CN106784073A - Electro-optical device - Google Patents

Electro-optical device Download PDF

Info

Publication number
CN106784073A
CN106784073A CN201611248546.4A CN201611248546A CN106784073A CN 106784073 A CN106784073 A CN 106784073A CN 201611248546 A CN201611248546 A CN 201611248546A CN 106784073 A CN106784073 A CN 106784073A
Authority
CN
China
Prior art keywords
layer
substrate
electro
silicon
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611248546.4A
Other languages
Chinese (zh)
Inventor
林岳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Audemars Pigeut Photoelectric Material Co Ltd
Original Assignee
Suzhou Audemars Pigeut Photoelectric Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Audemars Pigeut Photoelectric Material Co Ltd filed Critical Suzhou Audemars Pigeut Photoelectric Material Co Ltd
Priority to CN201611248546.4A priority Critical patent/CN106784073A/en
Publication of CN106784073A publication Critical patent/CN106784073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present invention relates to a kind of electro-optical device, including:Compound substrate, including layer-of-substrate silicon and be bonded in the layer-of-substrate silicon Sapphire Substrate layer;Construction of switch layer, is formed by the gallium nitride being grown on the Sapphire Substrate layer;And device main body structure, including it is bonded to the electro-optic crystal layer in the layer-of-substrate silicon.Above-mentioned electro-optical device, due to the construction of switch layer using gallium nitride based transistor, compared with Si based transistors, can reduce stand-by power consumption and can improve working frequency.Construction of switch layer in above-mentioned electro-optical device, the compound substrate being bonded with layer-of-substrate silicon using Sapphire Substrate layer, high-quality gallium nitride so can be grown on Sapphire Substrate layer, so as to be conducive to obtaining high-quality construction of switch layer, and then be conducive to producing the electro-optical device of excellent performance;The layer-of-substrate silicon of the compound substrate, can meet the demand of large scale main flow production line, with existing silicon substrate process compatible simultaneously.

Description

Electro-optical device
Technical field
The present invention relates to technical field of semiconductor device, more particularly to a kind of electro-optical device.
Background technology
The research of gallium nitride material and the focus that application is global semiconductor research, are develop semiconductor devices new half Conductor material, is described as being after first generation Ge, Si semi-conducting material, second generation GaAs, InP compound semiconductor materials Third generation semi-conducting material.Gallium nitride has direct band gap wide, strong atom key, thermal conductivity high, chemical stability good (several Not by any acid corrosion) etc. property and strong Radiation hardness, had broad application prospects in field of semiconductor devices.Example Such as gallium nitride based transistor.
Form the semiconductor devices of gallium nitride base, it is necessary to first select a kind of substrate to form gallium nitride layer.What is had at present adopts With silicon (Si) substrate, some use Sapphire Substrates, some use carborundum (SiC) substrates also use GaN substrate.
Sapphire Substrate, silicon carbide substrates and GaN substrate, they have scarce in terms of cost, supply and size Point.Although silicon substrate is the inexpensive substrate for most attracting, using also having any problem, the gallium nitride quality of growth is not high.For example can Flaw and deformation are formed, because between silicon substrate and gallium nitride layer in terms of lattice parameter and thermal coefficient of expansion substantially not Matching.
At present, no matter any higher and higher demand that cannot meet, substrate performance need further improve, To advantageously form inexpensive, high-quality gallium nitride based transistor.
The content of the invention
Based on this, it is necessary to for existing gallium nitride based transistor high cost, ropy problem, there is provided one kind is included The electro-optical device of high-quality, the gallium nitride based transistor of low cost.
A kind of electro-optical device, including:
Compound substrate, including layer-of-substrate silicon and be bonded in the layer-of-substrate silicon Sapphire Substrate layer;
Construction of switch layer, is formed by the gallium nitride being grown on the Sapphire Substrate layer;
And device main body structure, including it is bonded to the electro-optic crystal layer in the layer-of-substrate silicon.
Above-mentioned electro-optical device, due to the construction of switch layer using gallium nitride based transistor, compared with Si based transistors, can be with Reduce stand-by power consumption and working frequency can be improved.Construction of switch layer in above-mentioned electro-optical device, using Sapphire Substrate layer The compound substrate being bonded with layer-of-substrate silicon, so can grow high-quality gallium nitride on Sapphire Substrate layer, So as to be conducive to obtaining high-quality construction of switch layer, and then be conducive to producing the electro-optical device of excellent performance;This is answered simultaneously The layer-of-substrate silicon of substrate is closed, the demand of large scale main flow production line can be met, with existing silicon substrate process compatible;In addition, Also avoid using large-sized sapphire sheet, can effectively reduce the cost of construction of switch layer and electro-optical device.
Wherein in one embodiment, the electro-optic crystal layer is made up of lithium tantalate.
Wherein in one embodiment, the electro-optic crystal layer is made up of lithium columbate crystal.
Wherein in one embodiment, the compound substrate also includes the silicon fiml being grown on the Sapphire Substrate layer; The Sapphire Substrate layer is bonded by the silicon fiml with the layer-of-substrate silicon.
Wherein in one embodiment, the thickness of the silicon fiml is 1~5 μm.
Wherein in one embodiment, the thickness of the Sapphire Substrate layer is 20 μm.
Wherein in one embodiment, the thickness of the layer-of-substrate silicon is 600~1500 μm.
Wherein in one embodiment, the construction of switch layer includes gallium nitride FET.
Wherein in one embodiment, the GaN base field effect tube is GaN base transistor with high electronic transfer rate.
Brief description of the drawings
Fig. 1 is the structural representation of the electro-optical device of one embodiment of the invention.
Specific embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, it is right below in conjunction with specific embodiment The present invention is further elaborated.It should be appreciated that specific embodiment described herein is only used to explain the present invention, It is not intended to limit the present invention.
Unless otherwise defined, all of technologies and scientific terms used here by the article with belong to technical field of the invention The implication that technical staff is generally understood that is identical.The term for being used in the description of the invention herein is intended merely to description tool The purpose of the implementation method of body, it is not intended that in the limitation present invention.Term as used herein " and/or " include one or more The arbitrary and all of combination of related Listed Items.
Referring to Fig. 1, the electro-optical device 100 of one embodiment of the invention, including compound substrate 110, device main body structure 130, And construction of switch layer 120.
Specifically, compound substrate 110 includes layer-of-substrate silicon 111 and the Sapphire Substrate being bonded in layer-of-substrate silicon 111 Layer 112.
Wherein, Sapphire Substrate layer 112, its main purpose is for growing high-quality gallium nitride, and then to form switch Structure sheaf 120;That is, gallium nitride is grown on the Sapphire Substrate of compound substrate 110 layer 112, construction of switch layer 120 Positioned at compound substrate 110 near the side of Sapphire Substrate layer 112.
Wherein, the Main Function of layer-of-substrate silicon 111 is, for supporting Sapphire Substrate layer 112, while supporting device main body Structure 130.
Wherein, Sapphire Substrate layer 112 and layer-of-substrate silicon 111 are bonded together to form compound substrate 110.
Herein, bonding (bonding) refers to:By two panels surface cleaning, the homogeneity of atomically flating or dissimilar materials Under certain condition directly in conjunction with, by Van der Waals force, molecular force even atomic force be integrally formed bonding chip.
Because compound substrate of the invention 110 is by bonding together to form, therefore Sapphire Substrate layer 112 and layer-of-substrate silicon 111 Between adhesion it is very strong, its bond strength may be up to 12MPa.
Preferably, layer-of-substrate silicon 111 is by with diameter greater than being made equal to 6 inch silicon wafers.Silicon wafer for example from 6 inches Piece, or 8 inches of silicon wafer.
More specifically, layer-of-substrate silicon 111 in the present embodiment is made up of the Silicon Wafer of 1300 μm of 6 inch of diameter.
Preferably, the thickness of Sapphire Substrate layer 112 is 20 μm.So can both ensure to be grown in compound substrate 110 Good gallium nitride is formed, may insure that compound substrate 110 has good thermal conductivity again.
Preferably, compound substrate 110 also includes the silicon fiml 113 being grown on Sapphire Substrate layer 112;Sapphire Substrate layer 112 are bonded by silicon fiml 113 with layer-of-substrate silicon 111.
Wherein, the thickness of silicon fiml 113 is 1~5 μm.So can further promote Sapphire Substrate layer 112 and silicon substrate Layer 111 is bonded, and strengthens the performance of compound substrate 110.
The preparation process to compound substrate of the invention is sketched below.
The preparation method of compound substrate of the invention, comprises the following steps:
S1, sapphire sheet is bonded with silicon wafer, forms bonding body.
Preferably, sapphire sheet uses Si-Si Direct Bondings (SDB-Silicon Direct Bonding) with silicon wafer Technique is bonded.
Specifically, Si-Si Direct Bondings technique is the growth silicon fiml 113 in sapphire sheet;Then by silicon fiml 113 and silicon wafer Piece is bonded, and so as to sapphire sheet be bonded together with silicon wafer, obtains bonding body 300.
Using Si-Si Direct Bonding techniques, it is not necessary to any binding agent and extra electric field, and process is simple, more attach most importance to Want, using the compound substrate of Si-Si Direct Bondings technique formation, its performance is more excellent.
Preferably, silicon fiml 113 is grown to vapor phase epitaxial growth.That is, being existed using the method for vapor phase epitaxial growth Silicon fiml is grown in sapphire sheet.The crystal formation of the silicon fiml 113 for so being formed preferably, is conducive to being bonded with silicon wafer.
It is highly preferred that in vapor phase epitaxial growth, silicon source is SiH4, carrier gas is hydrogen.
Vapor phase epitaxial growth can use vapor phase epitaxial growth technique well known in the art, will not be repeated here.
Specifically, the step of bonding includes that pre- bonding, low-temperature bonding, high temperature are bonded three sub-steps successively.
Wherein, pre- bonding is preferably:Silicon fiml 113 and silicon wafer surface are cleaned up, at room temperature vacuum reinforcing key Close.
Low-temperature bonding is preferably:By the product after pre- bonding, in oxygen or nitrogen environment, low temperature (generally 100~ 200 DEG C) under be bonded.
Low-temperature bonding is preferably:By the product after low-temperature bonding, in oxygen or nitrogen environment, high temperature (1000 DEG C with On) bonding a few hours.
Specifically, the operation of bonding is:The surface wipes of silicon wafer, silicon fiml 113 are removed into the granule foreigns such as chalk dust removing respectively, It is cleaned by ultrasonic 5~10min with toluene, acetone and ethanol solution afterwards, then activates 10s in the hydrofluoric acid solution of dilution, activates Deionized water rinsing is used afterwards.Then with deionized water, hydrogen peroxide and ammoniacal liquor configure cleaning fluid clean, with deionized water, Hydrogen peroxide is cleaned with the cleaning fluid of hydrochloric acid configuration.Silicon wafer after cleaning, the sapphire sheet with silicon fiml 113 are dried.
Pressurization is bonded in advance during silicon wafer after drying, the sapphire sheet with silicon fiml 113 are put into bonding apparatus.
Then the product after pre- bonding is taken out, in oxidized diffusion stove, 10min is bonded at 100~200 DEG C, so After be brought rapidly up being bonded 1h to more than 1000 DEG C.
It is S2, the sapphire sheet in bonding body is thinning, obtain compound substrate.
Preferably, it is thinning for grinding and polishing is thinning.
Specifically, grinding and polishing is thinning can use grinding and polishing reduction process known in those skilled in the art. This is repeated no more.
Wherein, the Main Function of construction of switch layer 120 is to drive simultaneously control device agent structure 130 to work.Construction of switch Layer 120 is located at compound substrate 110 near the side of Sapphire Substrate layer 112.
Specifically, construction of switch layer 120 includes GaN base field effect tube (GaN FET).That is, by being grown in Gallium nitride on Sapphire Substrate layer 112 forms FET (FET, Field Effect Transistor).
It is highly preferred that GaN FET are GaN-HEMT, namely GaN base HEMT (HEMT, High Electron Mobility Transistor)。
The concrete structure of construction of switch layer 120 can use structure known in the field, the making of construction of switch layer 120 Method can also be using the preparation method of GaN FET or GaN-HEMT well known in the art.
Wherein, device main body structure 130, is the core component of electro-optical device 100.Pass through in device main body structure 130 Electric field action changes light.Specifically, device main body structure 130 is formed on Sapphire Substrate layer 112.
Specifically, device main body structure 130 includes electro-optic crystal layer, and electro-optic crystal layer is bonded with layer-of-substrate silicon 111, also It is to say, electro-optic crystal layer is bonded in layer-of-substrate silicon 111.
In the present embodiment, electro-optic crystal layer is made up of lithium tantalate.That is, electro-optical device 100 is lithium tantalate Base electro-optical device.It is, of course, understood that electro-optical device of the invention is not limited to lithium tantalate base, niobic acid is can also be Lithium base (namely electro-optic crystal layer is made up of lithium niobate)
It is, of course, understood that device main body structure 130 is also including other functional layers (such as coating etc.) and electricity Pole (not shown) etc..It is, of course, understood that the present invention is not defined to the concrete structure of device main body structure 130, this Art personnel can select the concrete structure of suitable device main body structure 130 according to actual conditions.
Above-mentioned electro-optical device, because the control of the transistor using gallium nitride base is basic, compared with Si based transistors, can be with Reduce stand-by power consumption and working frequency can be improved.Construction of switch layer in above-mentioned electro-optical device, using Sapphire Substrate layer The compound substrate being bonded with layer-of-substrate silicon, so can grow high-quality gallium nitride on Sapphire Substrate layer, So as to be conducive to obtaining high-quality construction of switch layer, and then be conducive to producing the electro-optical device of excellent performance;This is answered simultaneously The layer-of-substrate silicon of substrate is closed, the demand of large scale main flow production line can be met, with existing silicon substrate process compatible;In addition, Also avoid using large-sized sapphire sheet, can effectively reduce the cost of construction of switch layer and electro-optical device.
Each technical characteristic of embodiment described above can be combined arbitrarily, to make description succinct, not to above-mentioned reality Apply all possible combination of each technical characteristic in example to be all described, as long as however, the combination of these technical characteristics is not deposited In contradiction, the scope of this specification record is all considered to be.
Embodiment described above only expresses several embodiments of the invention, and its description is more specific and detailed, but simultaneously Can not therefore be construed as limiting the scope of the patent.It should be pointed out that coming for one of ordinary skill in the art Say, without departing from the inventive concept of the premise, various modifications and improvements can be made, these belong to protection of the invention Scope.Therefore, the protection domain of patent of the present invention should be determined by the appended claims.

Claims (9)

1. a kind of electro-optical device, it is characterised in that including:
Compound substrate, including layer-of-substrate silicon and be bonded in the layer-of-substrate silicon Sapphire Substrate layer;
Construction of switch layer, is formed by the gallium nitride being grown on the Sapphire Substrate layer;
And device main body structure, including it is bonded to the electro-optic crystal layer in the layer-of-substrate silicon.
2. electro-optical device according to claim 1, it is characterised in that the electro-optic crystal layer is made up of lithium tantalate.
3. electro-optical device according to claim 1, it is characterised in that the electro-optic crystal layer is made up of lithium columbate crystal.
4. electro-optical device according to claim 1, it is characterised in that the compound substrate also includes being grown in described blue precious Silicon fiml on stone lining bottom;The Sapphire Substrate layer is bonded by the silicon fiml with the layer-of-substrate silicon.
5. electro-optical device according to claim 4, it is characterised in that the thickness of the silicon fiml is 1~5 μm.
6. electro-optical device according to claim 1, it is characterised in that the thickness of the Sapphire Substrate layer is 20 μm.
7. electro-optical device according to claim 1, it is characterised in that the thickness of the layer-of-substrate silicon is 600~1500 μm.
8. electro-optical device according to claim 1, it is characterised in that the construction of switch layer includes gallium nitride-based field effect Pipe.
9. electro-optical device according to claim 8, it is characterised in that the GaN base field effect tube is that gallium nitride base is high Electron mobility transistor.
CN201611248546.4A 2016-12-29 2016-12-29 Electro-optical device Pending CN106784073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611248546.4A CN106784073A (en) 2016-12-29 2016-12-29 Electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611248546.4A CN106784073A (en) 2016-12-29 2016-12-29 Electro-optical device

Publications (1)

Publication Number Publication Date
CN106784073A true CN106784073A (en) 2017-05-31

Family

ID=58927557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611248546.4A Pending CN106784073A (en) 2016-12-29 2016-12-29 Electro-optical device

Country Status (1)

Country Link
CN (1) CN106784073A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105660A (en) * 1985-06-20 1987-02-25 菲利浦光灯制造公司 The manufacture method of semiconductor device
US20030033974A1 (en) * 2001-07-11 2003-02-20 Tetsuzo Ueda Layered substrates for epitaxial processing, and device
JP2004103833A (en) * 2002-09-10 2004-04-02 New Japan Radio Co Ltd Method for manufacturing semiconductor device
CN101150144A (en) * 2006-09-22 2008-03-26 中国科学院微电子研究所 Gallium nitride based field effect transistor and manufacturing method thereof
US20130099268A1 (en) * 2008-08-01 2013-04-25 Epistar Corporation Wafer-scaled light-emitting structure
CN104779143A (en) * 2015-02-13 2015-07-15 济南晶正电子科技有限公司 Thin film arranged on substrate and preparation method of thin film
CN206349372U (en) * 2016-12-29 2017-07-21 苏州爱彼光电材料有限公司 Electro-optical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105660A (en) * 1985-06-20 1987-02-25 菲利浦光灯制造公司 The manufacture method of semiconductor device
US20030033974A1 (en) * 2001-07-11 2003-02-20 Tetsuzo Ueda Layered substrates for epitaxial processing, and device
JP2004103833A (en) * 2002-09-10 2004-04-02 New Japan Radio Co Ltd Method for manufacturing semiconductor device
CN101150144A (en) * 2006-09-22 2008-03-26 中国科学院微电子研究所 Gallium nitride based field effect transistor and manufacturing method thereof
US20130099268A1 (en) * 2008-08-01 2013-04-25 Epistar Corporation Wafer-scaled light-emitting structure
CN104779143A (en) * 2015-02-13 2015-07-15 济南晶正电子科技有限公司 Thin film arranged on substrate and preparation method of thin film
CN206349372U (en) * 2016-12-29 2017-07-21 苏州爱彼光电材料有限公司 Electro-optical device

Similar Documents

Publication Publication Date Title
TWI719051B (en) SiC composite substrate and manufacturing method thereof
CN109786229B (en) Wafer bonding method and corresponding heterogeneous substrate preparation method
TWI698908B (en) SiC composite substrate manufacturing method and semiconductor substrate manufacturing method
TWI644346B (en) Group III nitride compound substrate and its manufacturing method, and group III nitride semiconductor device manufacturing method
TWI736554B (en) Manufacturing method of SiC composite substrate
TWI738665B (en) Manufacturing method of SiC composite substrate
CN104285001A (en) Gallium-nitride-on-diamond wafers and manufacturing equipment and methods of manufacture
CN105731825B (en) A method of preparing aluminium nitride film using Graphene glass low-cost large-area
CN108807153B (en) Diamond-based gallium nitride transistor based on surface activation bonding process and preparation method
WO2017181167A1 (en) Gan devices fabricated via wafer bonding
CN1871699B (en) Method for manufacturing compound semiconductor substrate
CN111900200A (en) Diamond-based gallium nitride composite wafer and bonding preparation method thereof
CN106981423A (en) Process based on Si substrate epitaxial SiC base GaN HEMT
CN110211880B (en) Manufacturing method of diamond-based gallium nitride HEMT structure
CN206349372U (en) Electro-optical device
Matsumae et al. Heterogeneous GaN-Si integration via plasma activation direct bonding
TWM625439U (en) Gallium nitride-on-silicon (GaN-on-Si) epitaxial substrate with two-dimensional (2D) material intermediate layer
CN111540710B (en) Preparation method of high-heat-conductivity gallium nitride high-power HEMT device
CN106784073A (en) Electro-optical device
CN206558506U (en) Compound substrate and epitaxial wafer and electrical device
CN206349374U (en) Photoelectric device
CN106505095A (en) Compound substrate and preparation method thereof and epitaxial wafer
CN106816504B (en) Semi-polarity AlN film and preparation method thereof based on the face m SiC substrate
WO2022032588A1 (en) N-face polarity gan-based device and composite substrate thereof, and manufacturing method for composite substrate
WO2018107616A1 (en) Composite substrate, and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication