CN106938862A - 用于去除四环素类污染物的纳米微电解材料的制备方法 - Google Patents

用于去除四环素类污染物的纳米微电解材料的制备方法 Download PDF

Info

Publication number
CN106938862A
CN106938862A CN201710247676.4A CN201710247676A CN106938862A CN 106938862 A CN106938862 A CN 106938862A CN 201710247676 A CN201710247676 A CN 201710247676A CN 106938862 A CN106938862 A CN 106938862A
Authority
CN
China
Prior art keywords
ethanol
activated carbon
micro
pollutant
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710247676.4A
Other languages
English (en)
Inventor
邹东雷
刘雨知
王晨
隋振英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710247676.4A priority Critical patent/CN106938862A/zh
Publication of CN106938862A publication Critical patent/CN106938862A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • C02F1/4678Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Abstract

本发明的用于去除四环素类污染物的纳米微电解材料的制备方法,属于处理微污染水处理技术领域。本发明该材料的制备方法为在乙醇和水的混合溶液中溶解七水合硫酸亚铁固体粉末或和五水合硫酸铜固体粉末,超声分散,加入粉末活性炭,再超声分散,快速加入硼氢化钠溶液,同时搅拌反应,即可得到新型的黑色固体颗粒纳米铁碳微电解材料或黑色固体颗粒负载铜纳米微电解材料。本发明制备的纳米微电解材料,对四环素类抗生素污染物具有高效、快速的去除效果,去除率可达到94.5%~97.9%。

Description

用于去除四环素类污染物的纳米微电解材料的制备方法
技术领域
本发明属微污染水处理的技术领域,尤其涉及一种用于去除四环素类污染物的新型纳米微电解材料及其制备方法。
背景技术
抗生素作为一类新兴污染物已经成为重要的环境问题之一,其被广泛的应用于人畜用药、消毒、添加剂等和人们生活息息相关的产品中。目前,在土壤、地表水及沉积物中、地下水,甚至在人的血液、尿液、母乳中都有抗生素检出。抗生素带来的水污染已经得到人们广泛关注,但处理现状却不容乐观。由于抗生素的天性,使得传统生物法处理具有很大的局限性,单独的高级氧化技术存在处理费用高,且矿化不完全的问题。
传统微电解法(Traditional micro-electrolysis,MET)是一种针对高浓度难降解有机工业废水的优良预处理技术。在上世纪70年代,它就已经用于印染废水的预处理。相比于其他处理技术,微电解法处理效率高、运行费用低,并且操作维修方便,因此在过去的几年中受到环保人士的广泛关注。MET类似于零价铁(Fe0)腐蚀,铁屑或铁粉和活性炭(Activated carbon,AC)可以在电解质溶液中形成无数的微小腐蚀原电池。相比单纯的Fe0腐蚀,由于AC的高电导率、高吸附容量和高比表面积,AC会加快还原接受到的电子以及电子从阳极铁到污染物的过程。此外,随着纳米技术的发展,纳米铁已经广泛应用于环境修复领域。由于纳米铁具有较大的比表面积和较高的表面活性,若其应用于微电解系统中将会明显优于传统的铁屑或铁粉。
本发明采用化学纳米合成方法来研制纳米铁碳微电解材料(nano micro-electrolysis material,nMETM)及负载铜纳米微电解材料(the nano micro-electrolysis material of supported Cu,Cu-nMETM)。采用现代分析表征技术筛选出高比表面积、高反应活性的nMETM,Cu-nMETM来降解四环素类废水。
发明内容
本发明的目的在于提供一种新型快速处理四环素类污染物的纳米微电解材料和纳米微电解材料制备方法,利用新型纳米微电解材料的良好的还原性和微电解作用,可快速去除水体中的四环素类抗生素。
本发明所述的纳米微电解材料,一种是纳米铁碳微电解材料(nMETM),主要组分及含量有活性炭(PAC)质量分数为2%~5%,零价铁质量分数为8%~20%;另一种是负载铜纳米微电解材料(Cu-nMETM),主要组分及含量有活性炭(PAC)质量分数为2%~5%,零价铁质量分数为5%~15%,零价铜质量分数为5%~10%。所述的活性炭(PAC),是木质粉末活性炭(WPAC)、椰壳粉末活性炭(CSPAC)或煤质粉末活性炭(COPAC)。
本发明的制备纳米铁碳微电解材料(nMETM)采用如下的技术方案。
一种用于去除四环素类污染物的纳米微电解材料的制备方法,制得纳米铁碳微电解材料(nMETM),具体步骤有,
步骤A:把活性炭过100目筛,放入超纯水中浸泡24小时后干燥备用;把FeSO4·7H2O固体研磨粉碎,过100目筛备用;称取硼氢化钠(NaBH4)用超纯水将其溶解制得硼氢化钠溶液;所述的活性炭,是木质粉末活性炭、椰壳粉末活性炭或煤质粉末活性炭;
步骤B:按摩尔比1:1.5~2.2:2.3~2.5称取FeSO4·7H2O粉末、活性炭和硼氢化钠;将FeSO4·7H2O粉末溶解于乙醇/水混合溶液中超声10min,将活性炭加入到乙醇/水混合溶液超声15min;再将硼氢化钠溶液滴加到乙醇/水混合溶液搅拌反应,会有黑色固体颗粒出现,滴加完毕再搅拌反应5~15min,控制产生的黑色固体呈悬浮状为宜;
步骤C:对反应后的液体进行抽滤,把分离出来的黑色固体颗粒用乙醇洗涤,最后烘干,制得纳米铁碳微电解材料,保存于惰性气体环境中。
在步骤A中,经浸泡过的活性炭,可以在烘箱中120℃干燥2小时;所述的硼氢化钠溶液,比较合适的浓度是5mol/L。
在步骤B中,所述的乙醇/水混合溶液,按体积比乙醇:水为4:1;乙醇/水混合溶液用量可以使FeSO4·7H2O的浓度为0.18~0.72mol/L。
在步骤C中,黑色固体颗粒用乙醇洗涤可以洗涤3次;可以在50℃烘箱中过夜烘干。
本发明的制备负载铜纳米微电解材料(Cu-nMETM)采用如下的技术方案。
一种用于去除四环素类污染物的纳米微电解材料的制备方法,制得负载铜纳米微电解材料(Cu-nMETM),具体步骤有,
步骤a:把活性炭过100目筛,放入超纯水中浸泡24小时后干燥备用;把FeSO4·7H2O固体和CuSO4·5H2O固体分别研磨粉碎,过100目筛备用;称取硼氢化钠(NaBH4)用超纯水将其溶解制得硼氢化钠溶液;所述的活性炭,是木质粉末活性炭、椰壳粉末活性炭或煤质粉末活性炭;
步骤b:按摩尔比为1:0.5:1.5~2.2:2.3~2.5称取FeSO4·7H2O粉末、CuSO4·5H2O粉末、活性炭和硼氢化钠;将FeSO4·7H2O粉末和CuSO4·5H2O粉末溶解于乙醇/水混合溶液中超声10min,将活性炭加入到乙醇/水混合溶液超声15min;再将硼氢化钠溶液滴加到乙醇/水混合溶液搅拌反应,会有黑色固体颗粒出现,滴加完毕再搅拌反应5~15min,控制产生的黑色固体呈悬浮状为宜;
步骤c:对反应后的液体进行抽滤,把分离出来的黑色固体颗粒用乙醇洗涤,最后烘干,制得负载铜纳米微电解材料,保存于惰性气体环境中。
在步骤a中,所述的活性炭,是过筛得到的75~150μm的活性炭粉末,浸泡过的活性炭,可以在烘箱中120℃干燥2小时;所述的硼氢化钠溶液,比较合适的浓度是5mol/L。
在步骤b中,所述的乙醇/水混合溶液,按体积比乙醇:水为4:1;乙醇/水混合溶液用量可以使FeSO4·7H2O的浓度为0.18~0.72mol/L。
在步骤c中,黑色固体颗粒用乙醇洗涤可以洗涤3次;可以在50℃烘箱中过夜烘干。
本发明的有益效果在于所制备的用于去除四环素类污染物的纳米微电解材料对强力霉素、金霉素等四环素类抗生素有高效、快速的去除效果,去除率可达到94.5%~97.9%。本发明制备的纳米微电解材料①继承了零价纳米铁良好的脱卤作用,不仅可以还原污染物分子基团上的氯元素,还对含羰基环状有机物具有一定开环作用;②活性炭的比表面积在900m2/g以上,纳米微电解材料的比表面积在33.0-92.4m2/g,具有纳米材料反应活性强、反应迅速的特点;③还具有微电解作用对难降解有机污染物中的N-N、C-N等化学键的破坏作用,纳米铁可与活性炭或铜形成的腐蚀原电池,对四环素中的N-N、C-N键的破坏作用。
附图说明
图1是本发明的三种nMETM的X射线衍射图。
图2是本发明的三种Cu-nMETM的X射线衍射图。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明不仅限于此
实施例1
步骤一:把WPAC过100目筛子,放入超纯水中浸泡24小时后,放入烘箱中120℃,干燥2小时后备用。把FeSO4·7H2O固体研磨粉碎,过100目筛子后,备用。
步骤二:称取3.268g的硼氢化钠(NaBH4)放入烧杯中,用超纯水将其溶解,制得5mol/L的硼氢化钠溶液,并命名为预制液A。
步骤三:称取10.000g的FeSO4·7H2O固体在烧杯中溶解于150mL的4/1(v/v)乙醇/水混合溶液中,然后放入超声清洗器中超声10min,再取0.864g(FeSO4·7H2O与活性炭的物质的量比为1:2)WPAC加入上述混合溶液中,再超声15min,使得WPAC与混合液充分混合,制得预制液B。
步骤四:把预制液A溶液逐滴缓慢加入预制液B中,使FeSO4·7H2O与NaBH4的物质的量比为1:2.3~2.5。随着预制液A的加入,预制液B中会有黑色固体颗粒出现,滴加完毕搅拌反应并控制反应时间在5~15min,控制产生的黑色固体呈悬浮状为宜。反应方程式为:
步骤五:反应完成后,对反应后的液体进行抽滤,使得形成的黑色固体从液相分离出来。再把从液相中分离出来的黑色固体用35ml乙醇洗涤3次,最后在烘箱中50℃过夜烘干,即制备出木质粉末活性炭纳米铁碳微电解材料(WPAC-nMETM),保存于惰性气体环境中。
本实施例制得的纳米铁碳微电解材料(WPAC-nMETM)的X射线衍射图见图1;纳米铁碳微电解材料(WPAC-nMETM)的BET数据见表1。表1给出本发明中的三种PAC及三种nMETM的BET数据比较。
表1:
将所得WPAC-nMETM加入100mL浓度为50mg/L的盐酸强力霉素溶液中,在WPAC-nMETM的投加量为1g/L,不调节初始pH,25℃恒温振荡反应90min的情况下,通过0.22微米滤头过滤后测得盐酸强力霉素的去除率为94.5%。
实施例2
步骤一:把CSPAC过100目筛,放入超纯水中浸泡24小时后,放入烘箱中120℃,干燥2小时后备用。把FeSO4·7H2O固体研磨粉碎,过100目筛后备用。
步骤二:称取3.268g的硼氢化钠(NaBH4)放入烧杯中,用超纯水将其溶解,制得5mol/L的硼氢化钠溶液,并命名为预制液A。
步骤三:称取10.000g的FeSO4·7H2O固体在烧杯中溶解于150mL的4/1(v/v)乙醇/水混合溶液中,然后放入超声清洗器中超声10min,再取0.864g(FeSO4·7H2O与活性炭的物质的量比为1:2)CSPAC加入上述混合溶液中,再超声15min,使得WPAC与混合液充分混合,制得预制液B。
步骤四:把预制液A溶液逐滴缓慢加入预制液B中,使FeSO4·7H2O与NaBH4的物质的量比为1:2.3~2.5。随着预制液A的加入,预制液B中会有黑色固体颗粒出现,滴加完毕搅拌反应并控制反应时间在5~15min,控制产生的黑色固体呈悬浮状为宜。反应方程式为:
步骤五:反应完成后,对反应后的液体进行抽滤,使得形成的黑色固体从液相分离出来。再把从液相中分离出来的黑色固体用35ml乙醇洗涤3次,最后在烘箱中50℃过夜烘干,即制备出椰壳粉末活性炭纳米微电解材料(CSPAC-nMETM),保存于惰性气体环境中。
本实施例制得的纳米铁碳微电解材料(CSPAC-nMETM)的X射线衍射图见图1;纳米铁碳微电解材料(CSPAC-nMETM)的BET数据见表1。
将所得CSPAC-nMETM加入100mL浓度为50mg/L的盐酸强力霉素溶液中,在CSPAC-nMETM投加量为1g/L,不调节初始pH,25℃恒温振荡反应90min的情况下,通过0.22微米滤头过滤后测得盐酸强力霉素的去除率为96.9%。
实施例3
步骤一:把COPAC过100目筛,放入超纯水中浸泡24小时后,放入烘箱中120℃,干燥2小时后备用。把FeSO4·7H2O固体研磨粉碎,过100目筛后备用。
步骤二:称取3.268g的硼氢化钠(NaBH4)放入烧杯中,用超纯水将其溶解,制得5mol/L的硼氢化钠溶液,并命名为预制液A。
步骤三:称取10.000g的FeSO4·7H2O固体在烧杯中溶解于150mL的4/1(v/v)乙醇/水混合溶液中,然后放入超声清洗器中超声10min,再取0.864g(FeSO4·7H2O与活性炭的物质的量比为1:2)COPAC加入上述混合溶液中,再超声15min,使得WPAC与混合液充分混合,制得预制液B。
步骤四:把预制液A溶液逐滴缓慢加入预制液B中,使FeSO4·7H2O与NaBH4的物质的量比为1:2.3~2.5。随着预制液A的加入,预制液B中会有黑色固体颗粒出现,滴加完毕搅拌反应并控制反应时间在5~15min,控制产生的黑色固体呈悬浮状为宜。反应方程式为:
步骤五:反应完成后,对反应后的液体进行抽滤,使得形成的黑色固体从液相分离出来。再把从液相中分离出来的黑色固体用35ml乙醇洗涤3次,最后在烘箱中50℃过夜烘干,即制备出煤质活性炭纳米铁碳微电解材料(COPAC-nMETM),保存于惰性气体环境中。
本实施例制得的纳米铁碳微电解材料(COPAC-nMETM)的X射线衍射图见图1;纳米铁碳微电解材料(COPAC-nMETM)的BET数据见表1。
将所得COPAC-nMETM加入100mL浓度为50mg/L的盐酸强力霉素溶液中,在COPAC-nMETM投加量为1g/L,不调节初始pH,25℃恒温振荡反应90min的情况下,通过0.22微米滤头过滤后测得盐酸强力霉素的去除率为97.9%。
实施例4
步骤一:把木质粉末活性炭(WPAC)过100目筛子,得到75-150μm的活性炭粉末,放入超纯水中浸泡24小时后,放入恒温烘箱中120℃干燥,备用。同时在玛瑙研钵中把FeSO4·7H2O固体和CuSO4·5H2O固体分别研磨粉碎,过100目筛子后,备用。
步骤二:称取10.000g的FeSO4·7H2O固体粉末及4.500g的CuSO4·5H2O固体粉末在烧杯中溶解于200mL的4/1(v/v)乙醇/水混合溶液中,然后放入超声清洗器中超声10min,再取0.864(FeSO4·7H2O与活性炭的物质的量比为1:2)WPAC加入上述混合溶液中,再超声15min,使得PAC与混合液充分混合。向混合液中逐滴缓慢加入5mol/L的硼氢化钠溶液,使FeSO4·7H2O、CuSO4·5H2O与NaBH4的物质的量比为2:1:4.8,随着硼氢化钠溶液的加入,混合液中会有黑色固体颗粒出现,滴加完毕搅拌反应并控制反应时间在5~15min,控制产生的黑色固体呈悬浮状为宜。反应方程式为:
步骤三:反应完成后,对反应后的液体进行抽滤,使得形成的黑色固体从液相分离出来。再把从液相中分离出来的黑色固体固体用35ml乙醇洗涤3次,最后在烘箱中60℃过夜烘干,即制备出WPAC-Cu-nMETM,保存于惰性气体环境中。
本实施例制得的负载铜纳米微电解材料(WPAC-Cu-nMETM)的X射线衍射图见图2;负载铜纳米微电解材料(WPAC-Cu-nMETM)的BET数据见表2。表2给出本发明中的三种PAC及三种Cu-nMETM的BET数据比较。
表2:
将所得WPAC-Cu-nMETM加入100mL浓度50mg/L的金霉素溶液中,在WPAC-Cu-nMETM的投加量为0.5g/L,不调节初始pH,25℃恒温振荡反应30min的情况下,通过0.22微米滤头过滤后测得金霉素的去除率为97.0%。
实施例5
步骤一:把椰壳粉末活性炭(CSPAC)过100目筛子,得到75-150μm的活性炭粉末,放入超纯水中浸泡24小时后,放入恒温烘箱中120℃干燥,备用。同时在玛瑙研钵中把FeSO4·7H2O固体和CuSO4·5H2O固体分别研磨粉碎,过100目筛子后,备用。
步骤二:称取10.000g的FeSO4·7H2O固体粉末及4.500g的CuSO4·5H2O固体粉末在烧杯中溶解于200mL的4/1(v/v)乙醇/水混合溶液中,然后放入超声清洗器中超声10min,再取0.864(FeSO4·7H2O与活性炭的物质的量比为1:2)CSPAC加入上述混合溶液中,再超声15min,使得PAC与混合液充分混合。向混合液中逐滴缓慢加入5mol/L的硼氢化钠溶液,使FeSO4·7H2O、CuSO4·5H2O与NaBH4的物质的量比为2:1:4.8,随着硼氢化钠溶液的加入,混合液中会有黑色固体颗粒出现,滴加完毕搅拌反应并控制反应时间在5~15min,控制产生的黑色固体呈悬浮状为宜。反应方程式为:
步骤三:反应完成后,对反应后的液体进行抽滤,使得形成的黑色固体从液相分离出来。再把从液相中分离出来的黑色固体固体用35ml乙醇洗涤3次,最后在烘箱中60℃过夜烘干,即制备出CSPAC-Cu-nMETM,保存于惰性气体环境中。
本实施例制得的负载铜纳米微电解材料(CSPAC-Cu-nMETM)的X射线衍射图见图2;负载铜纳米微电解材料(CSPAC-Cu-nMETM)的BET数据见表2。
将所得CSPAC-Cu-nMETM加入100mL浓度50mg/L的金霉素溶液中,在CSPAC-Cu-nMETM的投加量为0.5g/L,不调节初始pH,25℃恒温振荡反应30min的情况下,通过0.22微米滤头过滤后测得金霉素的去除率为97.9%。
实施例6
步骤一:把煤质粉末活性炭(COPAC)过100目筛子,得到75-150μm的活性炭粉末,放入超纯水中浸泡24小时后,放入恒温烘箱中120℃干燥,备用。同时在玛瑙研钵中把FeSO4·7H2O固体和CuSO4·5H2O固体分别研磨粉碎,过100目筛子后,备用。
步骤二:称取10.000g的FeSO4·7H2O固体粉末及4.500g的CuSO4·5H2O固体粉末在烧杯中溶解于200mL的4/1(v/v)乙醇/水混合溶液中,然后放入超声清洗器中超声10min,再取0.864(FeSO4·7H2O与活性炭的物质的量比为1:2)COPAC加入上述混合溶液中,再超声15min,使得PAC与混合液充分混合。向混合液中逐滴缓慢加入5mol/L的硼氢化钠溶液,使FeSO4·7H2O、CuSO4·5H2O与NaBH4的物质的量比为2:1:4.8,随着硼氢化钠溶液的加入,混合液中会有黑色固体颗粒出现,滴加完毕搅拌反应并控制反应时间在5~15min,控制产生的黑色固体呈悬浮状为宜。反应方程式为:
步骤三:反应完成后,对反应后的液体进行抽滤,使得形成的黑色固体从液相分离出来。再把从液相中分离出来的黑色固体固体用35ml乙醇洗涤3次,最后在烘箱中60℃过夜烘干,即制备出COPAC-Cu-nMETM,保存于惰性气体环境中。
本实施例制得的负载铜纳米微电解材料(COPAC-Cu-nMETM)的X射线衍射图见图2;负载铜纳米微电解材料(COPAC-Cu-nMETM)的BET数据见表2。
将所得COPAC-Cu-nMETM加入100mL浓度50mg/L的金霉素溶液中,在COPAC-Cu-nMETM的投加量为0.5g/L,不调节初始pH,25℃恒温振荡反应30min的情况下,通过0.22微米滤头过滤后测得金霉素的去除率为97.1%。

Claims (8)

1.一种用于去除四环素类污染物的纳米微电解材料的制备方法,制得纳米铁碳微电解材料,具体步骤有,
步骤A:把活性炭过100目筛,放入超纯水中浸泡24小时后干燥备用;把FeSO4·7H2O固体研磨粉碎,过100目筛备用;称取硼氢化钠用超纯水将其溶解制得硼氢化钠溶液;所述的活性炭,是木质粉末活性炭、椰壳粉末活性炭或煤质粉末活性炭;
步骤B:按摩尔比1:1.5~2.2:2.3~2.5称取FeSO4·7H2O粉末、活性炭和硼氢化钠;将FeSO4·7H2O粉末溶解于乙醇/水混合溶液中超声10min,将活性炭加入到乙醇/水混合溶液超声15min;再将硼氢化钠溶液滴加到乙醇/水混合溶液搅拌反应,会有黑色固体颗粒出现,滴加完毕再搅拌反应5~15min;
步骤C:对反应后的液体进行抽滤,把分离出来的黑色固体颗粒用乙醇洗涤,最后烘干,制得纳米铁碳微电解材料,保存于惰性气体环境中。
2.根据权利要求1所述的用于去除四环素类污染物的纳米微电解材料的制备方法,其特征在于,在步骤A中,经浸泡过的活性炭,是在烘箱中120℃干燥2小时;所述的硼氢化钠溶液,浓度是5mol/L。
3.根据权利要求1所述的用于去除四环素类污染物的纳米微电解材料的制备方法,其特征在于,在步骤B中,所述的乙醇/水混合溶液,按体积比乙醇:水为4:1;乙醇/水混合溶液用量是使FeSO4·7H2O的浓度为0.18~0.72mol/L。
4.根据权利要求1所述的用于去除四环素类污染物的纳米微电解材料的制备方法,其特征在于,在步骤C中,黑色固体颗粒用乙醇洗涤3次;在50℃烘箱中过夜烘干。
5.一种用于去除四环素类污染物的纳米微电解材料的制备方法,制得负载铜纳米微电解材料,具体步骤有,
步骤a:把活性炭过100目筛,放入超纯水中浸泡24小时后干燥备用;把FeSO4·7H2O固体和CuSO4·5H2O固体分别研磨粉碎,过100目筛备用;称取硼氢化钠用超纯水将其溶解制得硼氢化钠溶液;所述的活性炭,是木质粉末活性炭、椰壳粉末活性炭或煤质粉末活性炭;
步骤b:按摩尔比1:0.5:1.5~2.2:2.3~2.5称取FeSO4·7H2O粉末、CuSO4·5H2O粉末、活性炭和硼氢化钠;将FeSO4·7H2O粉末和CuSO4·5H2O粉末溶解于乙醇/水混合溶液中超声10min,将活性炭加入到乙醇/水混合溶液超声15min;再将硼氢化钠溶液滴加到乙醇/水混合溶液搅拌反应,会有黑色固体颗粒出现,滴加完毕再搅拌反应5~15min;
步骤c:对反应后的液体进行抽滤,把分离出来的黑色固体颗粒用乙醇洗涤,最后烘干,制得负载铜纳米微电解材料,保存于惰性气体环境中。
6.根据权利要求5所述的用于去除四环素类污染物的纳米微电解材料的制备方法,其特征在于,在步骤a中,所述的活性炭,是过筛得到的75~150μm的活性炭粉末,浸泡过的活性炭,在烘箱中120℃干燥2小时;所述的硼氢化钠溶液,浓度是5mol/L。
7.根据权利要求5所述的用于去除四环素类污染物的纳米微电解材料的制备方法,其特征在于,在步骤b中,所述的乙醇/水混合溶液,按体积比乙醇:水为4:1;乙醇/水混合溶液用量是使FeSO4·7H2O的浓度为0.18~0.72mol/L。
8.根据权利要求5所述的用于去除四环素类污染物的纳米微电解材料的制备方法,其特征在于,在步骤c中,黑色固体颗粒用乙醇洗涤3次;在50℃烘箱中过夜烘干。
CN201710247676.4A 2017-04-17 2017-04-17 用于去除四环素类污染物的纳米微电解材料的制备方法 Pending CN106938862A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710247676.4A CN106938862A (zh) 2017-04-17 2017-04-17 用于去除四环素类污染物的纳米微电解材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710247676.4A CN106938862A (zh) 2017-04-17 2017-04-17 用于去除四环素类污染物的纳米微电解材料的制备方法

Publications (1)

Publication Number Publication Date
CN106938862A true CN106938862A (zh) 2017-07-11

Family

ID=59463059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710247676.4A Pending CN106938862A (zh) 2017-04-17 2017-04-17 用于去除四环素类污染物的纳米微电解材料的制备方法

Country Status (1)

Country Link
CN (1) CN106938862A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879428A (zh) * 2017-10-30 2018-04-06 上海洗霸科技股份有限公司 多金属微电解填料及其制备方法与应用
CN111333154A (zh) * 2020-03-12 2020-06-26 上海理工大学 一种微电解材料的制备方法和应用
CN111420662A (zh) * 2020-05-14 2020-07-17 宜兴国际环保城科技发展有限公司 一种中性类芬顿催化剂、制备及应用
CN115028160A (zh) * 2022-06-20 2022-09-09 清华大学深圳国际研究生院 一种利用水体微塑料混凝絮体制备空心碳纳米饼的方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347717A (zh) * 2007-07-18 2009-01-21 中国科学院沈阳应用生态研究所 一种负载型饮用水除砷纳米吸附剂的制备方法
CN103521183A (zh) * 2013-10-19 2014-01-22 山东大学 一种处理丙烯腈废水的吸附剂及其制备方法与应用
CN103721715A (zh) * 2013-11-28 2014-04-16 温州大学 一种负载活性炭纳米零价铁材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347717A (zh) * 2007-07-18 2009-01-21 中国科学院沈阳应用生态研究所 一种负载型饮用水除砷纳米吸附剂的制备方法
CN103521183A (zh) * 2013-10-19 2014-01-22 山东大学 一种处理丙烯腈废水的吸附剂及其制备方法与应用
CN103721715A (zh) * 2013-11-28 2014-04-16 温州大学 一种负载活性炭纳米零价铁材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JESICA TRUJILLO-REYES等: "Removal of Indigo Blue In Aqueous Solution Using Fe/Cu Nanoparticles and C/Fe-Cu Nanoalloy Composites", 《WATER AIR AND SOIL POLLUTION》 *
LIMEI WU等: "Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon", 《JOURNAL OF HAZARDOUS MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879428A (zh) * 2017-10-30 2018-04-06 上海洗霸科技股份有限公司 多金属微电解填料及其制备方法与应用
CN111333154A (zh) * 2020-03-12 2020-06-26 上海理工大学 一种微电解材料的制备方法和应用
CN111333154B (zh) * 2020-03-12 2022-10-11 上海理工大学 一种微电解材料的制备方法和应用
CN111420662A (zh) * 2020-05-14 2020-07-17 宜兴国际环保城科技发展有限公司 一种中性类芬顿催化剂、制备及应用
CN115028160A (zh) * 2022-06-20 2022-09-09 清华大学深圳国际研究生院 一种利用水体微塑料混凝絮体制备空心碳纳米饼的方法及其应用
CN115028160B (zh) * 2022-06-20 2023-08-22 清华大学深圳国际研究生院 一种利用水体微塑料混凝絮体制备空心碳纳米饼的方法及其应用

Similar Documents

Publication Publication Date Title
Zhao et al. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process
Huang et al. Coagulation treatment of swine wastewater by the method of in-situ forming layered double hydroxides and sludge recycling for preparation of biochar composite catalyst
Li et al. Preparation and application of Fe/biochar (Fe-BC) catalysts in wastewater treatment: A review
Luo et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation
CN106938862A (zh) 用于去除四环素类污染物的纳米微电解材料的制备方法
CN109292883A (zh) 一种石墨化生物炭及其降解水体中有机污染物的方法
Ma et al. Design of Z-scheme g-C3N4/BC/Bi25FeO40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste
CN105709755A (zh) 一种生物炭催化剂、铁碳催化剂及其应用
CN108439525A (zh) 一种用于重金属污染的污水处理剂
He et al. Effective remediation of cadmium and zinc co-contaminated soil by electrokinetic-permeable reactive barrier with a pretreatment of complexing agent and microorganism
CN107311387B (zh) 一种印染废水的深度处理方法
CN106423051A (zh) 一种磁性活化水热生物炭微球的制备方法与应用
CN105617995A (zh) 一种氨三乙酸修饰的磁性氧化石墨烯复合材料的制备方法及其用途
Fan et al. Multi-targeted removal of coexisted antibiotics in water by the synergies of radical and non-radical pathways in PMS activation
CN106423272A (zh) 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
CN108620049A (zh) 一种污水处理制剂及其制备方法
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
CN105948415A (zh) 一种医院污水处理一体化装置及方法
CN110064407A (zh) 一种基于锌锰铁氧体负载纳米硫化铜的生物制备方法
CN105921763B (zh) 海藻酸钠/无机矿物联合负载型纳米零价铁的制备方法
Fan et al. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism
Lin et al. Simultaneous P release and recovery from fish farm sludge using a Zr-modified magnetic adsorbent treated by ultrasound
Toan et al. Ultrasonic-assisted synthesis of magnetic recyclable Fe 3 O 4/rice husk biochar based photocatalysts for ciprofloxacin photodegradation in aqueous solution
CN107744835A (zh) 一种铋酸钠基可见光催化纸材料的制备方法
CN115155592B (zh) 一种高效活化过硫酸盐的钴酸铁/煤矸石催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170711

WD01 Invention patent application deemed withdrawn after publication