CN106913406A - A kind of spinal fusion device and preparation method thereof - Google Patents

A kind of spinal fusion device and preparation method thereof Download PDF

Info

Publication number
CN106913406A
CN106913406A CN201510991653.5A CN201510991653A CN106913406A CN 106913406 A CN106913406 A CN 106913406A CN 201510991653 A CN201510991653 A CN 201510991653A CN 106913406 A CN106913406 A CN 106913406A
Authority
CN
China
Prior art keywords
fusion device
supporter
spinal fusion
hole shape
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510991653.5A
Other languages
Chinese (zh)
Inventor
耿芳
季向茹
曾红刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Minimally Invasive Spinal Trauma Medical Technology Co Ltd
Original Assignee
Suzhou Minimally Invasive Spinal Trauma Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Minimally Invasive Spinal Trauma Medical Technology Co Ltd filed Critical Suzhou Minimally Invasive Spinal Trauma Medical Technology Co Ltd
Priority to CN201510991653.5A priority Critical patent/CN106913406A/en
Publication of CN106913406A publication Critical patent/CN106913406A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • A61F2250/0024Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity made from both porous and non-porous parts, e.g. adjacent parts

Abstract

The present invention discloses a kind of spinal fusion device, and the spinal fusion device includes a supporter, and the supporter forms a receiving space, and a hole shape structure is at least partly included in the receiving space.Present invention simultaneously discloses a kind of preparation method of spinal fusion device, the method comprising the steps of:(1) a biocompatible material block is processed into a preset shape, some holes is being prepared near the biocompatible material block center, the biocompatible material block is formed a supporter and a pore structure.

Description

A kind of spinal fusion device and preparation method thereof
Technical field
The present invention relates to medical instruments field.Relate more specifically to a kind of spinal fusion device and preparation method thereof and Purposes.
Background technology
Spinal fusion is one of clinically the most frequently used modus operandi at present, be treatment tuberculosis of spine, infection, The effective means of the spine disorderses such as deformity, retrogression pathological changes and intervertebral disk injury.It is mainly by intervertebral Gap is implanted into Invasive lumbar fusion device, while be implanted into substantial amounts of autologous bone or homogeneous allogenic bone, so as to realize centrum between melt Close, reach the purpose of stabilization backbone.
The material of current fusion device is mainly nondegradable metal Ti6Al4V materials and macromolecular material polyethers Two kinds of ether ketone (PEEK), the former has preferable histocompatbility, is capable of achieving Bony union, but postoperative gold Category is retained in vivo all the life, the puzzlement of permanent retention and the possibility of second operation is increased, due to springform The conference of amount difference produces a certain degree of stress shielding, and fusion bone strength and quality are had a certain impact, and A certain degree of sedimentation can be produced, so as to easily form the disadvantage that interspinous support is highly lost.PEEK fusion devices It is the focus of research in recent years, its good biocompatibility is small to X-ray and CT Imagings, but bone Foreign matter is regarded as during remodeling process, and is isolated with fibr tissue capsule, such fibr tissue resistance Only direct bone apposition (apposition) and the attachment to implant, implant will not be completely coupled in bone And soft tissue will not be attached on implant, cause bone-material interface bond strength not enough, be susceptible to Loosen.The surface of PEEK fusion devices is modified (such as in surface spraying titanium valve, hydroxyapatite (HA), to be utilized The micropore spline structure induction bone tissue of coating grows into) although solving bone-material interface knot to a certain extent The not enough problem of intensity is closed, but face coat is in the case where physiological environment is plus load effect, still may be by body Absorb or due to stress concentration, cracked with the interface of ground along porous vesicular surface, cause and come off.Therefore There is the deficiency of itself in PEEK fusion devices.
Due to the deficiency that non-degradable material is present, also there is fusion device of the research on some degradation materials to produce Product, including ceramic material TCP fusion devices and macromolecule PDLLA fusion devices.Fusion prepared by ceramic material The fusion device of the device such as preparation such as calcium phosphate, hydroxyapatite allows direct bone apposition, but they are in intensity It is restricted with toughness, it is easily chipping.PDLLA fusion devices have the elastic modelling quantity close with sclerotin, Degradable is the product that can be absorbed by the body, so that gradually absorbed and substituted by bone tissue, with good Good bioactivity, in the absence of bone-material interface problem, but its mechanical strength is relatively low, in operation technique It is easy to fragmentation;And its early stage macromolecules degradation product can cause surrounding materials proliferation of fibrous tissue, certain journey Degree has delayed early stage skeletonization.
Spinal fusion device conventional at present implantation intervertenral space mainly plays a supportive role in addition, it is impossible to induced osteogenesis, Therefore generally require to be implanted into autologous bone or homogeneous allogenic bone in fusion device, to reach the purpose of Bony union, Autologous bone needs to be taken out from the body of patient, often brings very big pain to patient's body and mind, and of the same race Allograph bone is not only expensive, and syncretizing effect is also undesirable, Post lumbar surgery pseudarthrosis often occurs and is formed Deng the situation that lumbar vertebrae is not merged.
Therefore this area in the urgent need to provide one kind can degradation in vivo completely, it is strong with preferable mechanics Degree, elastic modelling quantity is approached with body bone tissue, while having self-bone grafting function, it is possible to achieve even without plant Bone or minimal amount of bone grafting can just reach the fusion device of good bone fusion effect.
The content of the invention
The present invention is intended to provide one kind can degradation in vivo completely, with preferable mechanical strength, springform Amount is approached with body bone tissue, while there is the fusion device of self-bone grafting function and its production and use.
In order to realize foregoing invention purpose, the present invention provides a kind of spinal fusion device, and the spinal fusion device includes one Supporter, the supporter forms a receiving space, and the receiving space partially or fully fills a hole shape structure.
Further, the supporter is made up with the hole shape structure of same material.The supporter and the hole Shape structure is made up of magnesium alloy.The hole shape structure is multiple through holes.The height of the hole shape structure is the supporter The 50% to 100% of height.The supporter includes an inner surface and an outer surface, and it is empty that the inner surface forms the receiving Between, the hole shape structure is connected with the inner surface, and the inner surface is 1.5mm to 4.5mm with the thickness of outer surface. With the total volume meter of the fusion device, the volume percentage of the hole shape structure is 30-80%.The hole shape knot The shape of cross section of the macropore in structure is one kind or the combination of following shapes:Circle, arc, it is square, oval, Triangle, regular hexagon.
In another preference, some through holes are also included on the supporter, the through hole runs through the outer of the supporter Surface and inner surface.
In another preference, the supporter includes a small aperture layer, the small aperture layer with the surface of the hole shape structure Bore dia be 1-50 μm.Include a bioactivity coatings in the small aperture layer.
Present invention simultaneously discloses a kind of preparation method of spinal fusion device, the method comprising the steps of:(1) will all one's life Thing compatible material block is processed into a preset shape, and some holes are prepared the biocompatible material block center is close to, The biocompatible material block is set to form a supporter and a hole shape structure.
The method is further included:(2) a small aperture layer is formed on the surface of the supporter and the hole shape structure. The method is further included:(3) bioactivity coatings are formed in the small aperture layer.
In another preference, the step (1) is further included:Some through holes are prepared on the supporter, should The through hole insertion supporter and/or the hole shape structure.
Compared with prior art, the spinal fusion device that the present invention is provided can be reduced or avoid human body from planting Bone, greatly reduces the operation risk and pain of patient.The spinal fusion device that the present invention is provided is due to using life The good degradable magnesium alloy material of thing compatibility, the low effective reduction stress-shielding effect of elastic modelling quantity.The present invention The spinal fusion device of offer is high-strength porous, and its static compress rigidity meets up to 20kN/mm-30kN/mm Clinically it is more than the use requirement of 18kN/mm.The internal macropore of spinal fusion device use of present invention offer, The pore structure that surface aperture is combined with each other, surface fine pore structure causes that cell tissue is easily adhered growth, Macroporous structure is conducive to creeping and connecting for cell, as the degraded bone tissue of fusion device constantly grows into, finally Realize complete Bony union.
Brief description of the drawings
Fig. 1 is the structural representation of the spinal fusion device 100 that one embodiment of the invention is related to;
Fig. 2 is the structural representation of the spinal fusion device 200 that one embodiment of the invention is related to;
Fig. 3 is the structural representation of the spinal fusion device 300 that one embodiment of the invention is related to;
Fig. 4 is the structural representation of the spinal fusion device 400 that one embodiment of the invention is related to;
Fig. 5 is the structural representation of the spinal fusion device 500 that one embodiment of the invention is related to;
Fig. 6 is the macropore pore appearance figure under the spinal fusion device ESEM that the present invention is provided;
Fig. 7 is the surface small structure shape appearance figure under the spinal fusion device ESEM that the present invention is provided;
Fig. 8 is to before and after the spinal fusion device surface plasma oxidation processes that provide in one embodiment of the invention Dynamic potential polarization curve;
Fig. 9 is that having for one embodiment of the invention offer is big under the spinal fusion device ESEM of circular macropore Hole;
Figure 10 is the structure and morphology figure of the surface aperture of the circular macropore shown in Fig. 9.
Figure 11 is that having for one embodiment of the invention offer is big under the spinal fusion device ESEM of square macropore Pore structure SEM shape appearance figures.
Figure 12 is the table under the spinal fusion device ESEM of the square macropore of tool that one embodiment of the invention is provided Face small structure SEM shape appearance figures.
Mainly illustrate
100th, 200,300,400,500-spinal fusion device
101st, 201,301,401,501-upper surface (the first face)
102nd, 202,302-lower surface (relative with the first face)
103rd, 203,303,403,503-macroporous structure
304-small 305-mounting hole of groove, 306-corrugated teeth
507a-outer surface 507b-508-macropore of inner surface
Specific embodiment
Inventor prepares and can be used for the Invasive lumbar fusion device of spinal fusion by in-depth study extensively, And if it was found that make fusion device middle part have a series of macropore, can aid in creeping and connecting for cell, and The aperture on fusion device surface can make cell tissue be easily adhered growth, this mutually to be tied with large and small pore structure The fusion device of conjunction can degradation in vivo completely, with preferable mechanical strength, elastic modelling quantity and human body bone group Knit close, while having self-bone grafting function, it is possible to achieve can just reach even without bone grafting or minimal amount of bone grafting To the fusion device of good bone fusion effect.On this basis, the present invention is completed.
Spinal fusion device
Vertebral fusion device of the invention can have any suitable shape, and including any suitable biofacies Capacity materials.Suitable shape is for example including substantially cylindrical in shape, annular, dish type, rectangle, U-shaped, boomerang shape etc. Shape, it is dimensioned to be used for neck, chest or waist.Suitable biocompatible material includes metal, modeling Material, resorbable polymers, polymer composites, bone grafting material etc. can be reabsorbed.
The present invention provides a kind of spinal fusion device for being implanted between two adjacent vertebraes, the institute in a kind of mode Fusion device is stated for one similar to cylinder spinal fusion device 100, its inside has to be led to and its phase from the first face 101 To the second face 102 loose structure 103, pore structure here is macropore.Loose structure provided by the present invention In addition to being the macropore for leading to the second face 102 corresponding thereto from the first face 101, can also be other single Dead-end pore, such as tree root shape hole, sponge-type porosity.
In the present invention, " macropore ", " through hole ", " macroporous structure " or " hole shape structure " refer to Pore structure of the aperture at 100-500 μm in the spinal fusion device that the present invention is provided, preferably aperture are 200-500 μ m。
Fig. 2 is square spinal fusion device 200 provided by the present invention.Fig. 3 is class provided by the present invention It is similar to a trapezoidal spinal fusion device 300.The spinal fusion device 300 includes the supporter positioned at outside, should Supporter includes upper surface 301 and lower surface 302 corresponding thereto.Supporter is made up of compact texture, uses In the mechanical strength that clinical requirement is met to provide, by taking magnesium, manganese or magnesium, zinc series alloy as an example, the support The static compress rigidity that body can be provided is more than 18kN/mm.In the middle of supporter is macroporous structure 303, The macroporous structure can be effectively promoted newborn Bone Ingrowth, improve its adhesion with surrounding tissue, so as to avoid The loose shift of implant, and can greatly improve the exchange of body fluid inside and outside implant.
Corrugated teeth 306 is provided with the upper surface 301 of supporter and lower surface 302, for improving implant The stability with vertebra support itself.In order to further improve fixed effect, can also be on corrugated teeth 306 Small groove 304 is set.
In this embodiment, the upper surface of macroporous structure 303 is almost located at same with the upper surface 301 of supporter One plane, and the lower surface of macroporous structure 303 is almost generally aligned in the same plane with the lower surface 302 of supporter. Advantage of this is that the mechanical strength of the spinal fusion device is increased, and can be when using on human body Unsuitable bone grafting.
In another embodiment, spinal fusion device 400 as shown in Figure 4, the entirety of macroporous structure 403 Highly less than the whole height of supporter, the centre of supporter is may be located at or near upper surface 401 or following table Face 402.The advantage of the embodiment is that can accelerate bone uptake speed by appropriate, a small amount of bone grafting.
The height of macroporous structure mesopore is first face (upper surface described in the spinal fusion device that the present invention is provided Or lower surface) 50-100% of air line distance and the second face (lower surface or upper surface) corresponding thereto between;With The total volume meter of the fusion device, the volume percentage of the macroporous structure is 30-80%.
Percent by volume in the spinal fusion device that the present invention is provided shared by macroporous structure is too small or does not conform to mostly excessively It is suitable, it is too small to play the effect for making enough bone tissues constantly grow into of the present invention, therefore at least 30 %;The excessive intensity then to fusion device is unfavorable, so most 80%;It is preferred that 40-70%, more preferably 50-60%.
Hole shape in the spinal fusion device that the present invention is provided in macroporous structure for example but can not limited with various In circle, arc, triangle, square, oval, honeycombed etc. are also not necessarily limited to above-mentioned geometric figure institute group Into figure, such as the sector that arc and triangle are formed.
Macropore and aperture pore appearance figure under fusion device ESEM can respectively referring to accompanying drawing 6-12.
In one embodiment of the invention, the macroporous structure is not only in the inside of fusion device, it is also possible at it Surface.Spinal fusion device 500 as shown in Figure 5, macroporous structure 508 can be arranged on the part of the supporter Or whole sides.In one embodiment, have some between the outer surface 507a to inner surface 507b of supporter Equally distributed macropore 508, in actually preparing, the macropore 508 can be even placed through in the middle of supporter Macroporous structure 503.
In a preferred embodiment of the invention, the outer surface 507a of supporter is to inner surface 507b thickness 1.5mm to 4.5mm.It has been investigated that, the spinal fusion device in the thickness range can realize clinical requirement Mechanical strength and can to greatest extent promote new bone growth.
The spinal fusion device that the present invention is provided is respectively provided with some apertures on the surface of supporter and macroporous structure, or A small aperture layer is formed, bioactivity coatings are coated in small aperture layer also can effectively induce ostosis.
In another embodiment of the invention, fusion device surface is except carrying out being conducive to inducing ostosis Bioactivity coatings, can also coat makes the enhanced material of surface corrosion resistance to reduce degradation rate.
In the present invention, " aperture ", " small structure " or " surface aperture " refers to be provided in the present invention The hole on spinal fusion device surface, general aperture is 1-50 μm.The side of such aperture is formed on fusion device surface Formula is included but is not limited to, plasma oxidation technology, and voltage is that 400-500V prepares surface small structure.
The constituent material of the spinal fusion device that the present invention is provided is magnesium alloy, and chemical composition is mainly with biofacies The element of capacitive, such as but not limited to, magnesium, manganese or magnesium, zinc series alloy, its static compress rigidity is up to 20 KN/mm-30kN/mm, mechanical strength meets clinical demand.
Preparation method
The preparation method of the spinal fusion device that the present invention is provided includes step:
Step one:The macroporous structure that footpath is for 100-500 μm is prepared at the middle part of the fusion device;
Step 2:The aperture that aperture is for 1-50 μm is prepared on the fusion device.
Specifically, the preparation method of the spinal fusion device includes split-type structural and integrally formed structure.With split As a example by preparation method, a supporter can be first made, the support body material can be any suitable bio-compatible material Material.A macroporous structure is made, and the macroporous structure is positioned in the supporter, the mode of placement can be interference Cooperation, screw thread, spline etc..
The preparation method of integrally formed structure includes:According to the preset shape of the spinal fusion device (such as circular, side Shape, dish type etc.) machining one magnesium alloy block or other biological compatible material.Used on the magnesium alloy block for processing and swashed Light prepares some through holes, the magnesium alloy block is formed the supporter and a loose through-hole structure of a densification.If needed Increase through hole is carried out on supporter, can continue to prepare through hole with laser technology.Using plasma oxidation technology, Voltage is 400-500 volts forms the aperture that aperture is for 1-50 μm on surface.The sample for finally preparing carries out table Face activity treatment, the bioactivity coatings for preparing different-thickness on surface can induce bone growth while controlling degraded Speed.
Purposes
The spinal fusion device that the present invention is provided can be used as intervertebral implant or further adding for Related product Work.
The features described above that the present invention is mentioned, or the feature that embodiment is mentioned can be in any combination.This case specification institute The all features for disclosing can be used in combination with any combinations thing form, and each feature disclosed in specification can be with any The alternative characteristics substitution of identical, impartial or similar purpose can be provided.Therefore removing has special instruction, disclosed spy Levy the general example of only impartial or similar features.
Main advantages of the present invention are:
1st, the present invention provide spinal fusion device due to using good biocompatibility degradable magnesium alloy material, The low effective reduction stress-shielding effect of elastic modelling quantity.
2nd, the spinal fusion device that the present invention is provided is high-strength porous, and its static compress rigidity is reachable 20kN/mm-30kN/mm, meets the use requirement clinically more than 18kN/mm.
3rd, the hole knot that the spinal fusion device that the present invention is provided is combined with each other using internal macropore, surface aperture Structure, surface fine pore structure causes that cell tissue is easily adhered growth, and macropore gauge structure is conducive to climbing for cell Row and connection, as the degraded bone tissue of fusion device constantly grows into, finally realize complete Bony union.
With reference to specific embodiment, the present invention is expanded on further.It should be understood that these embodiments are only used for The bright present invention rather than limitation the scope of the present invention.The experiment side of unreceipted actual conditions in the following example Method, generally according to normal condition or according to the condition proposed by manufacturer.Unless otherwise indicated, otherwise institute Some percentage, ratio, ratio or number are by weight.
The unit in percent weight in volume in the present invention be it is well-known to those skilled in the art, e.g. Refer to the weight of the solute in 100 milliliters of solution.
Unless otherwise defined, all specialties used in text are ripe with one skilled in the art institute with scientific words The meaning known is identical.Additionally, any method similar to described content or impartial and material all can be applied to In the inventive method.Preferable implementation described in text only presents a demonstration with material and is used.
Embodiment 1
Spinal fusion device 200
As shown in Fig. 2 middle 400 microns of 210 aperture of macropore loose structure of fusion device 200, hole is circle Shape, small-bore is 1-40 microns, and hole depth is consistent with fusion device depth.
Fusion device material uses M1C magnesium alloys, is integrally machined shaping, and prepare macropore using laser technology Structure.Plasma oxidation technology is finally used, voltage is that 450V prepares surface small structure.
Shown in the visible accompanying drawing 8 of macropore and aperture pore appearance of the fusion device under ESEM.
Shown in the visible accompanying drawing 9 of dynamic potential polarization curve before and after fusion device surface treated, as a result display surface After treatment, coating corrosion resistance enhancing, degradation rate reduction.
Embodiment 2
Spinal fusion device 400
As shown in figure 4, middle 500 microns of 410 aperture of macropore loose structure of fusion device 400, hole is circle Shape, small-bore is 1-50 microns, and pattern is consistent with Fig. 2, and hole depth is the 2/3 of fusion device depth.
Fusion device material uses ZK60 magnesium alloys, is integrally machined shaping, and prepare macropore using laser technology Structure.Plasma oxidation technology is finally used, voltage is that 500V prepares surface small structure.
Embodiment 3
Spinal fusion device 500
As shown in figure 5, in the middle of fusion device 500 and 450 microns of periphery loose structure aperture, bone tissue can be with Growing into from all directions, hole is circle, and middle hole depth is the 1/2 of fusion device depth.Small-bore is 1-40 Micron
Fusion device material uses MIC magnesium alloys, is integrally machined shaping, and prepare macropore knot using laser technology Structure.Plasma oxidation technology is finally used, voltage is that 475V prepares surface small structure.
Presently preferred embodiments of the present invention is the foregoing is only, substantial technological of the invention is not limited to Context, substantial technological content of the invention is broadly to be defined in the right of application, is appointed What other people technology entities that complete or method, if with phase completely defined in the right of application Together, also or a kind of equivalent change, will be considered as being covered by among the right.

Claims (15)

1. a kind of spinal fusion device, it is characterised in that the spinal fusion device includes a supporter, the supporter A receiving space is formed, the receiving space partially or fully fills a hole shape structure.
2. spinal fusion device as claimed in claim 1, it is characterised in that, the supporter and the hole shape knot Structure is made up of same material.
3. spinal fusion device as claimed in claim 1 or 2, it is characterised in that, the supporter and the hole Shape structure is made up of magnesium alloy.
4. spinal fusion device as claimed in claim 1, it is characterised in that, the hole shape structure is multiple logical Hole.
5. spinal fusion device as claimed in claim 1, it is characterised in that, the height of the hole shape structure is institute State the 50% to 100% of supporter height.
6. spinal fusion device as claimed in claim 1, it is characterised in that, the supporter include an inner surface and One outer surface, the inner surface forms the receiving space, and the hole shape structure is connected with the inner surface, institute It is 1.5mm to 4.5mm that inner surface is stated with the thickness of outer surface.
7. spinal fusion device as claimed in claim 1, it is characterised in that, the supporter and the hole shape knot The surface of structure includes a small aperture layer, and the bore dia of the small aperture layer is 1-50 μm.
8. spinal fusion device as claimed in claim 7, it is characterised in that include that is biological in the small aperture layer Active coating.
9. spinal fusion device as claimed in claim 1, it is characterised in that with the total volume meter of the fusion device, The volume percentage of the hole shape structure is 30-80%.
10. spinal fusion device as claimed in claim 4, it is characterised in that, the hole shape of the through hole is following One kind of shape or combination:Circle, arc, square, oval, triangle, regular hexagon.
11. spinal fusion devices as claimed in claim 1, it is characterised in that, the supporter includes an inner surface And an outer surface, the inner surface forms the receiving space, and the hole shape structure is connected with the inner surface, Also include some through holes on the supporter, the through hole runs through outer surface and the inner surface of the supporter.
12. a kind of preparation methods of spinal fusion device, it is characterised in that methods described includes step:
(1) a biocompatible material block is processed into a preset shape, in the biocompatible material block Some holes are prepared at the heart, the biocompatible material block is formed a supporter and a hole shape structure.
13. preparation methods as claimed in claim 12, it is characterised in that methods described is further included:
(2) a small aperture layer is formed on the surface of the supporter and the hole shape structure.
14. preparation methods as claimed in claim 13, it is characterised in that methods described is further included:
(3) bioactivity coatings are formed in the small aperture layer.
15. preparation methods as claimed in claim 12, it is characterised in that the step (1) further includes: Some through holes are prepared on the supporter, supporter described in the through hole insertion and/or the hole shape structure.
CN201510991653.5A 2015-12-25 2015-12-25 A kind of spinal fusion device and preparation method thereof Pending CN106913406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510991653.5A CN106913406A (en) 2015-12-25 2015-12-25 A kind of spinal fusion device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510991653.5A CN106913406A (en) 2015-12-25 2015-12-25 A kind of spinal fusion device and preparation method thereof

Publications (1)

Publication Number Publication Date
CN106913406A true CN106913406A (en) 2017-07-04

Family

ID=59459401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510991653.5A Pending CN106913406A (en) 2015-12-25 2015-12-25 A kind of spinal fusion device and preparation method thereof

Country Status (1)

Country Link
CN (1) CN106913406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108542557A (en) * 2018-05-17 2018-09-18 唐朝阳 Bone-cement type Invasive lumbar fusion device and its operating method
CN110393614A (en) * 2019-08-10 2019-11-01 山东百多安医疗器械有限公司 A kind of porous bionical cervical fusion cage

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US20080206297A1 (en) * 2007-02-28 2008-08-28 Roeder Ryan K Porous composite biomaterials and related methods
CN201529176U (en) * 2009-11-17 2010-07-21 北京天新福医疗器材有限公司 Embedded bone trabecula intervertebral fusion device used for anastomosing vertebra
CN101938957A (en) * 2007-11-27 2011-01-05 汉宁·卡路仕 Intervertebral implant
CN201996643U (en) * 2010-12-20 2011-10-05 苏州奥芮济医疗科技有限公司 Hollow absorbable metal magnesium intervertebral fusing machine
US20120185047A1 (en) * 2011-01-17 2012-07-19 Cibor, Inc. Reinforced carbon fiber/carbon foam intervertebral spine fusion device
CN102784415A (en) * 2012-08-29 2012-11-21 哈尔滨工程大学 Medical degradable magnesium alloy interbody fusion cage
CN203263594U (en) * 2013-04-16 2013-11-06 创生医疗器械(中国)有限公司 Multi-hole interbody fusion cage
CN103961746A (en) * 2014-05-18 2014-08-06 赵全明 Biological-type spinal interbody fusion cage
CN104523356A (en) * 2014-12-30 2015-04-22 浙江大学 Intervertebral disc imitating spine fuser and preparing method thereof
CN205459220U (en) * 2015-12-25 2016-08-17 苏州微创脊柱创伤医疗科技有限公司 Backbone fuses ware

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US20080206297A1 (en) * 2007-02-28 2008-08-28 Roeder Ryan K Porous composite biomaterials and related methods
CN101938957A (en) * 2007-11-27 2011-01-05 汉宁·卡路仕 Intervertebral implant
CN201529176U (en) * 2009-11-17 2010-07-21 北京天新福医疗器材有限公司 Embedded bone trabecula intervertebral fusion device used for anastomosing vertebra
CN201996643U (en) * 2010-12-20 2011-10-05 苏州奥芮济医疗科技有限公司 Hollow absorbable metal magnesium intervertebral fusing machine
US20120185047A1 (en) * 2011-01-17 2012-07-19 Cibor, Inc. Reinforced carbon fiber/carbon foam intervertebral spine fusion device
CN102784415A (en) * 2012-08-29 2012-11-21 哈尔滨工程大学 Medical degradable magnesium alloy interbody fusion cage
CN203263594U (en) * 2013-04-16 2013-11-06 创生医疗器械(中国)有限公司 Multi-hole interbody fusion cage
CN103961746A (en) * 2014-05-18 2014-08-06 赵全明 Biological-type spinal interbody fusion cage
CN104523356A (en) * 2014-12-30 2015-04-22 浙江大学 Intervertebral disc imitating spine fuser and preparing method thereof
CN205459220U (en) * 2015-12-25 2016-08-17 苏州微创脊柱创伤医疗科技有限公司 Backbone fuses ware

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108542557A (en) * 2018-05-17 2018-09-18 唐朝阳 Bone-cement type Invasive lumbar fusion device and its operating method
CN110393614A (en) * 2019-08-10 2019-11-01 山东百多安医疗器械有限公司 A kind of porous bionical cervical fusion cage

Similar Documents

Publication Publication Date Title
CN201529176U (en) Embedded bone trabecula intervertebral fusion device used for anastomosing vertebra
CN204581484U (en) A kind of 3D with three-dimensional through loose structure prints bone screw
CN205459220U (en) Backbone fuses ware
CN104758042A (en) Bone screw of three-dimensional through porous structure
CN103357063A (en) Metal composite material capable of inducing bone growth and application thereof
EP2750725B1 (en) Dental implant, vascular implant and tissue implant made of porous three-dimensional structure of polytetrafluoroethylene
Grecchi et al. Reconstruction of the zygomatic bone with smartbone®: Case report
CN106913406A (en) A kind of spinal fusion device and preparation method thereof
CN203861632U (en) Biological type spine intervertebral fusion cage
RU2565375C1 (en) Method for orbital wall restoration
CN103961746A (en) Biological-type spinal interbody fusion cage
RU2534614C1 (en) Method for surgical correction of inadequacy of periphery edge of cotyloid cavity with use of porous titanium nickelide materials
KR20170035895A (en) Biocompatible material in granules made of metal material or metal alloys and use of said granules for vertebroplasty
CN211409544U (en) Degradable cervical vertebra fusion cage
CN203506936U (en) Fusion device made of metal bone trabecula material
López González et al. Fracture of a HTR-PMI cranioplastic implant after severe TBI
Chen et al. Fretting stimulation enhances bone growth at the interface between hydroxyapatite coating and bone
CN218420005U (en) Novel pedicle screw structure
CN214128926U (en) Improved biological self-locking artificial intervertebral disc system
RU47718U1 (en) AN IMPLANT HYBRID POLYMER HYBRID SECTION FOR REPLACING ANTI-TUBERCULOSE BODIES AND DISCS
RU47727U1 (en) AN IMPLANT OF A POLYMERIC HYBRID EIGHT-SIDED SECTION FOR REPLACING ANTI-MICROBIAL BODIES AND CALLBOARDS
RU168519U1 (en) IMPLANT FOR SUBSTITUTION OF BONE DEFECTS AND INTERDERBINAL DISK
RU47670U1 (en) HYBRID POLYMERIC IMPLANT FOR REPLACEMENT OF BODIES AND CALLBOARDS WITH FOUR ANTI-MICROBIC RIBS
RU47719U1 (en) IMPLANT POLYMERIC HYBRID EIGHT-SIDED SECTION FOR REPLACING BODIES AND CALLBOARDS
RU47725U1 (en) POLYMER IMPLANT FOR REPLACEMENT OF BODIES AND VERTEBRAL DISCS OF AN OCTAGON SECTION

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170704

RJ01 Rejection of invention patent application after publication