CN106897516A - 城市地下排水管网改造及改造评价方法 - Google Patents

城市地下排水管网改造及改造评价方法 Download PDF

Info

Publication number
CN106897516A
CN106897516A CN201710096529.1A CN201710096529A CN106897516A CN 106897516 A CN106897516 A CN 106897516A CN 201710096529 A CN201710096529 A CN 201710096529A CN 106897516 A CN106897516 A CN 106897516A
Authority
CN
China
Prior art keywords
pipeline
bottleneck
transformation
sewerage
network model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710096529.1A
Other languages
English (en)
Other versions
CN106897516B (zh
Inventor
唐炉亮
胡锦程
李清泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201710096529.1A priority Critical patent/CN106897516B/zh
Publication of CN106897516A publication Critical patent/CN106897516A/zh
Application granted granted Critical
Publication of CN106897516B publication Critical patent/CN106897516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Abstract

本发明公开了一种城市地下排水管网改造及改造评价方法,包括:步骤1,根据排水管网数据构建排水管网系统模型;步骤2,基于SWMM识别排水管网系统模型中的瓶颈管道;步骤3,基于迭代法对瓶颈管道进行改造,实现排水管网系统排水能力的优化;步骤4,依据排水管网系统的排水能力与降雨重现期的关联性,评价改造前后排水管网系统的排水能力。本发明通过分析排水管网数据的几何拓扑关系,利用数学模型等科学方法,定量的分析出瓶颈管道,为实地排查提供经验知识;本发明基于瓶颈管道,利用迭代法对管网进行改造及改造评价,实现了管网排水能力的优化;经评价,改造后管网排水能力得到了提升。

Description

城市地下排水管网改造及改造评价方法
技术领域
本发明属于地理信息系统与市政工程研究技术领域,具体涉及城市地下排水管网改造及改造评价方法。
背景技术
近年来,由于地下排水管网系统建设的不完善、系统管理经验不足等原因,我国城市洪水内涝事故频发,市区长时间积水,道路堵塞,交通秩序混乱,严重影响了人民群众日常出行安全。
地下排水管网系统是城市发展的重要基础设施之一,承担着防治洪水、排泄雨水污水和保护生态环境的重要责任。因此必须采取有效的手段来加强对城市地下排水系统的检测、管理和维护,使得城市地下排水管网能真正发挥其功能,美化城市的环境,提升城市的经济效益。
现在排水管道的检测方法分为定性和定量两种,定性的方法是指进入管道内,利用人眼或机器拍摄图像,对排水管道进行定性评价。定量的方法是指借助烟雾、水压、空气压等手段,分析评价管网的破裂、堵塞、薄弱段。这些方法都停留在人工检测阶段,而针对整个城市的地下排水管网进行的大规模的人工检测既费时又费力。
发明内容
本发明的目的是提供一种基于排水管网数据的几何拓扑关系和数学模型的城市地下排水管网改造及改造评价方法,该方法可从复杂的地下排水管网结构中挖掘出瓶颈管道,并对瓶颈管道进行科学改造,从而为实地人工检测提供方向和经验。
为达到上述目的,本发明采用如下技术方案:
一、城市地下排水管网改造方法,包括:
步骤1,根据排水管网数据构建排水管网系统模型,具体为:
将排水管网的节点、管道、城市汇水区分别概化为点、线、面,构建排水管网系统模型;所构建的排水管网系统模型中,每个城市汇水区内有一个出水口,所有的出水口连接在节点和排水管道所组成的排水网络中;
步骤2,识别排水管网系统模型中的瓶颈管道,具体为:
采用芝加哥雨型设计降雨,将降雨施加到排水管网系统模型,利用暴雨洪水管理模型模拟排水管网系统模型的水文水动力过程;统计降雨过程中达到满流状态的管道,即瓶颈管道;
步骤3,基于迭代法对瓶颈管道进行改造,本步骤进一步包括:
3.1采用步骤2所述的方法识别当前排水管网系统模型中的瓶颈管道,若无瓶颈管道,则改造结束,当前排水管网系统模型采用步骤1所构建的排水管网系统模型初始化;否则,将当前排水管网系统模型中满流时间最长的一条瓶颈管道记为Qm,m的初始值取为1;
3.2对Qm进行循环改造,本步骤进一步包括:
3.2a第一次改造,即将Qm改造至非瓶颈状态,将改造后的Qm记为C1;
3.2b基于C1、C2…Ck-1的状态进行第k次改造,k的初始值取2,具体为:
①采用步骤2所述的方法识别上一次改造后的排水管网系统模型中的瓶颈管道,若无瓶颈管道,结束本次循环改造,以当前C1的状态作为Qm的状态,然后执行步骤3.3;否则,将满流时间最长的一条瓶颈管道改造为非瓶颈状态,将该改造为非瓶颈状态的瓶颈管道记为Ck,然后,执行步骤②;
②采用步骤2所述的方法识别已改造的管道此时是否为瓶颈管道,将其中的瓶颈管道均改造至非瓶颈状态,然后执行步骤③;若所有管道均识别为非瓶颈管道,执行步骤④;
③采用步骤2所述的方法识别Ck此时是否为瓶颈管道,若是,再次将Ck改造至非瓶颈状态,然后,执行步骤②;否则,执行步骤④;
④判断当前的k值是否达到1+d*a%值,若达到,结束本次循环改造,以当前C1的状态作为Qm的状态,然后执行步骤3.3;若未达到,令k=k+1,重复执行步骤3.2b;
3.3当Qm的循环改造结束后,执行如下:
3.3a采用步骤2所述的方法识别已改造的Q1、Q2、.....Qm-1此时是否存在瓶颈管道,若不存在,取出当前Qm作为当前待改造的瓶颈管道的改造结果,执行步骤3.4;若存在,执行步骤3.3b;
3.3b将Q1、Q2、......Qm-1中的瓶颈管道改造至非瓶颈状态,然后执行步骤3.3c;
3.3c识别Qm此时是否为瓶颈管道,若为瓶颈管道,将Qm改造为非瓶颈状态,重复执行步骤3.3a;否则,取出当前Qm作为当前待改造的瓶颈管道的改造结果,执行步骤3.4;
3.4判断m值是否达到n,若达到,改造结束;否则,令m=m+1,重复执行步骤3.1;n为要求改造的瓶颈管道数,人为设定。
二,城市地下排水管网改造评价方法,包括:
基于改造前的排水管网系统模型,计算改造前能抵抗P年一遇降雨的管道总长度L1,则改造前能抵抗P年一遇降雨的管道占比S为排水管网系统管道的总长度;
基于改造前的排水管网系统模型,计算改造后能抵抗P年一遇降雨的管道总长度L2,则改造后能抵抗P年一遇降雨的管道占比
比较Q1与Q2的大小,若Q2>Q1,则改造后排水管网系统的排水能力得到提升;反之,则未得到提升。
和现有技术相比,本发明具有如下优点和有益效果:
(1)人工检测之前,本发明通过分析排水管网数据的几何拓扑关系,利用数学模型等科学方法,定性的分析出瓶颈管道,为实地排查提供经验知识。
(2)本发明基于瓶颈管道,利用迭代法对管网进行改造及改造评价,实现了管网排水能力的优化。经评价,改造后管网排水能力得到了提升。
附图说明
图1为本发明方法的具体流程示意图;
图2为排水管网系统的基本构成要素示意图;
图3为排水管网系统的建模示意图,其中,图(a)为绞点、出水口、排水管道的提取示意图;图(b)为子汇水区的划分示意图;图(c)为排水管网系统建模示意图;
图4为瓶颈管道识别示意图,其中,图(a)为实施例中的降雨设计示意图,图(b)为实施例中的瓶颈管道示意图;
图5示出了基于迭代法的瓶颈管道改造的具体示意图。
具体实施方式
本发明基于SWMM模型实现,首先,通过水文模拟找出降雨过程中的瓶颈管道;然后,通过迭代实现管道的分步改造;最后,进行排水能力的比较评价。其方法流程如图1所示。下面将结合附图对本发明各步骤的具体实施实施进行详细说明。
1、排水管网系统的建模。
对研究区域的排水管网进行合理概划,将排水管网的节点概化为点,将排水管道概化为线,将城市汇水区概化为面,每个汇水区内有一个出水口,所有的出水口连接在节点和排水管道所组成的排水管网中。排水管网系统的基本构成要素见图2所示,所述的基本构成要素包括点要素、线要素和面要素。
以某研究区域为例,基于点要素提取出绞点和出水口。研究区域的雨水井、雨水篦子对应绞点,研究区域的末端节点为出水口;基于线要素提取排水管道,见图3(a)。对子汇水区的划分,通过泰森多边形方法,利用绞点数据,生成子汇水区,并根据街道走向进行人工调整,见图3(b)。最终概划出包含绞点、出水口、排水管道、子汇水区的排水管网系统模型,见图3(c)。排水管网系统模型中参数的率定,采用现场调查、模型手册及相关文件调研、实验测量的综合率定方法。
2、基于SWMM模型(暴雨洪水管理模型)的瓶颈管道识别。
本步骤基于排水管网系统模型,采用芝加哥雨型设计降雨,采用SWMM模型模拟排水管网系统模型的水文水动力过程,从而识别出瓶颈管道。
具体方法如下:
2.1根据暴雨公式,采用芝加哥雨型设计降雨,利用SWMM模型进行模拟。
城市管渠排水系统设计雨量的推求,一般采用暴雨公式。采用芝加哥雨型,推导出雨峰前和雨峰后的降雨强度(单位:mm/min),见公式(1)和(2)。
雨峰前的降雨强度I1
雨峰后的降雨强度I2
式(1)和(2)中:
a=167A(1+ClgP),A表示重现期为1年的设计降雨量;C为雨量变动参数,是反映设计降雨各历时不同重现期的强度变化程度的参数之一;P为设计降雨重现期;
r为雨峰系数,在0~1范围取值;
b和n为常数,共同反映重现期的设计降雨随历史延长其强度递减变化的情况;
t1为雨峰前时间与雨峰时间的间隔;
t2为雨峰后时间与雨峰时间的间隔。
2.2降雨过程中的满流排水管道即瓶颈管道。
利用降雨公式(1)和(2)设计降雨,见图4(a)所示;将降雨施加到排水管网系统模型。采用SWMM模型模拟排水管网系统模型的水文水动力过程。模拟结束后,统计降雨过程中,达到满流状态的排水管道,即瓶颈管道,见图4(b)所示。所述的满流状态指管道被充满的状态。
3、基于迭代法的管道改造。
本步骤针对管道的改造需求,提出了“n条管道被改造时,每一条管道的改造进程满足:当这条管道改造完后,至少再改造原始瓶颈管道数目的a%数目的管道时才会轮到这条管道被改造”的迭代法,具体实施过程参见图5,具体步骤如下:
假设排水管网系统模型包含sum条管道,其中含有d条瓶颈管道。
3.1对当前待改造的瓶颈管道进行如下循环改造,首先,采用步骤2所述的方法识别当前排水管网系统模型中的瓶颈管道,若无瓶颈管道,则改造结束,当前排水管网系统模型采用步骤1所构建的排水管网系统模型初始化;否则,将当前排水管网系统模型中满流时间最长的一条瓶颈管道作为待改造的瓶颈管道,将当前待改造的瓶颈管道标记为Qm,m的初始值取为1,采用步骤1所构建的排水管网系统模型初始化当前排水管网系统模型。
3.1a第一次改造,即将Qm改造至非瓶颈状态,例如可增大管径以使瓶颈管道满足非瓶颈状态,将改造后的Qm标记为C1。
3.1b基于C1的状态进行第二次改造,具体为:
采用步骤2所述的方法识别第一次改造后的排水管网系统模型中的瓶颈管道,找出满流时间最长的一条瓶颈管道作为下一个改造的瓶颈管道,将其改造至非瓶颈状态,将改造后的瓶颈管道标记为C2。同时,基于C2的状态,采用步骤2所述的方法识别已改造的管道C1此时是否为瓶颈管道,若是瓶颈状态,将C1再次改造至非瓶颈状态。然后,采用步骤2所述的方法识别C2此时是否为瓶颈管道,若是瓶颈状态,再次对C2进行改造,如此循环,直至C1和C2同时为非瓶颈状态。
3.1c基于C1、C2…Ck-1的状态进行第k次改造,k的初始值为3,具体为:
采用步骤2所述的方法识别上一次改造后的排水管网系统模型中的瓶颈管道,找出满流时间最长的一条瓶颈管道作为下一个改造的瓶颈管道,将其改造至非瓶颈状态,将改造后的瓶颈管道标记为Ck。同时,基于Ck的状态,采用步骤2所述的方法识别已改造的C1、C2…Ck-1是否为瓶颈状态,将其中的瓶颈管道逐一改造至非瓶颈状态;然后,采用步骤2所述的方法识别Ck此时是否为瓶颈管道,若是瓶颈状态,再次对Ck进行改造,如此循环,直至C1、C2…Ck均为非瓶颈状态。
本循环改造中,每改造完一个瓶颈管道后,识别已改造的管道是否为瓶颈管道,若是,则需对瓶颈管道再次增大管径,直至改造的所有管道均为非瓶颈状态。
3.1d令k=k+1,然后重复执行步骤3.1c,直至k值达到1+d*a%或者改造后的排水管网系统模型中无瓶颈管道,即可结束本次循环改造,然后执行步骤3.1e。其中,a%为改造期望率,其取值范围为0~100%;a%根据实际需求人为设值,当对管网工程改造要求较高时,a%取较大值;反之,a%取较小值。
3.1e仅以当前C1的状态作为Qm的状态。
3.2当单个瓶颈管道Qm的循环改造结束后,执行如下:
3.2a识别已改造的Q1、Q2、.....Qm-1此时是否存在瓶颈管道,若不存在,取出当前Qm作为当前待改造的瓶颈管道的改造结果,执行步骤3.3;若存在,执行步骤3.2b;
3.2b将Q1、Q2、......Qm-1中的瓶颈管道改造至非瓶颈状态,然后执行步骤3.2c;
3.2c识别Qm此时是否为瓶颈管道,若为瓶颈管道,将Qm改造为非瓶颈状态,重复执行步骤3.2a;否则,取出当前Qm作为当前待改造的瓶颈管道的改造结果,执行步骤3.3;
3.3判断m值是否达到n,若达到,管道改造结束;否则,令m=m+1,重复执行步骤3.1。n为要求改造的瓶颈管道数,人为设定。
4排水管网系统改造评价。
本发明基于排水能力与降雨重现期的关联性,来评价排水管网系统改造前后的排水能力变化。某P年一遇的降雨中,能够抵抗P年一遇的排水管道长度记为L,整个排水管网系统管道的总长度记为S,则排水管网系统能够抵抗该强度降雨的管道占比
4.1基于改造前的排水管网系统模型,计算改造前能抵抗P年一遇降雨的管道总长度L1,则改造前能抵抗P年一遇降雨的管道占比
4.2基于改造前的排水管网系统模型,计算改造后能抵抗P年一遇降雨的管道总长度L2,则改造后能抵抗P年一遇降雨的管道占比
4.3比较Q1与Q2的大小,若Q2>Q1则改造后排水管网系统的排水能力得到提升。

Claims (2)

1.城市地下排水管网改造方法,其特征是,包括:
步骤1,根据排水管网数据构建排水管网系统模型,具体为:
将排水管网的节点、管道、城市汇水区分别概化为点、线、面,构建排水管网系统模型;所构建的排水管网系统模型中,每个城市汇水区内有一个出水口,所有的出水口连接在节点和排水管道所组成的排水网络中;
步骤2,识别排水管网系统模型中的瓶颈管道,具体为:
采用芝加哥雨型设计降雨,将降雨施加到排水管网系统模型,利用暴雨洪水管理模型模拟排水管网系统模型的水文水动力过程;统计降雨过程中达到满流状态的管道,即瓶颈管道;
步骤3,基于迭代法对瓶颈管道进行改造,本步骤进一步包括:
3.1采用步骤2所述的方法识别当前排水管网系统模型中的瓶颈管道,若无瓶颈管道,则改造结束,当前排水管网系统模型采用步骤1所构建的排水管网系统模型初始化;否则,将当前排水管网系统模型中满流时间最长的一条瓶颈管道记为Qm,m的初始值取为1;
3.2对Qm进行循环改造,本步骤进一步包括:
3.2a第一次改造,即将Qm改造至非瓶颈状态,将改造后的Qm记为C1;
3.2b基于C1、C2…Ck-1的状态进行第k次改造,k的初始值取2,具体为:
①采用步骤2所述的方法识别上一次改造后的排水管网系统模型中的瓶颈管道,若无瓶颈管道,结束本次循环改造,以当前C1的状态作为Qm的状态,然后执行步骤3.3;否则,将满流时间最长的一条瓶颈管道改造为非瓶颈状态,将该改造为非瓶颈状态的瓶颈管道记为Ck,然后,执行步骤②;
②采用步骤2所述的方法识别已改造的管道此时是否为瓶颈管道,将其中的瓶颈管道均改造至非瓶颈状态,然后执行步骤③;若所有管道均识别为非瓶颈管道,执行步骤④;
③采用步骤2所述的方法识别Ck此时是否为瓶颈管道,若是,再次将Ck改造至非瓶颈状态,然后,执行步骤②;否则,执行步骤④;
④判断当前的k值是否达到1+d*a%值,若达到,结束本次循环改造,以当前C1的状态作为Qm的状态,然后执行步骤3.3;若未达到,令k=k+1,重复执行步骤3.2b;
3.3当Qm的循环改造结束后,执行如下:
3.3a采用步骤2所述的方法识别已改造的Q1、Q2、.....Qm-1此时是否存在瓶颈管道,若不存在,取出当前Qm作为当前待改造的瓶颈管道的改造结果,执行步骤3.4;若存在,执行步骤3.3b;
3.3b将Q1、Q2、......Qm-1中的瓶颈管道改造至非瓶颈状态,然后执行步骤3.3c;
3.3c识别Qm此时是否为瓶颈管道,若为瓶颈管道,将Qm改造为非瓶颈状态,重复执行步骤3.3a;否则,取出当前Qm作为当前待改造的瓶颈管道的改造结果,执行步骤3.4;
3.4判断m值是否达到n,若达到,改造结束;否则,令m=m+1,重复执行步骤3.1;n为要求改造的瓶颈管道数,人为设定。
2.城市地下排水管网改造评价方法,其特征是:
基于改造前的排水管网系统模型,计算改造前能抵抗P年一遇降雨的管道总长度L1,则改造前能抵抗P年一遇降雨的管道占比S为排水管网系统管道的总长度;
基于改造前的排水管网系统模型,计算改造后能抵抗P年一遇降雨的管道总长度L2,则改造后能抵抗P年一遇降雨的管道占比
比较Q1与Q2的大小,若Q2>Q1,则改造后排水管网系统的排水能力得到提升;反之,则未得到提升。
CN201710096529.1A 2017-02-22 2017-02-22 城市地下排水管网改造及改造评价方法 Active CN106897516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710096529.1A CN106897516B (zh) 2017-02-22 2017-02-22 城市地下排水管网改造及改造评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710096529.1A CN106897516B (zh) 2017-02-22 2017-02-22 城市地下排水管网改造及改造评价方法

Publications (2)

Publication Number Publication Date
CN106897516A true CN106897516A (zh) 2017-06-27
CN106897516B CN106897516B (zh) 2020-05-26

Family

ID=59184519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710096529.1A Active CN106897516B (zh) 2017-02-22 2017-02-22 城市地下排水管网改造及改造评价方法

Country Status (1)

Country Link
CN (1) CN106897516B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132984A (zh) * 2017-12-14 2018-06-08 重庆大学 管网降雨重现期渲染方法、装置及计算机可读存储介质
CN108319758A (zh) * 2017-12-29 2018-07-24 上海市政交通设计研究院有限公司 一种基于水力模型的城市下穿地道排水系统优化设计方法
CN110287532A (zh) * 2019-05-23 2019-09-27 深圳市规划国土发展研究中心 基于ArcGIS+InfoWorks ICM的排水管网规划图纸信息模型化处理方法
CN110782149A (zh) * 2019-10-19 2020-02-11 吉林建筑大学 一种评估老旧城区给水管道改造次序的方法
CN111613017A (zh) * 2020-04-26 2020-09-01 李海波 一种城市洪涝灾害紧急预警处理方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200419373A (en) * 2003-03-25 2004-10-01 Wen-Tzu Lin Watershed analysis expert system (WSExpert)
US7136756B1 (en) * 2004-11-02 2006-11-14 Vieux And Associates, Inc. Method for determining runoff
CN101692273A (zh) * 2009-09-28 2010-04-07 北京工业大学 城市排水管网在线水力模型建模方法
CN102184278A (zh) * 2011-04-13 2011-09-14 河北建筑工程学院 一种排水管网的优化方法
CN102214230A (zh) * 2011-06-27 2011-10-12 华东师范大学 一种排水管网数据库设置方法
CN103902783A (zh) * 2014-04-11 2014-07-02 北京工业大学 一种基于广义逆向学习差分算法的排水管网优化方法
CN105224747A (zh) * 2015-10-06 2016-01-06 北京工业大学 基于cad工程图纸信息和管网设计计算表的城市内涝模型构建方法
CN205444302U (zh) * 2016-03-10 2016-08-10 王通 一种城市道路雨水控制管网系统
CN106382471A (zh) * 2016-11-25 2017-02-08 上海市城市排水有限公司 一种考虑关键节点的城市排水管网诊断评估方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200419373A (en) * 2003-03-25 2004-10-01 Wen-Tzu Lin Watershed analysis expert system (WSExpert)
US7136756B1 (en) * 2004-11-02 2006-11-14 Vieux And Associates, Inc. Method for determining runoff
CN101692273A (zh) * 2009-09-28 2010-04-07 北京工业大学 城市排水管网在线水力模型建模方法
CN102184278A (zh) * 2011-04-13 2011-09-14 河北建筑工程学院 一种排水管网的优化方法
CN102214230A (zh) * 2011-06-27 2011-10-12 华东师范大学 一种排水管网数据库设置方法
CN103902783A (zh) * 2014-04-11 2014-07-02 北京工业大学 一种基于广义逆向学习差分算法的排水管网优化方法
CN105224747A (zh) * 2015-10-06 2016-01-06 北京工业大学 基于cad工程图纸信息和管网设计计算表的城市内涝模型构建方法
CN205444302U (zh) * 2016-03-10 2016-08-10 王通 一种城市道路雨水控制管网系统
CN106382471A (zh) * 2016-11-25 2017-02-08 上海市城市排水有限公司 一种考虑关键节点的城市排水管网诊断评估方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEE KYUNG-SU 等: "Numerical Simulation for Reducing the Flood Damage of Green Park Using MIKE URBAN", 《INTERNATIONAL JOURNAL OF CONTROL AND AUTOMATION》 *
王祥 等: "基于SWMM的城市雨水管网排水能力分析", 《三峡大学学报(自然科学版)》 *
薛偲琦 等: "基于SWMM的南京市内秦淮河中段管网排水能力分析", 《水资源与工程学报》 *
谢文敬 等: "基于水力模型的武汉黄孝河区域内涝评估", 《万方数据库.学位论文库》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132984A (zh) * 2017-12-14 2018-06-08 重庆大学 管网降雨重现期渲染方法、装置及计算机可读存储介质
CN108132984B (zh) * 2017-12-14 2021-10-22 重庆大学 管网降雨重现期渲染方法、装置及计算机可读存储介质
CN108319758A (zh) * 2017-12-29 2018-07-24 上海市政交通设计研究院有限公司 一种基于水力模型的城市下穿地道排水系统优化设计方法
CN110287532A (zh) * 2019-05-23 2019-09-27 深圳市规划国土发展研究中心 基于ArcGIS+InfoWorks ICM的排水管网规划图纸信息模型化处理方法
CN110287532B (zh) * 2019-05-23 2022-09-27 深圳市规划国土发展研究中心 基于ArcGIS+InfoWorks ICM的排水管网规划图纸信息模型化处理方法
CN110782149A (zh) * 2019-10-19 2020-02-11 吉林建筑大学 一种评估老旧城区给水管道改造次序的方法
CN111613017A (zh) * 2020-04-26 2020-09-01 李海波 一种城市洪涝灾害紧急预警处理方法及系统

Also Published As

Publication number Publication date
CN106897516B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
CN106897516A (zh) 城市地下排水管网改造及改造评价方法
CN110298076B (zh) 一种基于gis和swmm的城市内涝智能建模及分析方法
Schmitt et al. Analysis and modeling of flooding in urban drainage systems
CN108446464B (zh) 一种利用swmm模型构建大排水系统的方法
US7039565B1 (en) Method and system for developing a numerical dynamic sanitary sewer and storm water drainage simulation model
CN110929359B (zh) 基于pnn神经网络和swmm技术的管网淤积风险预测建模方法
CN106777460B (zh) 一种基于swmm水力模型确定城市雨水管网管径和坡度的方法
CN104008466A (zh) 一种雨水调蓄池预选址的确定方法
CN101692273A (zh) 城市排水管网在线水力模型建模方法
Khan et al. Experimental analysis of the scour pattern modeling of scour depth around bridge piers
CN114936505A (zh) 一种城市雨水井多点位水深快速预报的方法
CN110751723B (zh) 一种同一子流域河道网格演算次序编码方法
CN115618769B (zh) 一种基于水力模型的排水系统评估方法及系统
CN105404760B (zh) 恒定非均匀流条件下雨水设计流量的计算方法
Abbasizadeh et al. Development of a coupled model for simulation of urban drainage process based on cellular automata approach
Méndez Hydraulic analysis of urban drainage systems with conventional solutions and sustainable technologies: Case study in Quito, Ecuador
CN115270372A (zh) 一种基于深度序列模型的排水管网淤积判断方法
Saul et al. Integrated urban flood modelling
CN114611728A (zh) 污水管网堵塞监测方法及系统
Jin et al. New one-dimensional implicit numerical dynamic sewer and storm model
HUERTAS et al. SUDS treatment train modeling using SWMM
JP4734295B2 (ja) 雨水・汚濁物流入量演算モデルの作成装置及び作成方法
Tovar Romero et al. Methodology for the Selection of Trenchless Sewer Rehabilitation Technologies in Bogotá, Colombia
Wilson et al. Work Order Planning for Wastewater Force Main Condition Assessment
CN104408943A (zh) 城市路网交通流量检测器的布设方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant