CN106950178B - 基于流场反演的激光冲量耦合系数测量方法 - Google Patents

基于流场反演的激光冲量耦合系数测量方法 Download PDF

Info

Publication number
CN106950178B
CN106950178B CN201710202451.7A CN201710202451A CN106950178B CN 106950178 B CN106950178 B CN 106950178B CN 201710202451 A CN201710202451 A CN 201710202451A CN 106950178 B CN106950178 B CN 106950178B
Authority
CN
China
Prior art keywords
history
target
laser
coupling coefficient
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710202451.7A
Other languages
English (en)
Other versions
CN106950178A (zh
Inventor
张品亮
陈川
杨武霖
徐坤博
曹燕
武强
龚自正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Spacecraft Environment Engineering
Original Assignee
Beijing Institute of Spacecraft Environment Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Spacecraft Environment Engineering filed Critical Beijing Institute of Spacecraft Environment Engineering
Priority to CN201710202451.7A priority Critical patent/CN106950178B/zh
Publication of CN106950178A publication Critical patent/CN106950178A/zh
Application granted granted Critical
Publication of CN106950178B publication Critical patent/CN106950178B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于流场反演的激光冲量耦合系数测量方法,该方法采用时间同步及延时系统,触发速度干涉仪对靶界面处速度干涉条纹进行记录,将原始干涉信号经过图像处理后得到界面原位粒子速度历史,基于应力波理论,采用先时间后空间的反演方法,以界面速度历史作为输入条件,反向推导出靶前表面的推力加载历史,对靶前表面的推力加载历史进行时间积分,计算激光烧蚀产生的冲量,最后,依据激光冲量耦合系数的定义,即可获得激光冲击耦合系数。本发明的测量方法,采用带窗口的靶结构固定待测样品,将动态标定转为静态标定,能够实现激光烧蚀推力波形和冲量耦合系数的精确测量。

Description

基于流场反演的激光冲量耦合系数测量方法
技术领域
本发明涉及激光移除空间碎片和激光推进技术领域,尤其是涉及一种基于流场反演的激光冲量耦合系数测量方法。
背景技术
冲量耦合系数是激光推进和激光移除空间碎片领域研究的一个重要方面,它定义为激光烧蚀靶材过程中产生的靶动量与入射激光能量的比值,它反映了激光能量转化为靶动量的能力。为了适应不同的推力测量需求,国内外学者开发了多种测量系统,包括扭摆结构、天平结构、单摆结构、导轨结构和形变结构等。激光冲量耦合过程中微小位移量的测量方法包括高速摄影和光学方法。然而,这些结构大部分为接触式系统,依靠运动参数难以克服摩擦因素随机的影响,增加了冲量耦合系数测量的不确定度。
对于具有高斯波形的激光,虽然脉宽极短,但是均存在一个激光功率密度突破阈值产生推力,推力从无到有,再下降到零的过程。采用PVDF或PCB压电传感器可实现推力波形测量,但其对系统的数据采集响应频率要求较高,动态标定困难。由于激光烧蚀作用过程非常短暂,大部分的常规测量手段无法实现推力加载过程的原位测量,无法再现激光烧蚀推力的加载历史。研究该推力的加载历史,不仅能够获得激光脉冲的冲量耦合系数,而且在提升激光冲量耦合效率和机理研究方面具有重要意义。
发明内容:
针对上述问题,本发明的目的在于提供一种基于流场反演的激光冲量耦合系数测量方法。该方法通过以下方式实现:在真空靶室中进行激光打靶,利用成像型速度干涉仪测量界面粒子速度。基于应力波理论,采用流场反演的方法对靶前表面的推力加载历史进行反演,对推力加载历史进行时间积分得到激光烧蚀冲量,最后,获得待测材料的激光冲量耦合系数。
本发明需要解决的技术问题包括:固定待测样品,避免动态标定的不确定性。基于应力波理论,在获得激光烧蚀推力加载历史的同时实现冲量耦合系数的测量。
本发明采用了如下的技术方案:
本发明的基于流场反演的激光冲量耦合系数测量方法,包括以下步骤:
1)在真空靶室内设置有三维平移台,三维平移台其上设置有靶并能够使靶在三维空间内调整角度与位置;利用前向监测望远镜和反射镜对成像型干涉仪的探测激光与相对窗口入射的入射激光光路进行校准,以保证它们在同一条直线上,利用侧向监测望远镜和平行的两组反光镜对靶平面的角度进行调节,以保证入射激光垂直辐照在靶平面上;
2)入射激光聚焦在靶上产生烧蚀压力,采用时间同步及延时系统,成像型速度干涉仪对靶界面处的速度干涉条纹进行记录;
3)将采集到的原始干涉条纹信号(界面原位粒子速度历史)经过图像处理/读取后得到粒子速度与时间的关系曲线;
4)基于应力波理论,采用先时间后空间的反演方法,以界面粒子速度历史作为输入条件,将界面粒子速度历史曲线读取为(时间,速度)形式的二元数组。将数组代入流体力学方程,反向推导出靶前表面的推力加载历史,具体形式如下:
流场各物理量随时域和空域连续变化,满足拉格朗日坐标下的流体力学质量守恒、力学响应和动量守恒方程:
Figure BDA0001258955360000021
Figure BDA0001258955360000022
Figure BDA0001258955360000031
其中x、t、σx、ρ0、u、ε、τ分别表示长度、时间、纵向应力、初始密度、粒子速度、体应变和剪应力。将流体力学方程组进行时间离散,具体差分格式如下:
Figure BDA0001258955360000032
v(x+dx,t)=F(p(x+dx,t)) (5)
Figure BDA0001258955360000033
然后以界面粒子速度历史作为输入数据进行空间反演计算。对于带窗口靶,在反演计算前,需要给出界面处的应力历史和比体积历史。在具体的计算过程中,第1步对界面处进行全时间过程计算,求出其相邻点处的应力历史;第2步求解该点处的应变历史;第3步求解该点处的速度历史。最后,依次沿空间向内部推进,求解整个流场,获得加载面处的推力加载历史,即推力与时间的关系曲线。
该过程可由Matlab或其它自编程序实现。
5)对靶前表面的推力加载历史进行时间积分(即推力-时间曲线下的面积,可通过origin等图像分析软件计算):
mΔv=∫PSdt (7)
其中P为推力加载历史,S为激光焦斑面积。积分后获得激光烧蚀产生的冲量。最后,依据激光冲量耦合系数的定义,即可获得激光冲击耦合系数。
其中,靶由微米级厚度的待测样品和窗口材料组成,是通过采用电子束气相沉积的方法将待测样品沉积在窗口材料上,或者使待测样品均匀无间隙的附着在窗口材料上而制成。
其中,窗口材料选用具有与待测样品波阻抗值近似的透明材料。
进一步地,当待测样品为铝时,窗口材料为LiF。
本发明提出的种基于流场反演的激光冲量耦合系数测量方法中,采用带窗口的靶结构固定待测样品,将动态标定转为静态标定,能够实现激光烧蚀推力波形和冲量耦合系数的精确测量。
附图说明
图1是本发明的基于流场反演的激光冲量耦合系数测量系统的结构示意图。
其中,1、真空靶室;2、三维平移台;3、前向监测望远镜;4、入射激光;5、干涉仪探测激光;6、侧向监测望远镜;7、时间同步及延时系统;8、成像型速度干涉仪(VISAR);9、靶;10、反光镜。
图2是本发明的基于流场反演的激光冲量耦合系数测量系统中使用的靶结构示意图。
图3是本发明的基于流场反演的激光冲量耦合系数测量方法中实测的速度干涉条纹图。
图4是本发明的基于流场反演的激光冲量耦合系数测量方法中界面粒子速度与时间的关系曲线图。
图5是本发明的基于流场反演的激光冲量耦合系数测量方法中加载面处的推力加载历史。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明,但这些仅仅是示例性的,并不旨在对其保护范围进行任何限定。
参见图1,图1显示了本发明的基于流场反演的激光冲量耦合系数测量系统的结构示意图。由图可以看出,在基于流场反演的激光冲量耦合系数测量系统中设置有真空靶室1,在真空靶室1内设置有三维平移台2,三维平移台2其上设置有靶9,并能够使靶9在三维空间内调整角度与位置。利用前向监测望远镜3和反射镜10,对成像型速度干涉仪8的探测激光5与相对窗口入射的入射激光4光路进行校准,以保证它们在同一条直线上。利用侧向监测望远镜6和平行的两组反光镜对靶平面的角度进行调节,以保证入射激光垂直辐照在靶平面上。采用时间同步及延时系统触发成像型速度干涉仪,使成像型速度干涉仪对靶界面处的速度干涉条纹进行记录。其中,前向监测望远镜3用来监测入射激光4和干涉仪探测激光5的光路,侧向监测望远镜6用来入射激光聚焦在靶上产生烧蚀压力。
参见图2,图2为本发明的测量系统中使用的待测样品所组成的靶结构,其由微米级厚度的待测样品和窗口材料组成。采用该结构能够时使待测样品在推力加载过程中保持静止,避免动态标定过程中的不确定性。窗口材料应选用具有与待测样品波阻抗值近似的透明材料,例如:铝采用的窗口为LiF。通常采用电子束气相沉积的方法将待测样品沉积在窗口材料上,或者使待测样品均匀无间隙的附着在窗口材料上。
以下详细说明本发明的基于流场反演的激光冲量耦合系数测量方法,
实验中使用能量为86J,焦斑直径为792μm的激光进行打铝靶实验。具有高斯波形的激光直接烧蚀靶材,将形成准等熵的加载过程。成像型速度干涉仪利用光在运动表面反射时产生的多普勒频移引起干涉条纹移动的原理,根据条纹移动与反射面运动速度的关系实现对界面速度的测量。实验采集到的原始干涉信号即为界面粒子速度的时间历史(如图3),读取图像可得到界面粒子速度与时间的关系曲线(如图4)。
将界面粒子速度历史曲线读取为(时间,速度)形式的二元数组。将数组代入流体力学方程,采用流场反演反积分的方法,反向推导出靶前表面的推力加载历史,具体方法如下:
准等熵压缩流场各物理量随时域和空域连续变化,满足拉格朗日坐标下的流体力学质量守恒、力学响应和动量守恒方程:
Figure BDA0001258955360000051
Figure BDA0001258955360000061
Figure BDA0001258955360000062
其中x、t、σx、ρ0、u、ε、τ分别表示长度、时间、纵向应力、初始密度、粒子速度、体应变和剪应力。将流体力学方程组进行时间离散,具体差分格式如下:
Figure BDA0001258955360000063
v(x+dx,t)=F(p(x+dx,t)) (5)
Figure BDA0001258955360000064
然后以界面粒子速度历史作为输入数据进行空间反演计算。对于带窗口靶,在反演计算前,需要给出界面处的应力历史和比体积历史。在具体的计算过程中,第1步对界面处进行全时间过程计算,求出其相邻点处的应力历史;第2步求解该点处的应变历史;第3步求解该点处的速度历史。最后,依次沿空间向内部推进,求解整个流场,获得加载面处的推力加载历史(如图5)。从图中可以读出,实验中加载峰值压力达到~18GPa,压力上升前沿为~17ns。
本发明采用Matlab实现该计算,关键计算指令如下:
Figure BDA0001258955360000065
Figure BDA0001258955360000071
(5)对靶前表面的推力加载历史进行时间积分:
mΔv=∫PSdt (7)
其中P为推力加载历史,S为激光焦斑面积,即可计算出激光辐照后靶获得的动量为185.89μN·s。依据激光冲量耦合系数的定义,可得到激光冲击耦合系数Cm=mΔv/E=2.187μN·s/J。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术的原理前提下,还可以做出若干改进和润饰,这些改进和润饰也都应该在本发明的保护范围。

Claims (5)

1.基于流场反演的激光冲量耦合系数测量方法,包括以下步骤:
1)在真空靶室内设置有三维平移台,三维平移台其上设置有靶并能够使靶在三维空间内调整角度与位置,利用前向监测望远镜和反射镜对成像型速度干涉仪的探测激光与相对窗口入射的入射激光光路进行校准,以保证它们在同一条直线上,利用侧向监测望远镜和平行的两组反光镜对靶平面的角度进行调节,以保证入射激光垂直辐照在靶平面上,其中带窗口的靶用于固定待测样品,靶由微米级厚度的待测样品和窗口材料组成,是通过采用电子束气相沉积的方法将待测样品沉积在窗口材料上;
2)入射激光聚焦在靶上产生烧蚀压力,采用时间同步及延时系统,成像型速度干涉仪对靶界面处的速度干涉条纹进行记录;
3)将采集到的原始干涉条纹信号经过图像处理/读取后得到粒子速度与时间的关系曲线,即 界面粒子速度历史;
4)以界面粒子速度历史作为输入数据进行空间反演计算,基于应力波理论,采用先时间后空间的反演方法,以界面粒子速度历史作为输入条件,将界面粒子速度历史曲线读取为(时间,速度)形式的二元数组,将二元数组代入流体力学方程,反向推导出靶前表面的推力加载历史;
5)对靶前表面的推力加载历史进行时间积分,即推力-时间曲线下的面积,通过origin图像分析软件计算:
mΔv=∫PSdt (7)
其中P为推力加载历史,S为激光焦斑面积,积分后获得激光烧蚀产生的冲量,最后,依据激光冲量耦合系数的定义,即可获得激光冲击耦合系数。
2.如权利要求1所述的方法,其中,所述的空间反演计算,对于带窗口靶,在反演计算前,要给出界面处的应力历史和比体积历史。
3.如权利要求2所述的方法,其中,所述空间反演计算的计算过程中,第1步对界面处进行全时间过程计算,求出其相邻点处的应力历史;第2步求解该点处的应变历史;第3步求解该点处的速度历史;最后,依次沿空间向内部推进,求解整个流场,获得加载面处的推力加载历史,即推力与时间的关系曲线。
4.如权利要求1所述的方法,其中,窗口材料选用具有与待测样品波阻抗值近似的透明材料。
5.如权利要求1-2任一项所述的方法,其中,待测样品为铝,窗口材料为LiF。
CN201710202451.7A 2017-03-30 2017-03-30 基于流场反演的激光冲量耦合系数测量方法 Active CN106950178B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710202451.7A CN106950178B (zh) 2017-03-30 2017-03-30 基于流场反演的激光冲量耦合系数测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710202451.7A CN106950178B (zh) 2017-03-30 2017-03-30 基于流场反演的激光冲量耦合系数测量方法

Publications (2)

Publication Number Publication Date
CN106950178A CN106950178A (zh) 2017-07-14
CN106950178B true CN106950178B (zh) 2020-07-28

Family

ID=59474999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710202451.7A Active CN106950178B (zh) 2017-03-30 2017-03-30 基于流场反演的激光冲量耦合系数测量方法

Country Status (1)

Country Link
CN (1) CN106950178B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108801433B (zh) * 2018-04-23 2020-05-19 中国工程物理研究院流体物理研究所 透明介质主冲击绝热线上体声速的连续测量系统及方法
CN110057789B (zh) * 2019-05-22 2024-05-03 中国工程物理研究院激光聚变研究中心 一种提升激光加载冲击波速度稳定性的结构靶
CN113281197B (zh) * 2021-05-13 2022-11-15 中物院成都科学技术发展中心 一种可多维运动的垂直轻气炮
CN115472329B (zh) * 2022-09-30 2023-05-05 深圳技术大学 一种辐照装置及透明靶制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450222B1 (en) * 2007-07-02 2008-11-11 The United States Of America As Represented By The United States Department Of Energy Correlated-intensity velocimeter for arbitrary reflector
CN105352639A (zh) * 2015-09-30 2016-02-24 南京理工大学 一种激光对靶标作用冲量耦合效率测试系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450222B1 (en) * 2007-07-02 2008-11-11 The United States Of America As Represented By The United States Department Of Energy Correlated-intensity velocimeter for arbitrary reflector
CN105352639A (zh) * 2015-09-30 2016-02-24 南京理工大学 一种激光对靶标作用冲量耦合效率测试系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser;ZHANG Pin-Liang 等;《CHIN. PHYS. LETT.》;20150731;第32卷(第7期);第075201-1页左栏第3段至第075201-3页右栏第2段、图1-3 *
一维准等熵压缩流场的反演;薛全喜 等;《核聚变与等离子体物理》;20140331;第34卷(第1期);17-21 *
带窗口准等熵压缩实验的流场反演技术;王刚华 等;《爆炸与冲击》;20090131;第29卷(第1期);第1小节、第103页第1段、图1 *
激光驱动冲击压缩下金属Al的高压声速研究;田宝贤 等;《原子能科学技术》;20150228;第49卷(第2期);第1小节和第2小节、图2 *
纳秒激光烧蚀冲量耦合数值模拟;常浩 等;《物理学报》;20131005;第62卷(第19期);第2.4小节 *

Also Published As

Publication number Publication date
CN106950178A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN106950178B (zh) 基于流场反演的激光冲量耦合系数测量方法
WO2016090589A1 (zh) 一种激光超声金属材料残余应力的无损测量方法及设备
CN111521566A (zh) 基于双波混合的激光超声无损检测系统
CN102322805B (zh) 空化泡最大泡半径的探测方法
Lea et al. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars
CN104898123A (zh) 基于角域虚拟源的水浸超声合成孔径聚焦成像方法
US10161924B2 (en) Sensor system that uses embedded optical fibers
Moro New developments in photon Doppler velocimetry
CN106500635A (zh) 基于激光超声的长方体工件几何尺寸测量系统
CN102721457B (zh) 超声散斑水下稳态振动测量方法
CN105352639B (zh) 一种激光对靶标作用冲量耦合效率测试系统
Manovski et al. 3D Lagrangian particle tracking of a subsonic jet using multi-pulse Shake-The-Box
Kang et al. Measurement of shallow defects using noncontact broadband leaky Lamb wave produced by pulsed laser with ultrasound microphone
CN103954392B (zh) 线性调频多光束激光外差测量扭摆微冲量装置的扭摆微冲量测量方法
Arrigoni et al. Laser Doppler interferometer based on a solid Fabry–Perot etalon for measurement of surface velocity in shock experiments
CN108871595B (zh) 超时间分辨冲击波速度计算方法
CN102338680A (zh) 基于多光束激光外差二次谐波法与扭摆法测量微冲量的方法
CN103994848B (zh) 采用线性调频双光束激光外差法及扭摆法测量微冲量的装置及该装置的测量方法
CN103954390B (zh) 采用线性调频双光束激光外差法及扭摆法测量微冲量的装置及该装置的测量方法
Požar et al. Optical detection of impact contact times with a beam deflection probe
CN112147630B (zh) 一种成像型多普勒速度仪
CN210774609U (zh) 双芯动量传感器及外差式测速系统
Willey et al. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography
CN209215414U (zh) 一种光电复合测试传感器
CN108801433A (zh) 透明介质主冲击绝热线上体声速的连续测量系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant