CN106946484B - 一种利用悬浮粉煤灰改性矿渣棉的方法 - Google Patents
一种利用悬浮粉煤灰改性矿渣棉的方法 Download PDFInfo
- Publication number
- CN106946484B CN106946484B CN201710180269.6A CN201710180269A CN106946484B CN 106946484 B CN106946484 B CN 106946484B CN 201710180269 A CN201710180269 A CN 201710180269A CN 106946484 B CN106946484 B CN 106946484B
- Authority
- CN
- China
- Prior art keywords
- mineral wool
- flyash
- room
- modifies
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010881 fly ash Substances 0.000 title claims abstract description 63
- 239000002893 slag Substances 0.000 title claims abstract description 38
- 229920000742 Cotton Polymers 0.000 title claims abstract description 30
- 239000000725 suspension Substances 0.000 title claims abstract description 21
- 239000011490 mineral wool Substances 0.000 claims abstract description 86
- 239000000463 material Substances 0.000 claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims description 12
- 239000002699 waste material Substances 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000010883 coal ash Substances 0.000 claims description 5
- 229910052593 corundum Inorganic materials 0.000 claims description 5
- 238000010891 electric arc Methods 0.000 claims description 5
- 238000005096 rolling process Methods 0.000 claims description 5
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052904 quartz Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052682 stishovite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 2
- 239000004566 building material Substances 0.000 abstract description 3
- 239000002910 solid waste Substances 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 2
- 230000001681 protective Effects 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- 239000004567 concrete Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium monoxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- NTGONJLAOZZDJO-UHFFFAOYSA-M disodium;hydroxide Chemical compound [OH-].[Na+].[Na+] NTGONJLAOZZDJO-UHFFFAOYSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000171 quenching Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/46—Rock wool ; Ceramic or silicate fibres
- C04B14/4643—Silicates other than zircon
- C04B14/4675—Silicates other than zircon from slags
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/42—Coatings containing inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
- C04B20/1066—Oxides, Hydroxides
Abstract
本发明公开一种利用悬浮粉煤灰改性矿渣棉的方法,属于建筑材料领域。本发明使刚刚成纤的矿渣棉通过压差将粉煤灰均匀的吸入改性室,改性室内温度保持在600~800℃,使刚刚成纤的矿渣棉与粉煤灰微粒发生化学吸附,粉煤灰粘结在矿渣棉表面,形成一层致密的碱性保护膜。本发明利用了工业固废,即粉煤灰、以及由矿渣生产的矿渣棉,制备出耐酸碱的高性能纤维材料,为固体废弃物的综合利用寻找了一条新的途径。
Description
技术领域
本发明属于建筑材料领域,具体涉及一种利用悬浮粉煤灰微粒改性矿渣棉的方法。
背景技术
钢铁作为国家基础性建设材料,在国民经济的发展中发挥着及其重要的作用。自上世纪90年代末以来,中国成为新一轮钢铁增长的主要源动力,粗钢年产量跃居世界第一,并延续至今见。高炉渣是钢铁冶炼过程中的主要副产品,是冶金工业生产中数量最多的一种固体废弃物。通常情况下,吨铁产渣量为250~350kg,同时,熔融状态的高炉渣从高炉中流出时,大量显热被白白浪费。尽管目前我国高炉渣已得到有效利用,但一般是水淬后主要用于陶瓷制造和水泥等建筑行业,产品的附加值较低,同时水淬过程中会产生SO2、H2S等有害气体,严重污染环境。因此,高炉熔渣的余热回收和综合利用,是实现钢铁行业节能、降耗的关键。
矿渣棉是以高炉渣为主要原料制成的棉状纤维成本较低。一般可耐700~800℃的高温,还具有质轻、耐氧化、电绝缘、不腐蚀金属等优点。常被加工成保温板、保温毡、保温筒、保温带、耐火板等,应用前景广泛。此举不仅有效地利用了熔渣的显热,还为高炉渣的综合利用寻求新的途径。
研究表明,把废渣制成纤维棉用于混凝土的增强材料,能够在一定程度上改善混凝土性能方面的缺陷。众所周知,普通的水泥混凝土材料自身存在脆性大,抗拉、抗折强度低,易收缩开裂,韧性差,抗冲击性能较低等固有缺陷,从而会降低水泥混凝土路面的耐久性能。而矿渣棉掺入对基体起到网络支撑作用,避免了浆体的离析,使得水泥水化、硬化均匀进行,有利于混凝土强度的提高。
但矿渣棉在水泥中易被水泥水化时产生的碱性物质所腐蚀、粉化,导致基体内的纤维断裂,造成其性能的下降,失去了纤维增强增任的作用。
发明内容
本发明的目的在于针对矿渣棉耐碱性能不佳,提供一种制备耐碱较强的纤维材料的方法。对矿渣棉进行防碱改性最经济有效的方法是粉煤灰对刚刚成纤的高温矿渣棉进行改性,在矿渣棉表面形成一层致密的碱性保护膜,从而使其耐碱性能得到改善。但矿渣棉质轻,使用粉煤灰对高温矿渣棉进行改性比较麻烦,如果采用定点喷吹粉煤灰,很难保证粉煤灰在矿渣棉表面的均匀性,而通过逆向粉煤灰气流进行改性,则会使矿渣棉和粉煤灰一起上升,与未参加反应的粉煤灰很难分离,改性效果不佳,改性工艺难以控制。因此本发明在圆柱体改性室内通过高压切向给入矿渣棉,由于矿渣棉的给料压力大,流速高,经过粉煤灰给料口产生负压,在负压和本身吹入压力下,粉煤灰会均匀的带入改性室内与矿渣棉混合,未及时吸附于矿渣棉表面的粉煤灰会进入圆柱体改性室进一步反映,通过控制改性室的温度,可以保持矿渣棉在与粉煤灰反应时的表面的活性。粉煤灰质较改性后的矿渣棉轻,在重力和离心力的作用下,改性后的矿渣棉会沿圆柱体改性室内壁进入底部的锥形区域,从底端排出,而多余的粉煤灰会在圆柱体改性室内形成悬浮体,最终仍没有反应的粉煤灰进入圆柱体改性室中心地区,多余的粉煤灰从圆柱体改性室上端中央的溢留口排出,循环利用。本制备原料不仅来源广泛,且成本低廉,可变废为宝。
本发明用一种悬浮粉煤灰改性矿渣棉包括下述步骤:
一种悬浮粉煤灰改性矿渣棉的方法,其特征在于将刚刚离心成纤的矿渣棉由风环产生的风由悬浮改性室上端切向给入悬浮改性室,并在悬浮改性室内做离心运动,悬浮改性室分为上部的圆柱体改性室和下部的圆台体物料冷却排料室,具体步骤如下:
步骤a、将一定量的高炉废渣加入电弧炉重熔,并进行调质,融化充分后,经离心辊离心成纤,成纤后的矿渣棉由风机沿切向从圆柱体改性室上端的给矿口给入,圆柱体改性室的温度控制在600℃~800℃;
步骤b、将一定量的粉煤灰从圆柱体改性室上部端口沿切向方向给入圆柱体改性室,粉煤灰进入方向与矿渣棉的进入方向同向,粉煤灰给入方向与矿渣棉给入方向成5~175度夹角,悬浮状态的粉煤灰在负压的作用下和矿渣棉依次进入圆柱体改性室内;
步骤c,矿渣棉和粉煤灰在重力和切向力的作用下,在圆柱体改性室进行充分接触反应,吸附粉煤灰的矿渣棉即为改性矿渣棉,改性矿渣棉经由圆柱体改性室进入圆台体物料冷却排料室,从圆台体物料冷却排料室下端排出,未与矿渣棉发生吸附的粉煤灰在内场里的作用下,沿圆柱体改性室顶端的上端口排出,重新利用;
所述的矿渣棉的给入速量为4kg/min~5kg/min,给入压力为0.05MPa~0.15MPa
所述的粉煤灰的给入速量为0.2kg/min~1kg/min,给入压力为0.01MPa~0.03MPa。
所述的矿渣棉由高炉废渣生产而来,其酸度系数为1.1~1.4,单丝直径为3μm~7μm,长度为5cm~20cm,弹性模量为20GPa~30GPa,抗拉强度为30MPa~60MPa。
本发明所述的粉煤灰化学成分SiO2的含量为45%~65%,Al2O3含量为22%~35%。
本发明所述的粉煤灰成分中SiO2、Al2O3含量超过65%,能够对碱性物质,如Ca(OH)2起到稀释作用,减缓其对矿渣棉的腐蚀。本发明利用压力差和密度差,在旋流和重力场中实现了粉煤灰对矿渣棉的改型。此外,本发明所用的原材料都很常见,加工工艺也较为简单,材料成本、加工成本低;为矿渣棉增强水泥混凝土材料的实际应用奠定了基础。
附图说明
图1为本发明物料进入设备圆柱体改性室的示意图。
图2为本发明实施例中所用矿渣棉原料的SEM照片。
图3为本发明实施例1改性矿渣棉的SEM照片。
图4为本发明实施例1改性矿渣棉碱蚀7d后的SEM照片。
图5为本发明实施例1未性矿渣棉碱蚀7d后的SEM照片。
图6为本发明实施例2改性矿渣棉的SEM照片。
图7为本发明实施例3改性矿渣棉的SEM照片。
具体实施方式
实施例1:
本发明用一种悬浮粉煤灰改性矿渣棉包括下述步骤:
实验原料:
实验所用矿渣棉由高炉废渣生产而来,其酸度系数为1.1~1.4,单丝直径为3μm~7μm,长度为5cm~20cm,弹性模量为20GPa~30GPa,抗拉强度为30MPa~60MPa。其化学成分:CaO含量30.10%;MgO含量7.80%;Al2O3含量15.45%;SiO2含量41.74%;Fe2O3含量1.39%;TiO2含量1.33%;MnO含量0.24%;Na2O含量0.71%;K2O含量1.02%;S含量0.31%;P含量0.020%。
实验所用粉煤灰成分:CaO含量3.37%;MgO含量0.011%;Al2O3含量33.34%;SiO2含量51.87%;Fe2O3含量3.60%;TiO2含量0.82%;MnO含量0.044%;Na2O含量0.10%;K2O含量0.78%;S含量0.13%。
将刚刚离心成纤的矿渣棉由风环产生的风由悬浮改性室上端切向给入,悬浮改性室分为上部的圆柱体改性室和下部的圆台体物料冷却排料室,具体步骤如下:
第一步,将高炉废渣加入电弧炉重熔,并进行调质,融化充分后,经离心辊离心成纤,成纤后的矿渣棉由风机沿切向从圆柱体改性室上端的给矿口给入,矿渣棉的给入量为4kg/min,给入压力为0.1MPa,圆柱体改性室的温度控制在600℃。
第二步,同时将粉煤灰从圆柱体改性室上部端口沿切向方向给入圆柱体改性室,粉煤灰进入方向与矿渣棉的进入方向同向,粉煤灰给入方向与矿渣棉给入方向成135度夹角,悬浮状态的粉煤灰在负压的作用下和矿渣棉依次进入圆柱体改性室内,粉煤灰的给入速量为0.2kg/min,给入压力为0.01MPa。
第三步,矿渣棉和粉煤灰在重力和切向力的作用下,在圆柱体改性室进行充分接触反应,吸附粉煤灰的矿渣棉即为改性矿渣棉,改性矿渣棉经由圆柱体改性室进入圆台体物料冷却排料室,从圆台体物料冷却排料室下端排出,未与矿渣棉发生吸附的粉煤灰在内场里的作用下,沿圆柱体改性室顶端的上端口排出。
本实施例制备的改性矿渣棉的SEM照片见附图3,在27℃时,将未改性矿渣棉和改性矿渣棉分别在0.5mo/L的Ca(OH)2溶液中浸泡7d,碱蚀7d后改性矿渣棉的SEM照片见图4,未改性矿渣棉的见图5,由图4和图5可以看出,改性矿渣棉在碱溶液中浸泡7d后,表面仍然较光滑,而未改性矿渣棉表面粗糙,碱蚀严重。此条件下改性后的矿渣棉质量损失1.07wt%,相比矿渣棉原样耐碱性能提高了77.80%,其SEM照片见图3。
实施例2:
实验原料与实施例1相同。
将刚刚离心成纤的矿渣棉由风环产生的风由悬浮改性室上端切向给入,悬浮改性室分为上部的圆柱体改性室和下部的圆台体物料冷却排料室,具体步骤如下:
第一步,将高炉废渣加入电弧炉重熔,并进行调质,融化充分后,经离心辊离心成纤,成纤后的矿渣棉由风机沿切向从圆柱体改性室上端的给矿口给入,矿渣棉的给入量为4.5kg/min,给入压力为0.08MPa,圆柱体改性室的温度控制在750℃。
第二步,同时将粉煤灰从圆柱体改性室上部端口沿切向方向给入圆柱体改性室,粉煤灰进入方向与矿渣棉的进入方向同向,粉煤灰给入方向与矿渣棉给入方向成135度夹角,悬浮状态的粉煤灰在负压的作用下和矿渣棉依次进入圆柱体改性室内,粉煤灰的给入速量为0.3kg/min,给入压力为0.025MPa。
第三步,矿渣棉和粉煤灰在重力和切向力的作用下,在圆柱体改性室进行充分接触反应,吸附粉煤灰的矿渣棉即为改性矿渣棉,改性矿渣棉经由圆柱体改性室进入圆台体物料冷却排料室,从圆台体物料冷却排料室下端排出,未与矿渣棉发生吸附的粉煤灰在内场里的作用下,沿圆柱体改性室顶端的上端口排出。
本实施例制备的改性矿渣棉的SEM照片见附图6,在27℃时,将未改性矿渣棉和改性矿渣棉分别在0.5mo/L的Ca(OH)2溶液中浸泡7d,7d后改性矿渣棉的质量损失为1.89wt%,相比未改性矿渣棉原样耐碱性能提高了76.33%。
实施例3:
实验原料与实施例1相同。
将刚刚离心成纤的矿渣棉由风环产生的风由悬浮改性室上端切向给入,悬浮改性室分为上部的圆柱体改性室和下部的圆台体物料冷却排料室,具体步骤如下:
第一步,将高炉废渣加入电弧炉重熔,并进行调质,融化充分后,经离心辊离心成纤,成纤后的矿渣棉由风机沿切向从圆柱体改性室上端的给矿口给入,矿渣棉的给入量为5kg/min,给入压力为0.15MPa,圆柱体改性室的温度控制在650℃。
第二步,同时将粉煤灰从圆柱体改性室上部端口沿切向方向给入圆柱体改性室,粉煤灰进入方向与矿渣棉的进入方向同向,粉煤灰给入方向与矿渣棉给入方向成135度夹角,悬浮状态的粉煤灰在负压的作用下和矿渣棉依次进入圆柱体改性室内,粉煤灰的给入速量为0.5kg/min,给入压力为0.03MPa。
第三步,矿渣棉和粉煤灰在重力和切向力的作用下,在圆柱体改性室进行充分接触反应,吸附粉煤灰的矿渣棉即为改性矿渣棉,改性矿渣棉经由圆柱体改性室进入圆台体物料冷却排料室,从圆台体物料冷却排料室下端排出,未与矿渣棉发生吸附的粉煤灰在内场里的作用下,沿圆柱体改性室顶端的上端口排出。
本实施例制备的改性矿渣棉的SEM照片见附图7,在27℃时,将未改性矿渣棉和改性矿渣棉分别在0.5mo/L的Ca(OH)2溶液中浸泡7d,7d后改性矿渣棉的质量损失为2.07wt%,相比未改性矿渣棉原样耐碱性能提高了76.00%。
Claims (5)
1.一种利用悬浮粉煤灰改性矿渣棉的方法,其特征在于:将刚刚离心成纤的矿渣棉由压力沿管道从悬浮改性室上部给矿口切向给入悬浮改性室,悬浮改性室分为上部的圆柱体改性室和下部的圆台体物料冷却排料室,具体步骤如下:
步骤a:将一定量的高炉废渣加入电弧炉重熔,并进行调质,融化充分后,经离心辊离心成纤,成纤后的矿渣棉由风机沿切向从圆柱体改性室上端的给矿口给入,圆柱体改性室的温度控制在600℃~800℃;
步骤b:将一定量的粉煤灰从圆柱体改性室上部端口沿切向方向给入圆柱体改性室,粉煤灰进入方向与矿渣棉的进入方向同向,粉煤灰给入方向与矿渣棉给入方向成5~175度夹角,悬浮状态的粉煤灰在负压的作用下和矿渣棉依次进入圆柱体改性室内;
步骤c:矿渣棉和粉煤灰在重力和切向力的作用下,在圆柱体改性室进行充分接触反应,吸附粉煤灰的矿渣棉即为改性矿渣棉,改性矿渣棉经由圆柱体改性室进入圆台体物料冷却排料室,从圆台体物料冷却排料室下端排出,未与矿渣棉发生吸附的粉煤灰在内场力的作用下,沿圆柱体改性室顶端的上端口排出,重新利用。
2.如权利要求1所述的方法,其特征在于:所述矿渣棉的给入量为4kg/min~5kg/min,给入压力为0.05MPa~0.15MPa。
3.如权利要求1所述的方法,其特征在于:粉煤灰的给入量为0.2kg/min~1kg/min,给入压力为0.01MPa~0.03MPa。
4.如权利要求1所述的方法,其特征在于:矿渣棉由高炉废渣生产而来,其酸度系数为1.1~1.4,单丝直径为3μm~7μm,长度为5cm~20cm,弹性模量为20GPa~30GPa,抗拉强度为30MPa~60MPa。
5.如权利要求1所述的方法,其特征在于:粉煤灰化学成分SiO2的含量为45wt%~65wt%,Al2O3含量为22wt%~35wt%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710180269.6A CN106946484B (zh) | 2017-03-23 | 2017-03-23 | 一种利用悬浮粉煤灰改性矿渣棉的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710180269.6A CN106946484B (zh) | 2017-03-23 | 2017-03-23 | 一种利用悬浮粉煤灰改性矿渣棉的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106946484A CN106946484A (zh) | 2017-07-14 |
CN106946484B true CN106946484B (zh) | 2018-12-21 |
Family
ID=59473088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710180269.6A Active CN106946484B (zh) | 2017-03-23 | 2017-03-23 | 一种利用悬浮粉煤灰改性矿渣棉的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106946484B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1089879A (en) * | 1964-12-21 | 1967-11-08 | Foseco Int | Fireproof heat insulating materials |
CN102531375A (zh) * | 2012-01-06 | 2012-07-04 | 山西国际电力科技有限公司 | 利用热态粉煤灰或炉渣制造无机耐火纤维制品的方法 |
CN104445968A (zh) * | 2014-10-31 | 2015-03-25 | 湖州吴兴道场城乡建设发展有限公司 | 一种新型超长丝矿渣棉 |
CN106045301A (zh) * | 2016-05-25 | 2016-10-26 | 安徽工业大学 | 一种利用转炉前期熔融态钢渣生产矿棉的方法 |
-
2017
- 2017-03-23 CN CN201710180269.6A patent/CN106946484B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1089879A (en) * | 1964-12-21 | 1967-11-08 | Foseco Int | Fireproof heat insulating materials |
CN102531375A (zh) * | 2012-01-06 | 2012-07-04 | 山西国际电力科技有限公司 | 利用热态粉煤灰或炉渣制造无机耐火纤维制品的方法 |
CN104445968A (zh) * | 2014-10-31 | 2015-03-25 | 湖州吴兴道场城乡建设发展有限公司 | 一种新型超长丝矿渣棉 |
CN106045301A (zh) * | 2016-05-25 | 2016-10-26 | 安徽工业大学 | 一种利用转炉前期熔融态钢渣生产矿棉的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106946484A (zh) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zareei et al. | Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study | |
Narayanan et al. | An experimental investigation on flyash-based geopolymer mortar under different curing regime for thermal analysis | |
Gastaldini et al. | The use of water treatment plant sludge ash as a mineral addition | |
Mo et al. | Thermal conductivity, compressive and residual strength evaluation of polymer fibre-reinforced high volume palm oil fuel ash blended mortar | |
Alanyali et al. | Concrete produced by steel‐making slag (basic oxygen furnace) addition in portland cement | |
Akbar et al. | Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fibers | |
Khater et al. | Effect of nano-clay on alkali activated water-cooled slag geopolymer | |
Xu et al. | Mechanical properties of low-carbon ultrahigh-performance concrete with ceramic tile waste powder | |
CN108341618A (zh) | 一种免蒸养活性粉末混凝土掺合料及生产方法 | |
Santos et al. | Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers | |
Wu et al. | Drying shrinkage, mechanical and transport properties of sustainable mortar with both recycled aggregate and powder from concrete waste | |
CN106946484B (zh) | 一种利用悬浮粉煤灰改性矿渣棉的方法 | |
CN108863242A (zh) | 耐高温混凝土 | |
JPH06316815A (ja) | フライアッシュファイバー | |
CN103979787B (zh) | 一种利用高钙粉煤灰制备矿物棉的方法 | |
Shaheen et al. | Influence of bio-immobilized lime stone powder on self-healing behaviour of cementitious composites | |
JP4994056B2 (ja) | セメント混和材、セメント組成物、及びセメントコンクリート | |
Wang et al. | Incorporating steel slag in the production of high heat resistant FA based geopolymer paste via pressure molding | |
Yang et al. | Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete | |
CN108358664B (zh) | 一种利用粉煤灰制作的胶凝材料及其制备方法 | |
Ming et al. | Characteristic of one-Part Geopolymer as building materials | |
KR20210126847A (ko) | 초기강도 향상하기 위한 분쇄조제 조성물과 이를 활용한 고로슬래시멘트 결합재 조성물 | |
Huang et al. | Modification on Recycled Aggregates and its Influence on Recycled Concrete | |
Vali et al. | Performance of manufactured aggregate in the production of sustainable lightweight concrete | |
CN111807766A (zh) | 一种建筑垃圾制备高强装配式人造石的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |