知,当节点2、节点14、节点16发生三相短路时,理论计算所得与EMTP计算结果间相对误差均在4.3%以内,衰减时间常数也在4%以内,说明当各支路参数满足式(6)时,理论计算所得具有良好的准确性。
为研究不同ω取值对计算结果的影响,分别取ω为100ωN、0.01ωN,计算此时节点2、节点14、节点16短路电流直流分量,并与工频下EMTP计算结果相对比,详情如表2所示ω=100ωN时短路电流直流分量、表3所示ω=0.01ωN时短路电流直流分量。
表2
表3
由表2、表3可知,当增大ω为100ωN,此时系统各支路满足式(6),采用等值阻抗计算所得短路电流直流分量与EMTP计算结果间相对误差均在4.44%以内,衰减时间常数间相对误差也在5%以内;而当减小ω为0.01ωN,此时系统各支路将不在满足式(6),采用等值阻抗计算所得短路电流直流分量与EMTP计算结果间相对误差最大可达34.2%,衰减时间常数间相对误差最大可达35.2%。
4.2 等效频率法计算对比分析
由短路电流计算标准GB15544.1-2013,对于不同时刻分别选取对应的等效频率,详情如表4所示等效频率。
表4
t(ms) 10 20 50 100
f<sub>c</sub>(Hz) 20 13.5 7.5 4.6
分别计算节点2、节点14、节点26发生三相短路时,对应于表4各时刻的短路电流直流分量详情如表5所示。
表5
由表1、表5对比分析可知,频域等值理论计算值略大于等效频率的计算所得,且频域等值理论计算与EMTP计算值更接近。
4.3 图形对比
分别把ω为100ωN、ωN、0.01ωN时理论计算短路电流直流分量、EMTP计算结果以及等效频率法计算所得(即表1、表2、表3、表5)用图形表示为直流分量衰减曲线,详情如图6、图7、图8所示。
由图6、图7、图8也可以看出,当系统各支路满足式(6)时计算所得短路电流直流分量与EMTP分离所得二者曲线吻合度较好,但当系统各支路不满足式(6)时,则存在较大误差。并且,当式(6)满足时,本文方法所得结果比用等效频率法所得结果与EMTP分离所得更接近,即本文方法比等效频率法更精确。

Claims (1)

1.一种电力系统短路电流直流分量计算方法,其特征在于,具体包括如下步骤:
1)电力系统等值电路中的并联支路其阻抗都远大于串联支路的阻抗,忽略电力系统等值电路中的并联支路,仅考虑串联支路构成电力系统等值电路,进行网络化简;
2)用工频ωN各支路交流阻抗zi=Ri+jXi来描述复杂电力网络,当各个支路工频ωN下满足下面公式时,
Xi=ωNLi>>Ri
Xi为i支路上电抗,Li为i支路上电感,Ri为i支路上电阻;用工频下各支路等值阻抗参与网络化简;
3)当各个支路工频下不满足步骤2)中公式时,令
ω=AωN
通过选取足够大的A,使ω下相应的电抗值远大于电阻值,即满足Xi=ωLi>>Ri,再用该频率ω下对应的支路等值阻抗参与网络化简;
4)把多源多支路的复杂电力系统网络化简为以短路点为中心的辐射型网络,求出每个支路的等值阻抗,即电源点到故障点转移阻抗,电源k与短路点f之间的转移阻抗zzyfk用下面公式求取,
其中zk为电源内阻,Zff为节点阻抗矩阵中的自阻抗,Zfk为节点阻抗矩阵中的互阻抗;
5)将转移阻抗表示为zzyfk=Rfk+jXfk,用下式计算每个电源支路的短路电流直流分量衰减时间常数;
6)用下式计算每个电源支路的短路电流直流分量初值,
其中,为故障点故障前电压,RfkN+jXfkN为工频ωN下转移阻抗;
7)对各支路短路电流求和,得到总的短路电流直流分量:
其中G为电源集合,k为电源,t为短路后时刻;
8)若需求解直流分量衰减的时间常数,采用下式计算:
其中id.c.k(0)为电源k所提供直流分量初始值,id.c.∑(0)为总的直流分量初始值。
CN201710325912.XA 2017-05-10 2017-05-10 电力系统短路电流直流分量计算方法 Active CN106990326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710325912.XA CN106990326B (zh) 2017-05-10 2017-05-10 电力系统短路电流直流分量计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710325912.XA CN106990326B (zh) 2017-05-10 2017-05-10 电力系统短路电流直流分量计算方法

Publications (2)

Publication Number Publication Date
CN106990326A CN106990326A (zh) 2017-07-28
CN106990326B true CN106990326B (zh) 2019-05-24

Family

ID=59418273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710325912.XA Active CN106990326B (zh) 2017-05-10 2017-05-10 电力系统短路电流直流分量计算方法

Country Status (1)

Country Link
CN (1) CN106990326B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116165B (zh) * 2018-07-24 2020-12-22 国家电网公司西北分部 一种特征参数计算方法及装置
CN109031125B (zh) * 2018-10-23 2020-08-28 国家电网有限公司 用于确定发电机出口端短路故障电流直流时间常数的方法
CN109143070B (zh) * 2018-10-23 2020-09-15 国家电网有限公司 用于确定发电机出口端短路故障电流直流时间常数的系统
CN110208634B (zh) * 2019-05-08 2021-05-04 上海电力学院 一种复杂电力系统不对称短路电流直流分量获取方法
CN113009206A (zh) * 2021-02-01 2021-06-22 国网河南省电力公司 电力系统短路电流直流分量含量获取方法及系统
CN113595070B (zh) * 2021-07-28 2023-05-16 国网湖南省电力有限公司 基于电网正常运行时潮流计算的短路转移阻抗计算方法
CN114019231B (zh) * 2021-11-04 2023-08-18 国网湖南省电力有限公司 一种用于直流电能计量的衰减直流提取方法
CN115308473A (zh) * 2022-08-25 2022-11-08 中国南方电网有限责任公司 短路电流直流分量计算方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944720A (zh) * 2012-11-21 2013-02-27 上海电力学院 考虑动态负荷下的电力系统短路电流衰减计算方法
CN103500269A (zh) * 2013-09-10 2014-01-08 国家电网公司 一种双馈异步发电机组暂态短路电流的计算方法
CN104142419A (zh) * 2014-07-18 2014-11-12 华中电网有限公司 一种考虑负荷影响的电网短路电流获取方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944720A (zh) * 2012-11-21 2013-02-27 上海电力学院 考虑动态负荷下的电力系统短路电流衰减计算方法
CN103500269A (zh) * 2013-09-10 2014-01-08 国家电网公司 一种双馈异步发电机组暂态短路电流的计算方法
CN104142419A (zh) * 2014-07-18 2014-11-12 华中电网有限公司 一种考虑负荷影响的电网短路电流获取方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Study of the Influences of Current Limiting Reactor on the Circuit Breaker Breaking Capability;Wentao Chen等;《2016 IEEE International Conference on Power and Renewable Energy》;20161231;第120-125页
基于ATP-EMTP的上海电网短路电流直流分量衰减特性分析;靳希等;《华东电力》;20101031;第38卷(第10期);第1554-1557页
电力系统短路电流直流分量及其对断路器开断能力的影响;曹炜等;《电网技术》;20120331;第36卷(第3期);第283-288页
短路电流计算曲线法及其改进;曹炜等;《上海电力学院学报》;20061231;第22卷(第4期);第327-329、337页
考虑动态负荷改进PSS/E BKDY模块的短路电流衰减计算;曹炜等;《电力系统保护与控制》;20160601;第44卷(第11期);第135-141页

Also Published As

Publication number Publication date
CN106990326A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
CN106990326B (zh) 电力系统短路电流直流分量计算方法
Xiong et al. Modeling and stability issues of voltage-source converter-dominated power systems: A review
Dufour et al. On the use of real-time simulation technology in smart grid research and development
Shu et al. Dynamic phasor based interface model for EMT and transient stability hybrid simulations
Yang et al. Development of converter based reconfigurable power grid emulator
CN103605829A (zh) 对交直流混联电网进行电磁暂态仿真的等值建模方法
CN109918762B (zh) 一种交直流电网混合仿真对比模型构建方法
CN103472325B (zh) 一种波浪能和潮流能独立发电系统的检测平台
CN105162099A (zh) 一种确定分布式发电接入电网不对称短路电流的运算曲面法
CN105205244A (zh) 基于机电-电磁混合仿真技术的合环操作仿真系统
CN104993711A (zh) 一种电压暂降过渡过程模拟装置及方法
Kyesswa et al. A Matlab-based dynamic simulation module for power system transients analysis in the eASiMOV framework
YALÇIN et al. A study of symmetrical and unsymmetrical short circuit fault analyses in power systems
CN105095590A (zh) 一种基于三序等值阻抗的机电暂态仿真系统的建模方法
Tao et al. An advanced islanding detection strategy coordinating the newly proposed v detection and the rocof detection
Strezoski et al. Real-time short-circuit analysis of active distribution systems
Pang et al. Multi-agent based fault location algorithm for smart distribution grid
CN103487702B (zh) 一种小功率移动式微网并网检测系统
Tom et al. HVDC transmission line protection based on transient power
Liu et al. Automatic generation and initialization of EMT simulation models for large-scale AC-DC hybrid power system
CN103914738A (zh) 一种配电网评估与网架优化分析方法
Shen et al. Modeling and Parameter Identification of the Photovoltaic Inverter based on VSG
Yuan et al. A fault location algorithm for DC distribution network based on transient fault components
Zabaiou et al. Time-delay compensation of a wide-area measurements-based hierarchical voltage and speed regulator
Peng et al. Fault Location Algorithm for Multi-Terminal Transmission Lines of Distribution System Based on Loop-Analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant