CN106983911A - Titanium/tricalcium phosphate/titanium mesh composite material for bone implantation material, and preparation method thereof - Google Patents

Titanium/tricalcium phosphate/titanium mesh composite material for bone implantation material, and preparation method thereof Download PDF

Info

Publication number
CN106983911A
CN106983911A CN201710096359.7A CN201710096359A CN106983911A CN 106983911 A CN106983911 A CN 106983911A CN 201710096359 A CN201710096359 A CN 201710096359A CN 106983911 A CN106983911 A CN 106983911A
Authority
CN
China
Prior art keywords
titanium
tricalcium phosphate
mesh
powder
composite material
Prior art date
Application number
CN201710096359.7A
Other languages
Chinese (zh)
Inventor
谭彦妮
刘咏
郭誉
周睿
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to CN201710096359.7A priority Critical patent/CN106983911A/en
Publication of CN106983911A publication Critical patent/CN106983911A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • C22C49/11Titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

The invention provides a titanium/tricalcium phosphate/titanium mesh composite material for a bone implantation material. The titanium/tricalcium phosphate/titanium mesh composite material has a continuous network structure, wherein a mass ratio of titanium powder to tricalcium phosphate in the composite material is 5:5-8:2, and the titanium mesh accounts for 10-20% of the mass of the composite material. The invention further provides a preparation method of the composite material. The preparation method comprises: adding a calcium salt solution into a phosphate solution in a dropwise manner, carrying out stirring, centrifuging or suction filtering separation to obtain a precipitate, drying and calcining the precipitate, grinding to obtain alpha-TCP powder, mixing the alpha-TCP powder and titanium powder to obtain titanium/tricalcium phosphate mixed powder, loading the titanium/tricalcium phosphate mixed powder into a titanium mesh skeleton, and performing spark plasma sintering to produce the titanium/tricalcium phosphate/titanium mesh composite material. According to the present invention, the prepared titanium/tricalcium phosphate/titanium mesh composite material has the continuous network structure of the metal and the ceramic, and has advantages of excellent mechanical property, elastic modulus close to human bone, excellent biological activity, and excellent degradability.

Description

一种应用于骨植入材料的钛/磷酸三钙/钛网复合材料及其制备方法 One kind is applied to a titanium / tricalcium phosphate bone implant material / titanium mesh composite material and its preparation method

技术领域 FIELD

[0001] 本发明属于生物材料技术领域,尤其涉及一种应用于骨植入材料的钛/磷酸三钙/ 钛网复合材料及其制备方法。 [0001] The present invention belongs to the technical field of biological materials, and particularly to a composite titanium / tricalcium phosphate bone implant material / titanium mesh and a preparation method applied.

背景技术 Background technique

[0002] 钛及钛合金由于具有良好的力学性能、韧性、生物相容性和耐蚀性等优点,逐渐成为金属基骨植入材料的研究热点。 [0002] Since titanium and titanium alloys have the advantage of excellent mechanical properties, toughness, corrosion resistance, and biocompatibility, and gradually become a hotspot base metal bone implant material. 但钛及钛合金作为生物材料的同时也存在一些不足,一是力学性能不匹配,具有远高于人体骨组织的弹性模量,这将导致“应力屏蔽”,进而造成假体松动;二是钛及钛合金不具备生物活性,缺乏骨诱导的能力,其与骨组织之间只是一种机械性的接触而无法形成化学键合,这也可能导致假体松动。 But at the same time as the titanium and titanium alloy biomaterials are also some disadvantages, one does not match the mechanical properties, it has an elastic modulus much higher than that of human bone tissue, which would lead to "stress shielding", which causes loosening of the prosthesis; Second titanium and titanium alloys do not have biological activity, lack the ability to induce bone, but rather a mechanical contacts can not form chemical bonding between bone and tissue, which may lead to loosening of the prosthesis. 另一方面,磷酸钙(CaP)陶瓷由于具有与人体骨相似的组织结构和化学特性,也是研究的最多的骨替代材料,但由于较差的力学性能,其应用同样受到了很大限制。 On the other hand, most of the bone substitute material calcium phosphate (of CaP) ceramics because of human bone structure and a similar chemical properties, is studied, but because of poor mechanical properties, which apply the same to be greatly restricted.

[0003] 为了结合钛及钛合金和磷酸钙陶瓷的共同优点,制备同时具有好的力学性能和生物活性的骨植入材料,可对材料进行表面改性,如化学侵蚀,或在金属基体上涂覆生物活性涂层(如羟基磷灰石(HA),高分子,磷酸氢钙等)、复合涂层和梯度涂层等。 [0003] In order to combine the advantages of titanium and titanium alloys and common calcium phosphate ceramics, preparing a bone implant material having both good mechanical properties and biological activity, can be surface modified materials, such as chemical attack, or a metal base body coated with bioactive coatings (such as hydroxyapatite (HA), a polymer, calcium hydrogen phosphate, etc.), and gradient coatings composite coating. 但是由于陶瓷与金属的界面问题和涂层技术所涉及的一系列复杂问题,涂层与基体的结合强度低,容易剥落,而导致移植失败。 However, due to a series of complex issues and problems interface technology ceramics and a metal coating involved, the low binding strength of the coating and the substrate easily peel off, resulting in graft failure. 另一种提高钛及钛合金生物活性的方法是将钛或钛合金与磷酸钙(CaP)陶瓷通过烧结制备成复合材料,最典型的磷酸钙陶瓷为羟基磷灰石(HA),但由于HA在高温烧结过程中发生分解,且生成的羟基基团(OiT)容易与钛反应,生成Ca0、CaTi03、Ca3 (PO4) 2^PTiP(Ning C.,Journal of Materials Science Letters.2000,19:1243-1245.), 其中CaO在体液环境中会进一步反应生成Ca (OH) 2,导致材料力学性能的下降和材料的分解。 Another biological activity of titanium and titanium alloy is titanium or titanium alloy is improved with calcium phosphate (of CaP) sintering the ceramic composite material prepared, most typically ceramic calcium phosphate is hydroxyapatite (HA), but the HA a hydroxyl group (OIT) is decomposed in a high temperature sintering process, and the produced easily reacts with titanium to produce Ca0, CaTi03, Ca3 (PO4) 2 ^ PTiP (Ning C., Journal of Materials Science Letters.2000,19: 1243 -1245.), wherein CaO in the fluid environment will be further reacted to Ca (OH) 2, resulting in decomposition of the material and decrease the mechanical properties of the material. 理想的骨植入材料是应该在没有瞬时力学性能损失的情况下逐渐被新骨替换,所以需要材料具有可降解性或可吸收性。 Ideal bone implant material should be gradually replaced by new bone in the absence of transient loss of mechanical properties, the material is required having degradable or resorbable. 磷酸三钙(TCP)是磷酸钙陶瓷中的一种,其中的α-TCP相比于β-TCP和HA具有更好的可降解性。 Tricalcium phosphate (TCP) is a calcium phosphate ceramic, wherein the α-TCP and β-TCP as compared to the HA having a better degradability. Ti/CaP复合材料一般是采用粉末冶金法制备,但是, 其在烧结过程中钛的晶粒长大明显,降低了材料的力学性能。 Ti / CaP composites were prepared by powder metallurgy generally, however, that the titanium grain growth during the sintering process significantly reduces the mechanical properties of the material. 因此上述复合材料的力学性能需要通过其他方法进一步提高。 Thus the mechanical properties of the composite material needs to be further improved by other methods.

发明内容 SUMMARY

[0004] 本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种提供具有优良的力学性能、生物活性、可降解性的、可在生物医用骨植入材料中应用的钛/磷酸三钙/钛网复合材料及其制备方法。 [0004] The present invention solves the technical problem, overcoming the above disadvantages and drawbacks noted in the background, there is provided a method of providing excellent mechanical properties, biological activity, biodegradability, it can be a bone implant material in biomedical preparing a titanium composite material and / tricalcium application / titanium mesh.

[0005] 为解决上述技术问题,本发明提出的技术方案为: [0005] To solve the above problems, the present invention according to:

[0006] 一种应用于骨植入材料的钛/磷酸三钙/钛网复合材料,所述复合材料具有连续网络结构,由钛粉、磷酸三钙和钛网复合而成,所述钛粉与磷酸三钙的质量比为5:5〜8:2,所述钛网占复合材料质量的l〇wt%〜20wt%。 [0006] A bone implant material is applied to the titanium / tricalcium phosphate / titanium mesh composite material, said composite material having a continuous network structure, a composite of titanium powder, tricalcium phosphate and titanium mesh together, the titanium powder tricalcium phosphate and mass ratio of 5: 5 ~ 8: 2, accounting for the mass of titanium mesh composite l〇wt% ~20wt%. 将钛网作为骨架添加到钛/磷酸三钙混合材料中作为增强材料,其具有较强力学强度的增强基,有利于复合材料力学强度的进一步提高并抵抗复合材料的变形,钛网与基体之间的机械结合,交联及摩擦作用对材料强度的提高起着根本的作用;同时,具有较低模量的磷酸三钙的加入也可以降低材料的弹性模量。 The titanium mesh is added as a skeleton to the titanium / tricalcium phosphate mixed material as a reinforcing material, which enhances the group having a strong mechanical strength, is conducive to further improvement of the mechanical strength of the composite material and resist deformation, titanium mesh with the matrix of the composite material mechanical bonding between crosslinking friction and play a fundamental role in improving the strength of the material; also, having a lower modulus of added tricalcium phosphate may also reduce the elastic modulus of the material.

[0007] α-TCP生物降解性好,机械性能差,钛的力学强度较高,但是不具备生物活性,为了综合两者的优点,通过控制好两者之间的比例可以使两者性能最大限度的表达。 [0007] α-TCP good biodegradability, poor mechanical properties, high mechanical strength of titanium, but do not have biological activity, in order to integrally advantages of both, the maximum performance can be made by controlling both the ratio between the two good expression limits. α-TCP含量过低则复合材料在体内的降解速率降低,生物性能得不到好的发挥,含量过高则得到的复合材料脆性增大,力学性能大大降低,实际应用价值降低。 α-TCP content is too low, the composite material decreases in the rate of degradation in vivo, biological properties are not good play, high levels of the brittle composite obtained is increased, the mechanical properties greatly reduced, reducing the actual value.

[0008] 上述的钛/磷酸三钙/钛网复合材料,优选的,所述磷酸三钙为α-TCP,所述钛网目数为40〜100目。 [0008] The titanium / tricalcium phosphate / titanium mesh composite material, preferably, the tricalcium phosphate is α-TCP, the titanium mesh is 40~100 mesh number. 过低目数的钛网作为骨架烧结得到的复合材料致密度低,加入过高目数的钛网将大大增加钛含量,导致复合材料内部应力增大,只有选择合适目数的钛网以及管控好钛网的质量分数才能获得具有优良性能的钛/磷酸三钙/钛网复合材料。 The low number of activated titanium mesh as the mesh skeleton of a composite material obtained by sintering a low density, a high number of added titanium mesh network will greatly increase the titanium content, leading to increased internal stresses composites, only choose the appropriate number of titanium mesh and control mesh good quality titanium mesh fraction in order to obtain a titanium / tricalcium phosphate / titanium mesh composites having excellent properties.

[0009] 作为一个总的发明构思,本发明还提供一种上述复合材料的制备方法,包括以下步骤: [0009] As a general inventive concept, the present invention also provides a process for preparing the composite material, comprising the steps of:

[0010] (1)钛和磷酸三钙混合:将钛粉末与α-TCP粉末通过球磨方法进行混合,得到钛/磷酸三钙混合粉末; [0010] (1) mixing titanium and tricalcium phosphate: titanium powder and α-TCP powder was mixed by ball mill method, to give a titanium / mixing tricalcium phosphate powder;

[0011] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤(1)制备的钛/磷酸三钙混合粉末装入钛网骨架中,利用放电等离子烧结法制成钛/磷酸三钙/钛网复合材料。 [0011] (2) a titanium / tricalcium phosphate / titanium mesh composite sintered: step (1) titanium prepared / tricalcium phosphate mixed powder was charged titanium mesh skeleton, using a spark plasma sintering method of titanium / tricalcium phosphate / titanium mesh composite.

[0012] 上述的制备方法,优选的,所述步骤⑴中,混合的过程中加入硬脂酸;球磨的时间为4〜12h,球磨的转速为150〜300r/min。 [0012] The production method, preferably, in the step ⑴, is added during mixing of stearic acid; milling time is 4~12h, milling speed was 150~300r / min.

[0013] 上述的制备方法,优选的,所述步骤(2)中,将钛/磷酸三钙混合粉末装入钛网骨架中的装粉过程为:将钛/磷酸三钙粉末倒入装满直径与磨具一致的堆垛钛网的磨具中,利用摇动磨具使粉末与钛网分散均匀。 [0013] The production method, preferably, the step (2), the titanium powder loading / tricalcium phosphate powder mixture was placed in a titanium mesh skeleton process: titanium / tricalcium phosphate powder was put into full abrasive grinding wheel diameter consistent with titanium mesh in the stack by shaking with a titanium mesh powder abrasive dispersed.

[0014] 上述的制备方法,优选的,所述步骤(2)中,放电等离子烧结过程中的烧结温度为800〜1000°C,烧结过程中保温10〜20min;烧结过程的压力为10〜30MPa。 The sintering temperature [0014] The production method, preferably, the step (2), the discharge plasma sintering process is 800~1000 ° C, the sintering process incubated 10~20min; pressure sintering process is 10~30MPa . 过低的烧结温度和烧结压力将导致复合材料三相结合疏松,致密度低,力学强度低;过高的烧结温度将导致复合材料内部内应力大,容易开裂,生成的CaTiO3和Ca (OH) 2等物质将使复合材料分解,生成的弹性模量高的脆性相将使复合材料的弹性模量进一步增加,降低性能;过高的烧结压力在对模具造成较大损害的同时,由于磷酸三钙作为脆性材料不是通过塑性变形而是弹性变形,还将导致复合材料易碎。 Low sintering temperature and pressure will result in a three-phase composite material loosely bound, low density and low mechanical strength; high sintering temperatures will cause the inner composite stress, easy to crack, resulting CaTiO3 and Ca (OH) 2 elastic modulus composite materials and other substances would decompose, generating a high modulus of elasticity of the composite brittle phase will further increase, reduced performance; high sintering pressure while the cause greater damage to the mold, since tris calcium as a brittle material, but not elastically deformed by plastic deformation, will result in a composite material brittle.

[0015]本发明的复合材料中选择α-TCP作为原材料,α-TCP的溶解度(0.24mg L_1,37°C) 较大,可以在体内逐渐降解;将可降解的磷酸三钙陶瓷与不同比例的钛粉末装入钛网骨架中,采用放电等离子烧结法制成钛/磷酸三钙/钛网复合材料,植入患者体内后,磷酸三钙会逐渐降解,留下的金属钛和钛网既具有一定强度,又降低了材料的弹性模量,还有利于新骨组织的长入,提升骨修复速度和能力,使材料与骨组织形成骨键合,缩短愈合时间;同时通过将钛/磷酸三钙混合粉末和钛网复合,弥补了磷酸三钙强度不高,不能用于承重部位以及钛没有生物活性的缺点。 [0015] The composite material of the present invention is selected as a starting material α-TCP, α-TCP solubility (0.24mg L_1,37 ° C) is large, may be gradually degraded in vivo; tricalcium phosphate ceramic degradable different proportions titanium mesh titanium powder was charged backbone, spark plasma sintering of titanium SYSTEM / tricalcium phosphate / titanium mesh composite material, implanted in a patient, tricalcium phosphate will be gradually degraded, leaving a titanium metal and titanium mesh having both strength, but reduces the modulus of elasticity of the material, also facilitates new bone tissue ingrowth, enhance bone repair speed and capacity, so that the formation of bone tissue and bone material bond, shorten the healing time; while by the titanium / tris a mixed powder of calcium compound and titanium mesh, tricalcium phosphate make up the strength is not high, and the load-bearing parts can not be used without disadvantage titanium biological activity.

[0016] 与现有技术相比,本发明的优点在于: [0016] Compared with the prior art, advantages of the present invention:

[0017] (1)本发明制备的钛/磷酸三钙/钛网复合材料,具有金属与陶瓷的连续网络结构, 具有优良的力学性能,体现为优异的抗压强度和接近人体骨的弹性模量,同时还具有优异的生物活性和可降解性,可作为骨植入材料使用。 [0017] (1) prepared in the present invention, titanium / tricalcium phosphate / titanium composite mesh having a continuous network structure of metals and ceramics, having excellent mechanical properties, excellent compressive strength and reflected close to the body of the elastic modulus of the bone amount, while also having excellent degradability and biological activity, can be used as a bone implant material.

[0018] (2)本发明的钛/磷酸三钙/钛网复合材料的制备过程中,可以通过调节α-TCP和钛的不同比例、钛网目数、钛网质量分数以及烧结温度、烧结压力调整复合材料的力学性能和在体内的降解速率。 [0018] (2) the preparation of the present titanium / tricalcium phosphate / titanium mesh composite material, through different proportional control α-TCP and titanium, titanium mesh mesh, titanium mesh mass fraction and sintering temperature, pressure regulating and mechanical properties of the composite material in vivo degradation rate.

[0019] (3)本发明的制备方法过程中,采用了放电等离子烧结法进行烧结,降低了烧结温度,加快了致密化速度,减小了界面扩散进而最大限度地抑制界面反应。 Preparation Method [0019] (3) the process of the present invention, using a discharge plasma sintering sintering, sintering temperature is lowered to accelerate the densification rate, further reducing the interfacial diffusion maximum inhibition of the reaction interface.

附图说明 BRIEF DESCRIPTION

[0020] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 [0020] In order to more clearly illustrate the technical solutions in the embodiments or the prior art embodiment of the present invention, briefly introduced hereinafter, embodiments are described below in the accompanying drawings or described in the prior art needed to be used in describing the embodiments figures some embodiments of the present invention, those of ordinary skill in the art is concerned, without creative efforts, can derive from these drawings other drawings.

[0021] 图1为本发明实施例2中球磨后的钛粉与磷酸三钙混合粉末的X射线衍射分析图谱; [0021] The embodiment of Figure 1 titanium powder and tricalcium phosphate powder mixture milling the X-ray diffraction pattern in Example 2 of the present invention;

[0022] 图2为本发明实施例5中制备的钛/磷酸三钙/钛网复合材料在扫描电镜下观察的微观结构图; [0022] FIG 2 FIG titanium microstructure prepared in Example 5 / tricalcium phosphate / titanium mesh composite scanning electron microscope of the present invention;

[0023] 图3为本发明实施例5中制备的钛/磷酸三钙/钛网复合材料在模拟体液中浸泡14 天后在扫描电镜下观察的微观结构图; [0023] FIG. 3 FIG. 14 days after soaking the microstructure observed in a scanning electron microscope in simulated body fluid Titanium / phosphate prepared in Example 5 tricalcium / titanium composite web embodiment of the present invention;

[0024] 图4为本发明实施例5中制备的钛/磷酸三钙/钛网复合材料在模拟体液中浸泡14 天后在扫描电镜下观察的能谱图。 [0024] FIG. 4 is a titanium / phosphate prepared in Example 5 tricalcium / titanium composite web embodiment 14 days immersion energy spectrum observed in a scanning electron microscope in simulated body fluid invention.

具体实施方式 Detailed ways

[0025] 为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。 [0025] In order to facilitate understanding of the invention, the accompanying drawings and the description below in conjunction with the preferred embodiments of the invention made more fully herein, detailed description, although the scope of the present invention is not limited to the following specific examples.

[0026] 除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。 [0026] Unless otherwise defined, all technical terms and those skilled hereinafter used in the same meaning as commonly understood. 本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。 Terminology used herein is for the purpose of describing particular embodiments and are not intended to limit the scope of the invention.

[0027] 除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。 [0027] Unless otherwise specifically stated, various materials, reagents, instruments and equipment used in the present invention can be obtained later through the market or can be be prepared by conventional methods.

[0028] 对比例1: [0028] Comparative Example 1:

[0029] —种应用于骨植入材料的钛/磷酸三钙复合材料(不含钛网),具有连续网络结构, 其中,钛与磷酸三钙的质量比为6:4,磷酸三钙为a-TCP。 [0029] - species is applied to the bone implant material titanium / tricalcium phosphate composite (containing titanium net), having a continuous network structure, wherein a mass ratio of tricalcium phosphate to titanium was 6: 4, tricalcium phosphate a-TCP.

[0030] 本实施例钛/磷酸三钙复合材料的制备方法,包括以下步骤: [0030] Preparation tricalcium present embodiment titanium / phosphate, comprising the steps of:

[0031] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为6:4的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0031] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 6: 4 ratio mixture, while the addition of stearic acid, a ball mill for 4 hours, and milling speed It is 200r / min;

[0032] (2)钛/磷酸三钙复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为20MPa)制成块状材料,即钛/磷酸三钙复合材料。 [0032] (2) a titanium / tricalcium phosphate composite sintered: Step 1) titanium prepared / tricalcium phosphate mixture powder using the spark plasma sintering (sintering temperature 900 ° C, the sintering process incubated lOmin, the sintering process a pressure of 20 MPa or) made of a bulk material, i.e. the titanium / tricalcium phosphate.

[0033] 对比例2: [0033] Comparative Example 2:

[0034] —种应用于骨植入材料的钛/磷酸三钙复合材料(不含钛网),具有连续网络结构, 其中,钛与磷酸三钙的质量比为7:3,磷酸三钙为a-TCP。 [0034] - species is applied to the bone implant material titanium / tricalcium phosphate composite (containing titanium net), having a continuous network structure, wherein the ratio by mass of tricalcium phosphate and titanium 7: 3, tricalcium phosphate a-TCP.

[0035] 本实施例钛/磷酸三钙复合材料的制备方法,包括以下步骤: [0035] This titanium / method for preparing tricalcium phosphate embodiment, comprising the steps of:

[0036] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为7:3的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0036] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 7: 3 ratio mixture, while adding stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0037] (2)钛/磷酸三钙复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为30MPa)制成块状材料,即钛/磷酸三钙复合材料。 [0037] (2) a titanium / tricalcium phosphate composite sintered: Step 1) titanium prepared / tricalcium phosphate mixture powder using the spark plasma sintering (sintering temperature 900 ° C, the sintering process incubated lOmin, the sintering process a pressure of 30MPa) is made of a bulk material, i.e. the titanium / tricalcium phosphate.

[0038] 对比例3: [0038] Comparative Example 3:

[0039] —种应用于骨植入材料的钛/磷酸三钙复合材料(不含钛网),具有连续网络结构, 其中,钛与磷酸三钙的质量比为8:2,磷酸三钙为a-TCP。 [0039] - species is applied to the bone implant material titanium / tricalcium phosphate composite (containing titanium net), having a continuous network structure, wherein the mass ratio of the titanium and tricalcium phosphate is 8: 2, tricalcium phosphate a-TCP.

[0040] 本实施例钛/磷酸三钙复合材料的制备方法,包括以下步骤: [0040] Preparation tricalcium present embodiment titanium / phosphate, comprising the steps of:

[0041] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为8:2的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0041] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 8: 2 ratio, while the addition of stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0042] (2)钛/磷酸三钙复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为20MPa)制成块状材料,即钛/磷酸三钙复合材料。 [0042] (2) a titanium / tricalcium phosphate composite sintered: Step 1) titanium prepared / tricalcium phosphate mixture powder using the spark plasma sintering (sintering temperature 900 ° C, the sintering process incubated lOmin, the sintering process a pressure of 20 MPa or) made of a bulk material, i.e. the titanium / tricalcium phosphate.

[0043] 对对比例1、2、3制备的钛/磷酸三钙复合材料的力学性能进行测试,结果如表1所不。 [0043] The mechanical properties of the prepared titanium ratio 2,3 / tricalcium phosphate composite test results are shown in Table 1 are not.

[0044] 表1对比例1 -3的钛/磷酸三钙/钛网复合材料的力学性能 [0044] Table 1. Mechanical Properties of Comparative Example 1-3 of the titanium / tricalcium phosphate / titanium mesh Composites

Figure CN106983911AD00061

[0046] 实施例1: [0046] Example 1:

[0047] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为5:5,钛网占复合材料质量的IOwt %,磷酸三钙为a-TCP, 钛网目数为40目。 [0047] The present invention is one kind of titanium is applied to the bone implant material / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein a mass ratio of tribasic calcium, titanium phosphate and 5: 5, representing a composite titanium mesh IOwt% by mass of the material, tricalcium phosphate as a-TCP, titanium mesh mesh to 40 mesh.

[0048] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0048] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0049] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为5:5的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0049] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 5: 5 ratio of mixing, add the stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0050] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为40目的质量占复合材料的10wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为20MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0050] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 40 10wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 900 ° C, a pressure sintering process lOmin incubation, the sintering process is 20 MPa or) made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0051] 实施例2: [0051] Example 2:

[0052] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为6:4,钛网占复合材料质量的15wt %,钛网目数为40目。 Applied to titanium bone implant material [0052] A present invention / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein a mass ratio of tricalcium phosphate to titanium was 6: 4, representing a composite titanium mesh 15wt% of the material quality, the number of titanium mesh of 40 mesh.

[0053] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0053] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0054] (1)钛和磷酸三钙混合:将商业用的纯钛粉与α-TCP粉末按照质量比为6:4的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0054] (1) mixing tricalcium phosphate and titanium: commercial pure titanium powder with α-TCP powder with a mass ratio of 6: 4 ratio mixture, while the addition of stearic acid, a ball mill for 4 hours, and milling speed It is 200r / min;

[0055] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为60目的质量占复合材料的15wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为20MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0055] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 60 15wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 900 ° C, a pressure sintering process lOmin incubation, the sintering process is 20 MPa or) made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0056] 将本实施例中球磨后的钛粉与磷酸三钙混合粉末进行X射线衍射分析,X射线衍射分析图谱如图1所示,从图1中可以看出,混合粉末的晶相峰为Ti (PDF#44-1294)和a-TCP (PDF#09-0348)〇 [0056] The titanium powder mixed with tricalcium phosphate powder according to the present embodiment will be milled for X-ray diffraction analysis, X-ray diffraction pattern shown in Figure 1, can be seen in FIG. 1, a mixed powder of crystalline phase peak as Ti (PDF # 44-1294) and a-TCP (PDF # 09-0348) billion

[0057] 实施例3: [0057] Example 3:

[0058] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为7:3,钛网占复合材料质量的20wt %,磷酸三钙为a-TCP, 钛网目数为60目。 [0058] The present invention is one kind of titanium is applied to the bone implant material / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein the ratio by mass of tricalcium phosphate and titanium 7: 3, representing a composite titanium mesh 20wt% of the mass of material, tricalcium phosphate as a-TCP, titanium mesh mesh to 60 mesh.

[0059] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0059] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0060] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为7:3的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0060] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 7: 3 ratio mixture, while adding stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0061] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为80目的质量占复合材料的20wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为20MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0061] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 80 20wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 900 ° C, a pressure sintering process lOmin incubation, the sintering process is 20 MPa or) made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0062] 实施例4: [0062] Example 4:

[0063] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为8:2,钛网占复合材料质量的IOwt %,磷酸三钙为a-TCP, 钛网目数为40目。 [0063] The present invention is one kind of titanium is applied to the bone implant material / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein the mass ratio of the titanium and tricalcium phosphate is 8: 2, representing a composite titanium mesh IOwt% by mass of the material, tricalcium phosphate as a-TCP, titanium mesh mesh to 40 mesh.

[0064] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0064] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0065] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为5:5的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0065] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 5: 5 ratio of mixing, add the stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0066] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为100目的质量占复合材料的20wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温IOmin,烧结过程的压力为20MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0066] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number of 100 mesh quality of the composite of 20wt% titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 900 ° C, a pressure sintering process incubated IOmin, the sintering process is 20 MPa or) made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0067] 对实施例1、2、3、4制备的钛/磷酸三钙/钛网复合材料的力学性能进行测试,结果如表2所示。 Mechanical Properties [0067] Preparation of Titanium embodiment 1,2,3,4 / tricalcium phosphate / titanium mesh composite were tested, the results as shown in Table 2. 结合表1、表2,具体结合对比例1和实施例2的测试结果可以看出:加入钛网后的实施例1-4的弹性模量有所降低,抗压强度明显提升。 Binding Table 1, Table 2, in conjunction with the specific embodiments and comparative Example 2 the test results can be seen 1: Elastic Modulus Example 1-4 after the addition of titanium mesh of decreased compressive strength improved significantly. 实施例3所制备的复合材料具有优异的抗压强度,可以体现出最佳力学性能。 Has excellent compressive strength composite material prepared in Example 3 embodiment, it may reflect the best mechanical properties.

[0068] 表2实施例1-4的钛/磷酸三钙/钛网复合材料的力学性能 Mechanical Properties of Ti / tricalcium phosphate / titanium mesh composite material [0068] Table 1-4 Example 2

Figure CN106983911AD00081

[0071] 实施例5: [0071] Example 5:

[0072] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为7:3,钛网占复合材料质量的20wt %,磷酸三钙为α-TCP, 钛网目数为60目。 [0072] The present invention is one kind of titanium is applied to the bone implant material / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein the ratio by mass of tricalcium phosphate and titanium 7: 3, representing a composite titanium mesh 20wt% of the mass of material, tricalcium phosphate α-TCP, titanium mesh mesh 60 mesh.

[0073] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0073] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0074] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为7:3的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0074] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 7: 3 ratio mixture, while adding stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0075] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为60目的质量占复合材料的20wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为900°C,烧结过程中保温lOmin,烧结过程的压力为30MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0075] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 60 20wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 900 ° C, a pressure sintering process lOmin incubation, the sintering process is 30MPa) is made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0076] 将本实施例中制备的钛/磷酸三钙/钛网复合材料在扫描电镜下观察,其微观结构如图2所示,由图可知,钛、磷酸三钙、钛网三相通过烧结扩散形成均匀的连续网络结构。 [0076] Preparation of the titanium present embodiment / tricalcium phosphate / titanium mesh composite in the scanning electron microscope, the microstructure shown in Figure 2, seen from FIG, titanium, tricalcium phosphate, titanium mesh by a three-phase sintering diffusion form a uniform continuous network structure. 将本实施例中制备的钛/磷酸三钙/钛网复合材料在模拟体液中浸泡14天后在扫描电镜下观察,其微观结构如图3所示,由图可知,钛/磷酸三钙/钛网复合材料的生物性能良好,达到一定的时间后,表面生成的磷灰石厚度增加。 14 days after the scanning electron microscope in the present embodiment titanium is prepared in / tricalcium phosphate / titanium mesh composite immersed in simulated body fluid, the microstructure shown in Figure 3, seen from the drawing, a titanium / tricalcium phosphate / titanium good biological performance of the composite web, after a certain period of time, increasing the thickness of the generated surface of the apatite. 本实施例中制备的钛/磷酸三钙/钛网复合材料在模拟体液中浸泡14天后在扫描电镜下观察,其能谱图如图4所示。 Titanium prepared in the present embodiment / tricalcium phosphate / titanium mesh immersed composite scanning electron microscope after 14 days in SBF in which energy spectrum shown in Fig.

[0077] 实施例6: [0077] Example 6:

[0078] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为7:3,钛网占复合材料质量的20wt %,磷酸三钙为α-TCP, 钛网目数为60目。 [0078] The present invention is one kind of titanium is applied to the bone implant material / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein the ratio by mass of tricalcium phosphate and titanium 7: 3, representing a composite titanium mesh 20wt% of the mass of material, tricalcium phosphate α-TCP, titanium mesh mesh 60 mesh.

[0079] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0079] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0080] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为7:3的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0080] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 7: 3 ratio mixture, while adding stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0081] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为60目的质量占复合材料的20wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为950°C,烧结过程中保温lOmin,烧结过程的压力为30MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0081] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 60 20wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 950 ° C, a pressure sintering process lOmin incubation, the sintering process is 30MPa) is made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0082] 实施例7: [0082] Example 7:

[0083] 一种本发明的应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中,钛与磷酸三钙的质量比为7:3,钛网占复合材料质量的20wt %,磷酸三钙为α-TCP, 钛网目数为60目。 [0083] The present invention is one kind of titanium is applied to the bone implant material / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein the ratio by mass of tricalcium phosphate and titanium 7: 3, representing a composite titanium mesh 20wt% of the mass of material, tricalcium phosphate α-TCP, titanium mesh mesh 60 mesh.

[0084] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0084] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0085] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为7:3的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0085] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 7: 3 ratio mixture, while adding stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0086] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为60目的质量占复合材料的20wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为1 〇〇〇°C,烧结过程中保温IOmin,烧结过程的压力为30MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0086] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 60 20wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature 〇〇〇 1 ° C, the sintering process incubated IOmin, pressure sintering process is 30MPa) is made of a bulk material, i.e., titanium / tricalcium phosphate / titanium mesh composite.

[0087] 对实施例5、6、7制备的钛/磷酸三钙/钛网复合材料的力学性能进行测试,测试结果如表3所示。 [0087] The mechanical properties of titanium embodiments / tricalcium phosphate / titanium mesh composite material prepared in Example 6 and 7 were tested, the test results shown in Table 3. 从表3可以看出实施例5所制备的材料具有最佳力学性能,即具有最优抗压强度和最接近人体骨的弹性模量。 As can be seen from Table 3, the material prepared in Example 5 having the best mechanical properties, i.e. having optimum modulus of elasticity and compressive strength of the closest human bone.

[0088] 表3实施例5-7的钛/磷酸三钙/钛网复合材料的力学性能 Mechanical Properties of Titanium tricalcium phosphate titanium mesh composite of Example 5-7 / / [0088] Table 3

[0089] [0089]

Figure CN106983911AD00091

[0090] 对比例4: [0090] Comparative Example 4:

[0091] —种应用于骨植入材料的钛/磷酸三钙/钛网复合材料,具有连续网络结构,其中, 钛与磷酸三钙的质量比为7:3,钛网占复合材料质量的20wt %,磷酸三钙为α-TCP,钛网目数为60目。 [0091] - species is applied to the bone implant material titanium / tricalcium phosphate / titanium composite mesh having a continuous network structure, wherein the mass of tricalcium phosphate and titanium ratio of 7: 3, titanium mesh representing the quality of the composite material 20wt%, tricalcium phosphate α-TCP, titanium mesh mesh 60 mesh.

[0092] 本实施例钛/磷酸三钙/钛网复合材料的制备方法,包括以下步骤: [0092] Example embodiment of the present method of preparing a titanium / tricalcium phosphate / titanium mesh composite material, comprising the steps of:

[0093] (1)钛和磷酸三钙混合:将商业用的纯钛粉与a-TCP粉末按照质量比为7:3的比例混合,同时加入硬脂酸,进行球磨4小时,球磨的转速为200r/min; [0093] (1) mixing tricalcium phosphate and titanium: Commercial pure titanium powder, a-TCP powder with a mass ratio of 7: 3 ratio mixture, while adding stearic acid, ball milled for 4 hours milling speed It is 200r / min;

[0094] (2)钛/磷酸三钙/钛网复合材料烧结:将步骤1)制备的钛/磷酸三钙混合粉末装入目数为60目的质量占复合材料的20wt%的钛网骨架中,然后将装满钛网骨架与混合粉末的材料利用放电等离子烧结法(烧结温度为11OO °C,烧结过程中保温IOmin,烧结过程的压力为30MPa)制成块状材料,即钛/磷酸三钙/钛网复合材料。 [0094] (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: Step 1) Preparation of titanium / tricalcium phosphate mixture powder was charged mesh number for the quality of the object 60 20wt% of the composite titanium mesh skeleton and then discharging the material using titanium mesh filled with the mixed powder skeleton plasma sintering (sintering temperature of 11OO ° C, a pressure sintering process incubated IOmin, the sintering process is 30MPa) is made of a bulk material, i.e. the titanium / tris calcium / titanium mesh composite.

[0095]对对比例4制备的钛/磷酸三钙/钛网复合材料的力学性能进行测试,测试结果显示其抗压强度为231.9 ± 44.37MPa,弹性模量为59.43 ± 0.44GPa,远大于人体骨12〜 28. SGPa的弹性模量,不适合应用在生物医用骨植入材料中。 [0095] The ratio of the mechanical properties of the prepared titanium 4 / tricalcium phosphate / titanium mesh composite were tested, the test results show that the compressive strength is 231.9 ± 44.37MPa, the elastic modulus of 59.43 ± 0.44GPa, much greater than the human 28. bone 12~ SGPa elastic modulus is not suitable for use in biomedical implant material in the bone.

Claims (6)

1. 一种应用于骨植入材料的钛/磷酸三钙/钛网复合材料,其特征在于,所述复合材料具有连续网络结构,由钛粉、磷酸三钙和钛网复合而成,所述钛粉与磷酸三钙的质量比为5: 5〜8:2,所述钛网占复合材料质量的1(^1:%〜2〇¥1:%。 A three bone implant material is applied to a titanium / calcium phosphate / titanium mesh composite, wherein the composite material having a continuous network structure, a composite of titanium powder, tricalcium phosphate and titanium mesh together, the said mass of tricalcium phosphate powder and titanium is 5: 5 ~ 8: 2, accounting for the titanium mesh 1 (1 ^ composite mass: 1% ~2〇 ¥:%.
2. 如权利要求1所述的钛/磷酸三钙/钛网复合材料,其特征在于,所述磷酸三钙为α-TCP,所述钛网目数为40〜100目。 2. Titanium / tricalcium phosphate / titanium mesh composite material according to claim 1, characterized in that said tricalcium phosphate is α-TCP, the number of 40~100 mesh is titanium mesh.
3. —种如权利要求1或2所述的钛/磷酸三钙/钛网复合材料的制备方法,其特征在于, 包括以下步骤: (1) 钛和磷酸三钙混合:将钛粉末与ci-TCP粉末通过球磨方法进行混合,得到钛/磷酸三钙混合粉末; (2) 钛/磷酸三钙/钛网复合材料烧结:将步骤(1)制备的钛/磷酸三钙混合粉末装入钛网骨架中,利用放电等离子烧结法制成钛/磷酸三钙/钛网复合材料。 3. - titanium claim 1 or claim 2 kinds / tricalcium phosphate / titanium mesh producing a composite material, comprising the steps of: (1) mixing titanium and tricalcium phosphate: titanium powder and ci -TCP powders mixed by ball mill method, to give a titanium / tricalcium phosphate powder is mixed; (2) a titanium / tricalcium phosphate / titanium mesh sintered composite material: step (1) preparation of titanium / tricalcium phosphate mixed powder was charged titanium backbone network, using the spark plasma sintering method of titanium / tricalcium phosphate / titanium mesh composite.
4. 如权利要求3所述的制备方法,其特征在于,所述步骤(1)中,在混合的过程中加入硬脂酸;球磨的时间为4〜12h,球磨的转速为150〜300r/min。 4. The method as recited in claim 3, wherein said step (1) was added during the mixing of stearic acid; milling time is 4~12h, milling speed was 150~300r / min.
5. 如权利要求3所述的制备方法,其特征在于,所述步骤(2)中,将钛/磷酸三钙混合粉末装入钛网骨架中的装粉过程为:将钛/磷酸三钙粉末倒入装满直径与磨具一致的堆垛钛网的磨具中,利用摇动磨具使粉末与钛网分散均匀。 5. The method as recited in claim 3, wherein said step (2), a titanium / tricalcium phosphate mixed powder was charged toner loading titanium mesh skeleton process: titanium / tricalcium phosphate powder was poured into the full diameter of the abrasive grinding wheel coincides with titanium mesh in the stack by shaking with a titanium mesh powder abrasive dispersed.
6. 如权利要求3所述的制备方法,其特征在于,所述步骤(2)中,放电等离子烧结过程中的烧结温度为800〜1000°C,烧结过程中保温10〜20min;烧结过程的压力为10〜30MPa。 6. The method as recited in claim 3, characterized in that the sintering temperature process (2), the spark plasma sintering step is 800~1000 ° C, the sintering process incubated 10~20min; sintering process pressure 10~30MPa.
CN201710096359.7A 2017-02-22 2017-02-22 Titanium/tricalcium phosphate/titanium mesh composite material for bone implantation material, and preparation method thereof CN106983911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710096359.7A CN106983911A (en) 2017-02-22 2017-02-22 Titanium/tricalcium phosphate/titanium mesh composite material for bone implantation material, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710096359.7A CN106983911A (en) 2017-02-22 2017-02-22 Titanium/tricalcium phosphate/titanium mesh composite material for bone implantation material, and preparation method thereof

Publications (1)

Publication Number Publication Date
CN106983911A true CN106983911A (en) 2017-07-28

Family

ID=59414172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710096359.7A CN106983911A (en) 2017-02-22 2017-02-22 Titanium/tricalcium phosphate/titanium mesh composite material for bone implantation material, and preparation method thereof

Country Status (1)

Country Link
CN (1) CN106983911A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636219A (en) * 1985-12-05 1987-01-13 Techmedica, Inc. Prosthesis device fabrication
CN101020084A (en) * 2007-03-15 2007-08-22 上海交通大学 Prepn process of titanium sintering porous titanium artificial bone with bioceramic coating
CN101229394A (en) * 2007-01-24 2008-07-30 张立海;胡 敏 Titanium alloy-collagen-hydroxyl apatite bone repairing material and preparing method thereof
US7531004B2 (en) * 2004-02-03 2009-05-12 Orthovita, Inc. Pliable conformable bone restorative
CN104941003A (en) * 2015-06-10 2015-09-30 中南大学 Titanium/tricalcium phosphate composite applied to bone implanting material and preparation method of titanium/tricalcium phosphate composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636219A (en) * 1985-12-05 1987-01-13 Techmedica, Inc. Prosthesis device fabrication
US7531004B2 (en) * 2004-02-03 2009-05-12 Orthovita, Inc. Pliable conformable bone restorative
CN101229394A (en) * 2007-01-24 2008-07-30 张立海;胡 敏 Titanium alloy-collagen-hydroxyl apatite bone repairing material and preparing method thereof
CN101020084A (en) * 2007-03-15 2007-08-22 上海交通大学 Prepn process of titanium sintering porous titanium artificial bone with bioceramic coating
CN104941003A (en) * 2015-06-10 2015-09-30 中南大学 Titanium/tricalcium phosphate composite applied to bone implanting material and preparation method of titanium/tricalcium phosphate composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGZHOU YANG等: ""Steel−Concrete" Inspired Biofunctional Layered Hybrid Cage for Spine Fusion and Segmental Bone Reconstruction", 《ACS BIOMATERIALS SCIENCE & ENGINEERING》 *

Similar Documents

Publication Publication Date Title
Murphy et al. Growth of continuous bonelike mineral within porous poly (lactide‐co‐glycolide) scaffolds in vitro
Barralet et al. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement
Fan et al. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization
US4990163A (en) Method of depositing calcium phosphate cermamics for bone tissue calcification enhancement
Xue et al. In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity
Kasuga et al. Preparation of poly (lactic acid) composites containing calcium carbonate (vaterite)
Shadanbaz et al. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review
JP2578419B2 (en) Ceramics treated metal implants
CN1101705C (en) Bone substitute material and process for producing same
Lahiri et al. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review
Xu et al. Fast‐setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration
Shi Biomaterials and tissue engineering
US20060199876A1 (en) Bioceramic composite coatings and process for making same
Hahn et al. Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition
Low et al. Calcium phosphate‐based composites as injectable bone substitute materials
McManus et al. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites
Bansiddhi et al. Porous NiTi for bone implants: a review
JP2004531292A (en) Compositions and methods biomedical applications
Blom et al. Transforming growth factor‐β1 incorporation in a calcium phosphate bone cement: Material properties and release characteristics
Li et al. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links
Gu et al. Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC)
Narayanan et al. Calcium phosphate‐based coatings on titanium and its alloys
Kim et al. Hydroxyapatite and titania sol–gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance
Ni et al. β‐CaSiO3/β‐Ca3 (PO4) 2 composite materials for hard tissue repair: In vitro studies
Moreau et al. Self‐setting collagen‐calcium phosphate bone cement: Mechanical and cellular properties

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination